
© 2008–2022 by the MIT 6.106/6.172 Lecturers

Software
Performance
Engineering

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

LECTURE 16
Nondeterministic Parallel
Programming
Charles E. Leiserson
November 8, 2022

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Determinism

Definition. A program is deterministic on a given input
if every memory location is updated with the same
sequence of values in every execution.
∙ The program always behaves the same way.
∙ Two different memory locations may be updated in different

orders, but each location always sees the same sequence of
updates.

Advantage: DEBUGGING!

A Cilk program with no determinacy races is deterministic.
∙ Cilksan can help you avoid nondeterminacy bugs.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Golden Rule of Parallel Programming

They can exhibit anomalous behaviors, and
it’s hard to debug them.

Never write nondeterministic
parallel programs.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Never write nondeterministic
parallel programs.

Golden Rule of Parallel Programming

But a nondeterministic program
may give me more

performance!

© 2008–2022 by the MIT 6.106/6.172 Lecturers

DANGER

ENTER AT YOUR OWN RISK

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Silver Rule of Parallel Programming

*E.g., for performance.

Typical test strategies
• Turn off nondeterminism.
• Encapsulate nondeterminism.
• Substitute a deterministic alternative.
• Use analysis tools.

Never write nondeterministic
parallel programs.

— but if you must* —
always devise a test strategy

to manage the nondeterminism!

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

ATOMICITY &
MUTUAL EXCLUSION

© 2008–2022 by the MIT 6.106/6.172 Lecturers

81

Example: Hash Table

92 39 51 34

16

42 33 12

15 94 26 28

77 75

slot = hash(x->key);
x->next = table[slot];
table[slot] = x;

Insert x into table
x: 1

2

3

© 2008–2022 by the MIT 6.106/6.172 Lecturers

81

Concurrent Hash Table

92 39 51 34

16

42 33 12

15 94 26 28

77 75

x:

37y:

slot = hash(x->key);
x->next = table[slot];
table[slot] = x;

slot = hash(y->key);
y->next = table[slot];
table[slot] = y;

DATA
RACE!

1
2
6

3
4
5

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Atomicity and Mutexes

Definition. A critical section is a piece of code that
accesses a shared data structure which must not be
accessed by two or more strands at the same time
(mutual exclusion) .

Definition. A sequence of instructions is atomic if the
rest of the system never views them as partially
executed. At any moment, either no instructions in the
sequence have executed or all of them have executed.

Definition. A mutex is an object with lock() and
unlock() functions. An attempt by a strand to lock an
already locked mutex causes that strand to block (i.e., wait)
until the mutex is unlocked.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Concurrent Hash Table

slot = hash(x->key);
lock(&L);
 x->next = table[slot];
 table[slot] = x;
unlock(&L);

DSJUJDBM
TFDUJPO

Modified hash-table code
● Introduce a mutex L.
● Lock L before executing the critical section.
● Unlock L after executing the critical section.

Performance problem
Only one strand can insert into the hash table at a time.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Concurrent Hash Table II

slot = hash(x->key);
lock(&table[slot].L);
 x->next = table[slot].head;
 table[slot].head = x;
unlock(&table[slot].L);

critical
section

Idea: One mutex per slot
● Make each slot a struct with a mutex L and a pointer

head to the slot contents.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

81

Concurrent Hash Table with Mutexes

92 39 51 34

16

42 33 12

15 94 26 28

77 75

x:

37y:

1
2

6
3

4
5

7

8
9
10

Q: Is this table
deterministic? NO!

slot = hash(x->key);
lock(&table[slot].L);
 x->next = table[slot].head;
 table[slot].head = x;
unlock(&table[slot].L);

slot = hash(y->key);
lock(&table[slot].L);
 y->next = table[slot].head;
 table[slot].head = y;
unlock(&table[slot].L);

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Recall: Determinacy Races

Definition. A determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

∙ A program execution with no determinacy races means that the
program is deterministic on that input.

