Performance Engineering of Software Systems

LECTURE 15 Cache-Oblivious Algorithms

Srini Devadas November 3, 2022

Acknowledgment: Some of the slides in this presentation were inspired by originals due to Matteo Frigo.

SPEED

LIMIT

PER ORDER OF 6.106

SPEED

LIMIT

PER ORDER OF 6.106

Heat Diffusion

2D heat equation

The **heat function** u(t,x,y) is the heat at time t of a point (x,y).

 α is the **thermal diffusivity**.

The heat equation was originally formulated by Jean Baptiste Joseph Fourier, *Théorie de la Propagation de la Chaleur dans les Solides*, 1807.

2D Heat-Diffusion Simulation

 $\ensuremath{\textcircled{}}$ 2008–2022 by the MIT 6.172 and 6.106 Lecturers

1D Heat Equation

$$\frac{\partial \mathsf{u}}{\partial \mathsf{t}} = \alpha \frac{\partial^2 \mathsf{u}}{\partial \mathsf{x}^2}$$

 $\ensuremath{\textcircled{}}$ 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Finite-Difference Method

The famous Swiss mathematician Leonhard Euler (1707–1783) invented the finite-difference method around 1768.

We owe to Euler the notations f(x) for a function, e for the base of the natural logarithm, i for the square root of -1, π for the area of a unit circle, \sum for summation, and Δ for finite differences.

Finite-Difference Approximation

$$\frac{\partial}{\partial t} u(t,x) \approx \frac{u(t+\Delta t,x) - u(t,x)}{\Delta t},$$

$$\frac{\partial}{\partial x} u(t,x) \approx \frac{u(t,x) - u(t,x-\Delta x)}{\Delta x} \, , \label{eq:utility}$$

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$

1D heat equation

$$\begin{split} \frac{\partial^2}{\partial x^2} \mathsf{u}(\mathsf{t},\mathsf{x}) &\approx \frac{\frac{\partial}{\partial \mathsf{x}} \mathsf{u}(\mathsf{t},\mathsf{x} + \Delta \mathsf{x}) - \frac{\partial}{\partial \mathsf{x}} \mathsf{u}(\mathsf{t},\mathsf{x})}{\Delta \mathsf{x}} \\ &\approx \frac{\frac{\mathsf{u}(\mathsf{t},\mathsf{x} + \Delta \mathsf{x}) - \mathsf{u}(\mathsf{t},\mathsf{x})}{\Delta \mathsf{x}} - \frac{\mathsf{u}(\mathsf{t},\mathsf{x}) - \mathsf{u}(\mathsf{t},\mathsf{x} - \Delta \mathsf{x})}{\Delta \mathsf{x}}}{\Delta \mathsf{x}} \\ &\approx \frac{\frac{\mathsf{u}(\mathsf{t},\mathsf{x} + \Delta \mathsf{x}) - \mathsf{u}(\mathsf{t},\mathsf{x}) + \mathsf{u}(\mathsf{t},\mathsf{x} - \Delta \mathsf{x})}{\Delta \mathsf{x}}}{(\Delta \mathsf{x})^2} \,. \end{split}$$

Discretized Heat Equation

$$\frac{\mathsf{u}(\mathsf{t} + \Delta \mathsf{t}, \mathsf{x}) - \mathsf{u}(\mathsf{t}, \mathsf{x})}{\Delta \mathsf{t}} = \alpha \Big(\frac{\mathsf{u}(\mathsf{t}, \mathsf{x} + \Delta \mathsf{x}) - 2\mathsf{u}(\mathsf{t}, \mathsf{x}) + \mathsf{u}(\mathsf{t}, \mathsf{x} - \Delta \mathsf{x})}{(\Delta \mathsf{x})^2} \Big)$$