∙ The program always behaves the same on that input, no matter how it
is scheduled and executed.

∙ If a determinacy race exists in an ostensibly deterministic program (e.g.,
a program with no mutexes), Cilksan guarantees to find such a race.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Data Races

Definition. A EBUBァSBDFァoccurs when two logically parallel
strands holding no locks in common access the same
memory location and at least one of the strands performs
a write.

WARNING: Codes that use locks are
nondeterministic by intention, and they
invalidate Cilksan’s guarantee.

Although data-race-free programs obey atomicity
constraints, they can still be nondeterministic, because
acquiring a lock can cause a determinacy race with another
lock acquisition.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

No Data Races ≠ No Bugs

slot = hash(x->key);

lock(&table[slot].L);
 x->next = table[slot].head;
unlock(&table[slot].L);

lock(&table[slot].L);
 table[slot].head = x;
unlock(&table[slot].L);

Example

Nevertheless, the presence of mutexes and the
absence of data races at least means that the
programmer thought about the issue.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

“Benign” Races

for (int i = 0; i < 10; ++i) {
 digits[i] = 0;

}
cilk_for (int i = 0; i < N; ++i) {
 digits[A[i]] = 1; // benign race

}

A: 4, 1, 0, 4, 3, 3, 4, 6, 1, 9, 1, 9, 6, 6, 6, 3, 4
Example: Identify the set of digits in an array.

1 1 0 1 1 0 1 0 0 1
0 1 2 3 4 5 6 7 8 9

digits:

CAUTION: This code only works correctly if the hardware
writes the array elements atomically (e.g., it may race on
byte values for some architectures).

© 2008–2022 by the MIT 6.106/6.172 Lecturers

for (int i = 0; i < 10; ++i) {
 digits[i] = 0;

}
cilk_for (int i = 0; i < N; ++i) {
 digits[A[i]] = 1; // benign race

}

“Benign” Races

A: 4, 1, 0, 4, 3, 3, 4, 6, 1, 9, 1, 9, 6, 6, 6, 3, 4
Example: Identify the set of digits in an array.

1 1 0 1 1 0 1 0 0 1
0 1 2 3 4 5 6 7 8 9

digits:

Cilksan allows you to turn off race detection for intentional races,
which is dangerous but practical. Better solutions exist, e.g., fake
locks in Intel’s Cilkscreen (see Intel Cilk Plus Tools User's Guide).

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

IMPLEMENTATION OF MUTEXES

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Properties of Mutexes

∙ Yielding/spinning
A yielding mutex returns control to the operating system
when it blocks. A spinning mutex consumes processor cycles
while blocked.

∙ Reentrant/nonreentrant
A reentrant mutex allows a thread that is already holding a
lock to acquire it again. A nonreentrant mutex deadlocks if
the thread attempts to reacquire a mutex it already holds.

∙ Fair/unfair
A fair mutex puts blocked threads on a FIFO queue, and the
unlock operation unblocks the thread that has been waiting
the longest. An unfair mutex lets any blocked thread go next.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Simple Spinning Mutex

Spin_Mutex:
 cmp 0, mutex ; Check if *mutex is free
 je Get_Mutex
 pause ; x86 hack to unconfuse pipeline
 jmp Spin_Mutex
Get_Mutex:
 mov 1, %eax
 xchg mutex, %eax ; Try to get mutex
 cmp 0, %eax ; Test if successful
 jne Spin_Mutex
Critical_Section:
 <critical-section code>
 mov 0, mutex ; Release mutex

Key property: xchg is an atomic exchange.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Simple Yielding Mutex

Spin_Mutex:
 cmp 0, mutex ; Check if *mutex is free
 je Get_Mutex
 call pthread_yield ; Yield quantum
 jmp Spin_Mutex
Get_Mutex:
 mov 1, %eax
 xchg mutex, %eax ; Try to get mutex
 cmp 0, %eax ; Test if successful
 jne Spin_Mutex
Critical_Section:
 <critical-section code>
 mov 0, mutex ; Release mutex

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Competitive Mutex

Competing goals:
∙ To claim mutex soon after it is released.
∙ To behave nicely and waste few cycles.

IDEA: Spin for a while, and then yield.

How long to spin?
As long as a context switch takes. Then, you never wait longer
than twice the optimal time.

∙ If the mutex is released while spinning, optimal.
∙ If the mutex is released after yield, ≤ 2 × optimal.

Randomized algorithm [KMMO94]

A clever randomized algorithm can achieve a competitive ratio of
e/(e–1) ≈ 1.58.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

LOCKING ANOMALY: DEADLOCK

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Deadlock

Holding more than one lock at a time can be dangerous:

lock(&A);
lock(&B);
 〈critical section 〉
unlock(&B);
unlock(&A);

lock(&B);
lock(&A);
 〈critical section 〉
unlock(&A);
unlock(&B);

Thread 1 Thread 2

The ultimate loss of performance!

1 2

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Conditions for Deadlock

1. Mutual exclusion — Each thread claims exclusive
control over the resources it holds.

2. Nonpreemption — Each thread does not release the
resources it holds until it completes its use of them.

3. Circular waiting — A cycle of threads exists in which
each thread is blocked waiting for resources held by the
next thread in the cycle.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Dining Philosophers

Illustrative story of deadlock told by Charles Antony Richard
Hoare based on an examination question by Edsgar Dijkstra.
The story has been embellished over the years by many retellers.

C.A.R. (Tony) Hoare Edsger Dijkstra

© 2008–2022 by the MIT 6.106/6.172 Lecturers

while (1) {
 think();
 lock(&chopstick[i].L);
 lock(&chopstick[(i+1)%n].L);
 eat();
 unlock(&chopstick[i].L);
 unlock(&chopstick[(i+1)%n].L);
}

Dining Philosophers

Each of n philosophers needs the
two chopsticks on
either side of their plate
to eat their noodles.

Philosopher i

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Philosopher i
while (1) {
 think();
 lock(&chopstick[i].L);
 lock(&chopstick[(i+1)%n].L);
 eat();
 unlock(&chopstick[i].L);
 unlock(&chopstick[(i+1)%n].L);
}

Dining Philosophers

One day they all pick up
their left chopsticks

simultaneously.

Starving
Each of n philosophers needs the
two chopsticks on
either side of their plate
to eat their noodles.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Preventing Deadlock

Theorem. Assume that we can linearly order the
mutexes L1 ⋖ L2 ⋖ ⋯ ⋖ Ln so that whenever a thread
holds a mutex Li and attempts to lock another mutex Lj,
we have Li ⋖ Lj. Then, no deadlock can occur.

1SPPG. Suppose that a cycle of waiting exists. Consider the thread in
the cycle that holds the “largest” mutex Lmax in the ordering, and
suppose that it is waiting on a mutex L held by the next thread in the
cycle. Then, we must have Lmax ⋖ L . Contradiction. ∎

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Dining Philosophers

while (1) {
 think();
 lock(&chopstick[min(i,(i+1)%n)].L);
 lock(&chopstick[max(i,(i+1)%n)].L);
 eat();
 unlock(&chopstick[i].L);
 unlock(&chopstick[(i+1)%n].L);
}

Philosopher i

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Deadlocking Cilk with just one lock
void main() {
 cilk_scope {
 cilk_spawn foo();
 lock(&L);
 }
 unlock(&L);
}

void foo() {
 lock(&L);
 unlock(&L);
}

[

[]

]

∙ Don’t hold mutexes across joins!
∙ Hold mutexes only within cilk_scope’s.
∙ As always, try to avoid nondeterministic programming

(but that’s not always possible).

1

2foo()

3main()1

2

3

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

LOCKING ANOMALY: CONVOYING

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Convoying

A lock convoy occurs when multiple threads of
equal priority contend repeatedly for the same lock.