Now, put the one term involving $t + \Delta t$ on the left and the other terms involving just t on the right:

$$\mathbf{u}(\mathbf{t} + \Delta \mathbf{t}, \mathbf{x}) = \mathbf{u}(\mathbf{t}, \mathbf{x}) + \alpha \Delta \mathbf{t} \Big(\frac{\mathbf{u}(\mathbf{t}, \mathbf{x} + \Delta \mathbf{x}) - 2\mathbf{u}(\mathbf{t}, \mathbf{x}) + \mathbf{u}(\mathbf{t}, \mathbf{x} - \Delta \mathbf{x})}{(\Delta \mathbf{x})^2} \Big)$$

Assuming that $\Delta t = 1$ and $\Delta x = 1$, we obtain the following code for the **update rule**:

u[t+1][x] = u[t][x] + ALPHA * (u[t][x+1] - 2*u[t][x] + u[t][x-1]);

u[t+1][x] = u[t][x] + ALPHA * (u[t][x+1] - 2*u[t][x] + u[t][x-1]);

A stencil computation

u[t+1][x] = u[t][x] + ALPHA * (u[t][x+1] - 2*u[t][x] + u[t][x-1]);

A stencil computation

u[t+1][x] = u[t][x] + ALPHA * (u[t][x+1] - 2*u[t][x] + u[t][x-1]);

A stencil computation

u[t+1][x] = u[t][x] + ALPHA * (u[t][x+1] - 2*u[t][x] + u[t][x-1]);

A stencil computation

u[t+1][x] = u[t][x] + ALPHA * (u[t][x+1] - 2*u[t][x] + u[t][x-1]);

u[t+1][x] = u[t][x] + ALPHA * (u[t][x+1] - 2*u[t][x] + u[t][x-1]);

A **stencil computation** updates each point in an array by a fixed pattern, called a **stencil**.

3-Point Stencil Code

3-Point Stencil Code

CACHE-OBLIVIOUS STENCIL COMPUTATIONS

SPEED

LIMIT

PER ORDER OF 6.106

Recall: Ideal-Cache Model

Parameters

- Two-level hierarchy.
- Cache size of ${\mathcal M}$ bytes.
- Cache-line length (block size) of ${\mathcal B}$ bytes.
- Fully associative.
- Optimal omniscient replacement, or LRU.

Performance Measures
work T₁ (ordinary running time)
cache misses Q

Cache Behavior of Looping

Assume that $N > \mathcal{M}$ and that we use LRU replacement. Then $Q = \Theta(NT/\mathcal{B})$.

Cache-Oblivious 3-Point Stencil

Recursively traverse trapezoidal regions of space-time points (t,x) such that

Squat Trapezoid: Space Cut

If width $\ge 2 \cdot \text{height}$, cut the trapezoid with a line of slope -1 through the center (middle point of middle row). Traverse the trapezoid on the left first, and then the one on the right.

Squat Trapezoid: Space Cut

If width $\ge 2 \cdot \text{height}$, cut the trapezoid with a line of slope -1 through the center (middle point of middle row). Traverse the trapezoid on the left first, and then the one on the right.

Squat Trapezoid: Space Cut

If width ≥ 2 ·height, cut the trapezoid with a line of slope -1 through the center (middle point of middle row). Traverse the trapezoid on the left first, and then the one on the right.

Tall Trapezoid: Time Cut

If width $< 2 \cdot$ height, cut the trapezoid with a horizontal line through the center. Traverse the bottom trapezoid first, and then the top one.

Tall Trapezoid: Time Cut

If width $< 2 \cdot$ height, cut the trapezoid with a horizontal line through the center. Traverse the bottom trapezoid first, and then the top one.

Base Case

If height = 1, compute all space-time points in the trapezoid. Any order of computation is valid, since no point depends on another.