When random work-stealing, each thief grabs a mutex on
its victim’s deque:
∙ If the victim’s deque is empty, the thief releases the mutex

and tries again at random.
∙ If the victim’s deque contains work, the thief steals the

topmost frame and then releases the mutex.

PROBLEM: At start-up, most thieves quickly converge on
the worker containing the initial strand, creating a convoy.

Example: Performance bug in MIT-Cilk

© 2008–2022 by the MIT 6.106/6.172 Lecturers

33

Performance Bug in MIT-Cilk

1 2 4 5 6

: busy worker

: idle worker

3 : successful steal in progress

: dependency from onto the
lock on ‘s deque

© 2008–2022 by the MIT 6.106/6.172 Lecturers

33

Performance Bug in MIT-Cilk

1 2 4 5 6

: busy worker

: idle worker

3 : successful steal in progress

: dependency from onto the
lock on ‘s deque

© 2008–2022 by the MIT 6.106/6.172 Lecturers

33

Performance Bug in MIT-Cilk

1 2 4 5 6

: busy worker

: idle worker

3 : successful steal in progress

: dependency from onto the
lock on ‘s deque

© 2008–2022 by the MIT 6.106/6.172 Lecturers

33

Performance Bug in MIT-Cilk

1 2 4 5 6

: busy worker

: idle worker

3 : successful steal in progress

: dependency from onto the
lock on ‘s deque

© 2008–2022 by the MIT 6.106/6.172 Lecturers

33

Performance Bug in MIT-Cilk

1 2 4 5 6

: busy worker

: idle worker

3 : successful steal in progress

: dependency from onto the
lock on ‘s deque

© 2008–2022 by the MIT 6.106/6.172 Lecturers

33

Performance Bug in MIT-Cilk

1 2 4 5 6

The work now gets distributed slowly as each
thief serially obtains Processor 1’s mutex.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Solving the Convoying Problem

Use the nonblocking function try_lock(), rather than lock():
∙ try_lock() attempts to acquire the mutex and returns a flag

indicating whether it was successful, but it does not block on
an unsuccessful attempt.

In Cilk Plus, when a thief fails to acquire a mutex, it simply
tries to steal again at random, rather than blocking.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

LOCKING ANOMALY: CONTENTION

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Summing Example

int compute(const el_t *v);
const size_t n = 1000000;
extern el_t myArray[n];

int main() {
 int result = 0;
 for (size_t i = 0; i < n; ++i) {
 result += compute(&myArray[i]);
 }
 printf("The result is: %d\n", result);

 return 0;
}

© 2008–2022 by the MIT 6.106/6.172 Lecturers

int compute(const el_t *v);
const size_t n = 1000000;
extern el_t myArray[n];

int main() {
 int result = 0;
 cilk_for (size_t i = 0; i < n; ++i) {
 result += compute(&myArray[i]);
 }
 printf("The result is: %d\n", result);

 return 0;
}

Summing Example in Cilk

Race!

Work/span theory
T1(n) = Θ(n)
T∞(n) = Θ(lg n)
TP(n) = O(n/P + lg n)

Assume Θ(1)
work.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Mutex Solution

#include <pthread.h>
int compute(const el_t *v);
const size_t n = 1000000;
extern el_t myArray[n];

int main() {
 int result = 0;
 pthread_spinlock_t slock;
 pthread_spin_init(&slock, 0);
 cilk_for (size_t i = 0; i < n; ++i) {
 pthread_spin_lock(&slock);
 result += compute(&myArray[i]);
 pthread_spin_unlock(&slock);
 }
 printf("The result is: %d\n", result);

 return 0;
}

Lock contention
⇒ no parallelism!

Contention
T1(n) = Θ(n)
T∞(n) = Θ(lg n)
TP(n) = Ω(n)

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Scheduling with Mutexes

Greedy scheduler:

TP ≤ T1/P + T∞ + B ,

where B is the bondage — the total time of all
critical sections.