C Implementation

```
void trapezoid(int64 t t0, int64 t t1, //time start and end
               int64 t x0, int64 t dx0, //left pt of base & "slope"
               int64 t x1, int64 t dx1) {//rt pt of base & "slope"
 int64 t h = t1 - t0; //trapezoid height
 if (h == 1) { //base case
     for (int64 t x = x0; x < x1; x++)
        u[t1\%2][x] = kernel(\&u[t0\%2][x]); //same as in looping
 } else if (h > 1) {
   if (2^{*}(x1 - x0) + (dx1 - dx0)^{*} h \ge 4^{*}h) \{ //space cut \}
      int64 t xm = (2^{*}(x0 + x1) + (dx0 + dx1 + 2)^{*}h) / 4;
     trapezoid(t0, t1, x0, dx0, xm, -1); //left
     trapezoid(t0, t1, xm, -1, x1, dx1); //right
    } else { //time cut
      int64 t half h = h / 2;
     trapezoid(t0, t0 + half_h, x0, dx0, x1, dx1); //bottom
     trapezoid(t0 + half h, t1,
                x0 + dx0 * half h,
                dx0, x1 + dx1 * half h, dx1); //top
```

Work and Cache Analysis

- The bottom of a leaf trapezoid just fits in the cache, so $w = \Theta(\mathcal{M})$.
- A leaf trapezoid contains $\Theta(hw) = \Theta(w^2)$ points and $\Theta(w^2)$ work.
- Since $w \leq \mathcal{M}$, a leaf incurs $\Theta(w/\mathcal{B})$ cache misses.
- There are $\Theta(NT/hw) = \Theta(NT/w^2)$ leaves and internal nodes.
- The internal nodes contribute little to both work and cache misses.
- Work = $\Theta(NT/w^2) \cdot \Theta(w^2) = \Theta(NT)$.
- Cache misses = $\Theta(NT/w^2) \cdot \Theta(w/B) = \Theta(NT/Bw) = \Theta(NT/BM)$.

 $\ensuremath{\textcircled{}}$ 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Simulation: 3-Point Stencil

Looping v. Trapezoid on Heat

Impact on Performance

Q. How can the cache-oblivious trapezoidal decomposition have so many fewer cache misses, but the advantage gained over the looping version be so marginal?

A. Prefetching and a good memory architecture. The memory bandwidth for one core largely suffices.

PARALLELIZING THE CACHE-OBLIVIOUS STENCIL COMPUTATION

SPEED

LIMIT

PER ORDER OF 6.106

Time Cuts Don't Parallelize

There's no way to parallelize a time cut. The bottom trapezoid must be traversed first, and then the top one.

Space Cuts Don't Parallelize, or Do They?

A space cut poses a similar problem. You must traverse the trapezoid on the left before you can traverse the one on the right.

Parallel Space Cuts

A parallel space cut produces two upright trapezoids (black) that can be executed in parallel and a third "inverted" trapezoid (gray) that must execute in series after the two upright trapezoids.

Parallel Looping v. Parallel D&C

Memory Bandwidth

Impediments to Speedup

✓ Insufficient parallelism ✓ Scheduling overhead ✓ Lack of memory bandwidth \square Contention (locking and true/false sharing) Cilkscale can diagnose the first two problems. Q. How can we diagnose lack of memory bandwidth? A. Run P identical copies of the serial projection in parallel — if you have enough memory. Tools exist to detect lock contention in an execution, but not the *potential* for lock contention. Potential for true and false

sharing is even harder to detect, although you shouldn't have true sharing if you're code is free of determinacy races.

PER ORDER OF 6.106

SPEED

LIMIT

CACHE-OBLIVIOUS SORTING (OMITTED)

WRAP-UP

Other C-O Algorithms

Matrix Transposition/Addition

 $\Theta(1+mn/B)$

Straightforward recursive algorithm.

Strassen's Algorithm $\Theta(n + n^2/\mathcal{B} + n^{\lg 7}/\mathcal{BM}^{(\lg 7)/2 - 1})$ Straightforward recursive algorithm.

Fast Fourier Transform $\Theta(1 + (n/\mathcal{B})(1 + \log_{\mathcal{M}}n))$ Variant of Cooley-Tukey [CT65] using cache-oblivious
matrix transpose.

LUP-Decomposition

 $\Theta(1 + n^2/\mathcal{B} + n^3/\mathcal{BM}^{1/2})$

Recursive algorithm due to Sivan Toledo [T97].

C-O Data Structures

Ordered-File Maintenance

 $O(1 + (\lg^2 n) / B)$

INSERT/DELETE anywhere in file while maintaining O(1)sized gaps. Amortized bound [BDFC00], later improved in [BCDFC02].

B-TreesINSERT/DELETE: $O(1+log_{\mathcal{B}+1}n+(lg^2n)/\mathcal{B})$ SEARCH:SEARCH: $O(1+log_{\mathcal{B}+1}n)$ TRAVERSE: $O(1+k/\mathcal{B})$

Solution [BDFC00] with later simplifications [BDIW02], [BFJ02].

Priority Queues

 $O(1+(1/B)\log_{M/B}(n/B))$

Funnel-based solution [BF02]. General scheme based on buffer trees [ABDHMM02] supports INSERT/DELETE.

CACHE-OBLIVIOUS SORTING

SPEED

LIMIT

PER ORDER OF 6.106

This unit on sorting was not covered in lecture, but it has been taught in 6.172 in the past. It contains several instructive examples.

Merging Two Sorted Arrays


```
void merge_sort(int64_t *B, int64_t *A, int64_t n) {
    if (n==1) {
        B[0] = A[0];
    } else {
        int64_t C[n];
        cilk_spawn merge_sort(C, A, n/2);
            merge_sort(C+n/2, A+n/2, n-n/2);
        cilk_sync;
        merge(B, C, n/2, C+n/2, n-n/2);
    }
}
```



```
void merge_sort(int64_t *B, int64_t *A, int64_t n) {
    if (n==1) {
        B[0] = A[0];
    } else {
        int64_t C[n];
        cilk_spawn merge_sort(C, A, n/2);
            merge_sort(C+n/2, A+n/2, n-n/2);
        cilk_sync;
        merge(B, C, n/2, C+n/2, n-n/2);
    }
}
```



```
void merge_sort(int64_t *B, int64_t *A, int64_t n) {
    if (n==1) {
        B[0] = A[0];
    } else {
        int64_t C[n];
        cilk_spawn merge_sort(C, A, n/2);
            merge_sort(C+n/2, A+n/2, n-n/2);
        cilk_sync;
        merge(B, C, n/2, C+n/2, n-n/2);
    }
}
```

```
void merge_sort(int64_t *B, int64_t *A, int64_t n) {
    if (n==1) {
        B[0] = A[0];
    } else {
        int64_t C[n];
        cilk_spawn merge_sort(C, A, n/2);
            merge_sort(C+n/2, A+n/2, n-n/2);
        cilk_sync;
        merge(B, C, n/2, C+n/2, n-n/2);
    }
}
```



```
void merge_sort(int64_t *B, int64_t *A, int64_t n) {
    if (n==1) {
        B[0] = A[0];
    } else {
        int64_t C[n];
        cilk_spawn merge_sort(C, A, n/2);
            merge_sort(C+n/2, A+n/2, n-n/2);
        cilk_sync;
        merge(B, C, n/2, C+n/2, n-n/2);
    }
}
```



```
void merge_sort(int64_t *B, int64_t *A, int64_t n) {
    if (n==1) {
        B[0] = A[0];
    } else {
        int64_t C[n];
        cilk_spawn merge_sort(C, A, n/2);
            merge_sort(C+n/2, A+n/2, n-n/2);
        cilk_sync;
        merge(B, C, n/2, C+n/2, n-n/2);
    }
}
```


Work of Merge Sort

Solve $W(n) = 2W(n/2) + \Theta(n)$.

W(n)

Solve $W(n) = 2W(n/2) + \Theta(n)$.

Solve $W(n) = 2W(n/2) + \Theta(n)$.