This upper bound is weak, especially if many small
mutexes each protect different critical regions.
Little is known theoretically about lock contention.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

TRANSACTIONAL MEMORY

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Concurrent Graph Computation

Gaussian Elimination

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Concurrent Graph Computation

Gaussian Elimination

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Concurrent Graph Computation

Gaussian Elimination

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Concurrent Graph Computation

Gaussian Elimination

© 2008–2022 by the MIT 6.106/6.172 Lecturers

How to Deal with Concurrency?

Gaussian Elimination

© 2008–2022 by the MIT 6.106/6.172 Lecturers

How to Deal with Concurrency?

Gaussian Elimination

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Transactional Memory*

Gaussian_Eliminate(G, v) {
 atomic {
 S = neighbors[v];
 for u ∈ S {
 E(G) = E(G) – {(u, v)};
 E(G) = E(G) – {(v, u)};
 }
 V(G) = V(G) – {v};
 for u ∈ S
 for u′ ∈ S – {u}
 E(G) = E(G) ∪ {(u, u′)};
 }
}

Atomicity
● On transaction commit, all memory

updates in the critical region
appear to take effect at once.

● On transaction abort, none of the
memory updates appear to take
effect, and the trans-action must
be restarted.

● A restarted transaction may take a
different code path.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Definitions
Conflict
When two or more transactions attempt to access the same
location of transactional memory concurrently.

Contention resolution
Deciding which of two conflicting transactions to wait or to
abort and restart, and under what conditions.

Forward progress
Avoiding deadlock, livelock, and starvation.

Throughput
Run as many transactions concurrently as possible.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Algorithm L [L16]

Algorithm L is a remarkably simple algorithm for guaranteeing the forward
progress of transactions.

Assume that the transactional-memory system provides mechanisms for
● logging reads and writes,
● aborting and rolling back transactions,
● restarting.

Algorithm L employs a lock-based approach that combines two ideas:
● finite ownership array [HF03],
● release-sort-reacquire [L95, RFF06].

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Finite Ownership Array
● An array lock[0..n–1] of antistarvation (queuing) mutual-exclusion

locks,* which support:
 ACQUIRE(l): Grab lock l, blocking until it becomes available.
 TRY_ACQUIRE(l): Try to grab lock l, and return true or false to

indicate success or failure, respectively.
 RELEASE(l): Release lock l.

● An owner function h: U → {0, 1, ..., n–1} mapping the space U
of memory locations to indexes in lock.

● To lock location x ∈ U, acquire lock[h(x)].

*For greater generality, one can use reader/writer locks.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Release-Sort-Reacquire
Before accessing a memory location x, try to acquire lock[h(x)]
greedily. On conflict (i.e., the lock is already held):
1. Roll back the transaction (without releasing locks).
2. Release all locks with indexes larger than h[x].
3. Acquire lock[h(x)], blocking if already held.
4. Reacquire the released locks in sorted order, blocking if already held.
5. Restart the transaction.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Algorithm L
SAFE_ACCESS(x, L)
1 if h(x) ∉ L
2 M = {i ∈ L : i > h(x)}
3 L = L ∪ {h(x)}
4 if M == ∅
5 ACQUIRE(lock[h(x)]) // blocking
6 elseif TRY_ACQUIRE(lock[h(x)]) // nonblocking
7 // do nothing
8 else
9 roll back transaction state (without releasing locks)
10 for i ∈ M
11 RELEASE(lock[i])
12 ACQUIRE(lock[h(x)]) // blocking
13 for i ∈ M in increasing order
14 ACQUIRE(lock[i]) // blocking
15 restart transaction // does not return
16 access location x

Safely access a memory location x within a transaction having local lock-index set L.
• At transaction start, the transaction's lock-index set L is initialized to the empty set: L = ∅.
• When the transaction completes, all locks with indexes in L are released.

Set of local
lock-indexes.

Global finite
ownership

array.

Locks held with
indexes larger

than h(x).

Owner
function.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Forward Progress (1)

No deadlocks
A transaction only blocks when waiting for a lock larger than any of the locks
it already holds ⇒ no deadly embrace, i.e., no cycle of blocking.

Before accessing a memory location x, try to acquire lock[h(x)]
greedily. On conflict (i.e., the lock is already held):
1. Roll back the transaction (without releasing locks).
2. Release all locks with indexes larger than h[x].
3. Acquire lock[h(x)], blocking if already held.
4. Reacquire the released locks in sorted order, blocking if already held.
5. Restart the transaction.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Forward Progress (2)
Before accessing a memory location x, try to acquire lock[h(x)]
greedily. On conflict (i.e., the lock is already held):
1. Roll back the transaction (without releasing locks).
2. Release all locks with indexes larger than h[x].
3. Acquire lock[h(x)], blocking if already held.
4. Reacquire the released locks in sorted order, blocking if already held.
5. Restart the transaction.

No livelocks or starvation
Each time a transaction restarts, it holds at least one more lock than
it held the previous time. Thus, a transaction can be attempted at
most n times, where n is the size of the ownership array.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Remarks

As a practical matter, timestamp-based algorithms seem to
be the preferred method for guaranteeing forward progress:
● wound-wait and wait-die [RSL78],

● TL2 [DSS06],
● provable bounds [GHP05].

But these algorithms tend to be complex.

Properly choosing the length n of the ownership-array is crucial:
● The smaller n is, the more the false contention.
● The larger n is, the weaker the forward-progress guarantee.
● If the owner function h is random, by the birthday paradox, the number of

“false” conflicts is at most 1 if n = m2/2, where m is the total number of
shared-memory locations in all concurrently running transactions.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Never write nondeterministic
parallel programs.

Golden Rule of Parallel Programming

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Never write nondeterministic
parallel programs.

— but if you must* —
always devise a test strategy

to manage the nondeterminism!

Silver Rule of Parallel Programming

DANGER

YOU’VE BEEN WARNED!

	Lecture 16 �Nondeterministic Parallel Programming
	Determinism
	Golden Rule of Parallel Programming
	Golden Rule of Parallel Programming
	Slide Number 5
	Silver Rule of Parallel Programming
	Atomicity & Mutual Exclusion
	Example: Hash Table
	Concurrent Hash Table
	Atomicity and Mutexes
	Concurrent Hash Table
	Concurrent Hash Table II
	Concurrent Hash Table with Mutexes
	Recall: Determinacy Races
	Data Races
	No Data Races ≠ No Bugs
	“Benign” Races
	“Benign” Races
	Implementation of Mutexes
	Properties of Mutexes
	Simple Spinning Mutex
	Simple Yielding Mutex
	Competitive Mutex
	Locking Anomaly: Deadlock
	Deadlock
	Conditions for Deadlock
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Preventing Deadlock
	Dining Philosophers
	Deadlocking Cilk with just one lock
	Locking Anomaly: Convoying
	Convoying
	Performance Bug in MIT-Cilk
	Performance Bug in MIT-Cilk
	Performance Bug in MIT-Cilk
	Performance Bug in MIT-Cilk
	Performance Bug in MIT-Cilk
	Performance Bug in MIT-Cilk
	Solving the Convoying Problem
	Locking Anomaly: Contention
	Summing Example
	Summing Example in Cilk
	Mutex Solution
	Scheduling with Mutexes
	Transactional Memory
	Concurrent Graph Computation
	Concurrent Graph Computation
	Concurrent Graph Computation
	Concurrent Graph Computation
	How to Deal with Concurrency?
	How to Deal with Concurrency?
	Transactional Memory*
	Definitions
	Algorithm L [L16]
	Finite Ownership Array
	Release-Sort-Reacquire
	Algorithm L
	Forward Progress (1)
	Forward Progress (2)
	Remarks
	Golden Rule of Parallel Programming
	Silver Rule of Parallel Programming