Solve $W(n) = 2W(n/2) + \Theta(n)$.

Now with Caching

Merge subroutine

 $Q(n) = \Theta(n/B)$.

Merge sort

 $Q(n) = \begin{cases} \Theta(n/\mathcal{B}) & \text{if } n \leq c\mathcal{M}, \text{ constant } c \leq 1; \\ 2Q(n/2) + \Theta(n/\mathcal{B}) & \text{otherwise.} \end{cases}$

 $Q(n) = \begin{cases} \Theta(n/B) & \text{if } n \leq c\mathcal{M}, \text{ constant } c \leq 1; \\ 2Q(n/2) + \Theta(n/B) & \text{otherwise.} \end{cases}$

Recursion tree

Q(n)

 $Q(n) = \begin{cases} \Theta(n/\mathcal{B}) & \text{if } n \leq c\mathcal{M}, \text{ constant } c \leq 1; \\ 2Q(n/2) + \Theta(n/\mathcal{B}) & \text{otherwise.} \end{cases}$

Recursion tree

 $Q(n) = \begin{cases} \Theta(n/\mathcal{B}) & \text{if } n \leq c\mathcal{M}, \text{ constant } c \leq 1; \\ 2Q(n/2) + \Theta(n/\mathcal{B}) & \text{otherwise.} \end{cases}$

Recursion tree

 $Q(n) = \begin{cases} \Theta(n/B) & \text{if } n \le c\mathcal{M}, \text{ constant } c \le 1; \\ 2Q(n/2) + \Theta(n/B) & \text{otherwise.} \end{cases}$

Recursion tree

 $Q(n) = \begin{cases} \Theta(n/B) & \text{if } n \le c\mathcal{M}, \text{ constant } c \le 1; \\ 2Q(n/2) + \Theta(n/B) & \text{otherwise.} \end{cases}$

Recursion tree

Bottom Line for Merge Sort

 $\begin{aligned} \mathsf{Q}(\mathsf{n}) &= \begin{cases} \Theta(\mathsf{n}/\mathcal{B}) & \text{if } \mathsf{n} \leq \mathsf{c}\mathcal{M}, \text{ constant } \mathsf{c} \leq \mathsf{1}; \\ 2\mathsf{Q}(\mathsf{n}/2) + \Theta(\mathsf{n}/\mathcal{B}) & \text{otherwise}; \end{cases} \\ &= \Theta((\mathsf{n}/\mathcal{B}) \lg(\mathsf{n}/\mathcal{M})). \end{aligned}$

- For $n \gg \mathcal{M}$, we have $\lg(n/\mathcal{M}) \approx \lg n$, and thus $W(n)/Q(n) \approx \Theta(\mathcal{B})$.
- For $n \approx \mathcal{M}$, we have $\lg(n/\mathcal{M}) \approx \Theta(1)$, and thus $W(n)/Q(n) \approx \Theta(\mathcal{B} \lg n)$.

Multiway Merging

IDEA: Merge R < n subarrays with a tournament.

Multiway Merging

IDEA: Merge R < n subarrays with a tournament.

Multiway Merging

IDEA: Merge R < n subarrays with a tournament.

Multiway Merging

IDEA: Merge R < n subarrays with a tournament.

Multiway Merging

IDEA: Merge R < n subarrays with a tournament.

Work of Multiway Merge Sort

$$W(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ R \cdot W(n/R) + \Theta(n \lg R) & \text{otherwise.} \end{cases}$$

Recursion tree

Caching Recurrence

Consider the R-way merging of contiguous arrays of total size n. If $R < c\mathcal{M}/\mathcal{B}$, for some sufficiently small constant $c \leq 1$, the entire tournament plus 1 block from each array can fit in cache. $\Rightarrow Q(n) \leq \Theta(n/\mathcal{B})$ for merging.

 $\begin{aligned} & \mathsf{R}\text{-way merge sort} \\ & \mathsf{Q}(\mathsf{n}) \leq \begin{cases} \Theta(\mathsf{n}/\mathcal{B}) & \text{if } \mathsf{n} < \mathsf{c}\mathcal{M}; \\ & \mathsf{R}\text{-}\mathsf{Q}(\mathsf{n}/\mathsf{R}) + \Theta(\mathsf{n}/\mathcal{B}) \\ & \text{otherwise.} \end{aligned}$

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Cache Analysis

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Tuning the Voodoo Parameter

We have

 $Q(n) = \Theta((n/\mathcal{B}) \log_{R}(n/\mathcal{M})),$ which decreases as $R < c\mathcal{M}/\mathcal{B}$ increases. Choosing R as big as possible yields $R = \Theta(\mathcal{M}/\mathcal{B}).$

By the tall-cache assumption $(\mathcal{B}^2 < c\mathcal{M})$ and the fact that $\log_{\mathcal{M}}(n/\mathcal{M}) = \Theta((\lg n)/\lg \mathcal{M})$, we have

 $\begin{aligned} \mathsf{Q}(\mathsf{n}) &= \Theta((\mathsf{n}/\mathcal{B}) \log_{\mathcal{M}/\mathcal{B}}(\mathsf{n}/\mathcal{M})) \\ &= \Theta((\mathsf{n}/\mathcal{B}) \log_{\mathcal{M}}(\mathsf{n}/\mathcal{M})) \\ &= \Theta((\mathsf{n} \lg \mathsf{n})/\mathcal{B} \lg \mathcal{M}) . \end{aligned}$

Hence, we have $W(n)/Q(n) \approx \Theta(\mathcal{B} \lg \mathcal{M})$.

Multiway versus Binary Merge Sort

We have

 $Q_{multiway}(n) = \Theta((n \lg n) / \mathcal{B} \lg \mathcal{M})$

versus

$$\begin{aligned} \mathbf{Q}_{\text{binary}}(\mathbf{n}) &= \Theta((\mathbf{n}/\mathcal{B}) \, |\, \mathbf{g}(\mathbf{n}/\mathcal{M})) \\ &= \Theta((\mathbf{n} \, |\, \mathbf{g} \, \mathbf{n})/\mathcal{B}) , \end{aligned}$$

as long as $n \gg \mathcal{M}$, because then $\lg(n/\mathcal{M}) \approx \lg n$. Thus, multiway merge sort saves a factor of $\Theta(\lg \mathcal{M})$ in cache misses.

Example (ignoring constants)

• L1-cache: $\mathcal{M} = 2^{15} \Rightarrow 15 \times \text{savings}$.

• L2-cache: $\mathcal{M} = 2^{18} \Rightarrow 18 \times \text{ savings.}$

• L3-cache: $\mathcal{M} = 2^{23} \Rightarrow 23 \times \text{savings.}$

Optimal Cache-Oblivious Sorting

Funnelsort [FLPR99]

- 1. Recursively sort $n^{1/3}$ groups of $n^{2/3}$ items.
- 2. Merge the sorted groups with an $n^{1/3}$ -funnel.

A k-funnel merges k³ items in k sorted lists, incurring at most

 $\Theta(\mathbf{k} + (\mathbf{k}^3/\mathcal{B})(\mathbf{1} + \log_{\mathcal{M}} \mathbf{k}))$

cache misses. Thus, funnelsort incurs

$$\begin{split} \mathsf{Q}(\mathsf{n}) &\leq \mathsf{n}^{1/3}\mathsf{Q}(\mathsf{n}^{2/3}) + \Theta(\mathsf{n}^{1/3} + (\mathsf{n}/\mathsf{b})(1 + \log_{\mathcal{M}}\mathsf{n})) \\ &= \Theta(1 + (\mathsf{n}/\mathcal{B})(1 + \log_{\mathcal{M}}\mathsf{n})) \,, \end{split}$$

cache misses, which is asymptotically optimal [AV88].

Construction of a k-funnel

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers