
© 2008–2022 by the MIT 6.106/6.172 Lecturers

Software
Performance
Engineering

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

LECTURE 17
Synchronization without
Locks
Charles E. Leiserson
November 10, 2022

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

SEQUENTIAL CONSISTENCY

2

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Memory Models

mov 1, a ;Store
mov b, %ebx ;Load

mov 1, b ;Store
mov a, %eax ;Load

Initially, a = b = 0.

Processor 0 Processor 1

Q. Is it possible that Processor 0’s %ebx and Processor 1’s
%eax both contain the value 0 after the processors
have both executed their code?

A. It depends on the memory model : how memory
operations behave in the parallel computer system.

3

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Sequential Consistency

“[T]he result of any execution is the same as if the
operations of all the processors were executed in some
sequential order, and the operations of each individual
processor appear in this sequence in the order
specified by its program.” — Leslie Lamport [1979]

∙ The sequence of instructions as defined by a processor’s program are interleaved
with the corresponding sequences defined by the other processors’ programs to
produce a global linear order of all instructions

∙ A LOAD instruction receives the value stored to that address by the most recent
STORE instruction that precedes the LOAD, according to the linear order

∙ The hardware can do whatever it wants, but for the execution to be sequentially
consistent, it must appear as if LOAD’s and STORE’s obey some global linear order

4

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Example

1

2

3

4

Interleavings
1 1 1 3 3 3

2 3 3 1 1 4

3 2 4 2 4 1

4 4 2 4 2 2

%eax

%ebx

Sequential consistency implies that no
execution ends with %eax = %ebx = 0.

mov 1, a ;Store
mov b, %ebx ;Load

mov 1, b ;Store
mov a, %eax ;Load

Initially, a = b = 0.
Processor 0 Processor 1

1

0

1

1

1

1

1

1

1

1

0

1

5

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Reasoning about Sequential Consistency

∙ An execution induces a “happens before” relation, which we shall
denote as

∙ The relation is linear, meaning that for any two distinct instructions
𝑥𝑥 and 𝑦𝑦, either 𝑥𝑥 𝑦𝑦 or 𝑦𝑦 𝑥𝑥.

∙ The relation respects processor order, the order of instructions in
each processor

∙ A LOAD from a location in memory reads the value written by the
most recent STORE to that location according to

∙ For the memory resulting from an execution to be sequentially
consistent, there must exist such a linear order that yields that
memory state

6

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

MUTUAL EXCLUSION WITHOUT LOCKS

7

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Mutual-Exclusion Problem

Computer hardware provides atomic read-modify-write instructions.
• e.g., atomic swap (X86 xchg), TEST-AND-SET, COMPARE-AND-SWAP, LOAD-LINKED-

STORE-CONDITIONAL.

Synchronization libraries use these instructions to implement locks, but you
can use them directly:
• The C library stdatomic.h* provides a long list of atomics which should work on

most architectures
• LLVM and GCC provide compiler built-in functions for synchronization, but they

are less portable

★Recall
A critical section is a piece of code that accesses a shared data
structure that must not be executed by two or more parallel strands
(mutual exclusion) .

*See http://en.cppreference.com/w/c/atomic .
8

http://en.cppreference.com/w/c/atomic

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Mutual-Exclusion Problem

Q. Can mutual exclusion be implemented with atomic
LOAD’s and STORE’s as the only memory operations?

A. Yes, Theodorus J. Dekker and Edsger Dijkstra showed
that it can, at least for computers with sequentially
consistent memory models.

9

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Peterson’s Algorithm

A_wants = true;
turn = B;
while (B_wants && turn==B);
frob(&x); //critical section
A_wants = false;

widget x; //protected variable
bool A_wants = false;
bool B_wants = false;
enum {A, B} turn;

Alice Bob
B_wants = true;
turn = A;
while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false;

x
widgetAlice Bob

10

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Peterson’s Algorithm
Alice Bob

Intuition
∙ If Alice and Bob both try to enter the critical section, then

whoever writes last to turn spins and the other progresses.
∙ If only Alice tries to enter the critical section, then she

progresses, since B_wants is false.
∙ If only Bob tries to enter the critical section, then he progresses,

since A_wants is false.

But we can be more rigorous!

A_wants = true;
turn = B;
while (B_wants && turn==B);
frob(&x); //critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false;

11

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Proof of Mutual Exclusion

Theorem. Peterson’s algorithm achieves mutual
exclusion on the critical section.

Proof.
∙ Assume for the purpose of contradiction that both Alice

and Bob find themselves in the critical section together.
∙ Consider the most-recent time that each of them

executed the code before entering the critical section.
∙ We shall derive a contradiction.

12

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Proof of Mutual Exclusion
Alice Bob
A_wants = true;
turn = B;
while (B_wants && turn==B);
frob(&x); //critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false;

13

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Proof of Mutual Exclusion
Alice Bob

∙ Assume WLOG that Bob was the last to write to turn:
writeA(turn = B) writeB(turn = A) .

A_wants = true;
turn = B;
while (B_wants && turn==B);
frob(&x); //critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false;

14

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Proof of Mutual Exclusion
Alice Bob

∙ Assume WLOG that Bob was the last to write to turn:
writeA(turn = B) writeB(turn = A) .

∙ Alice’s program order:
writeA(A_wants = true) writeA(turn = B) .

A_wants = true;
turn = B;
while (B_wants && turn==B);
frob(&x); //critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false;

15

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Proof of Mutual Exclusion
Alice Bob

∙ Assume WLOG that Bob was the last to write to turn:
writeA(turn = B) writeB(turn = A) .

∙ Alice’s program order:
writeA(A_wants = true) writeA(turn = B) .

∙ Bob’s program order:
writeB(turn = A) readB(A_wants) readB(turn) .

A_wants = true;
turn = B;
while (B_wants && turn==B);
frob(&x); //critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false;

16

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Proof of Mutual Exclusion
Alice Bob
A_wants = true;
turn = B;
while (B_wants && turn==B);
frob(&x); //critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false;

1

2

3

4
5

∙ Assume WLOG that Bob was the last to write to turn:
writeA(turn = B) writeB(turn = A) .

∙ Alice’s program order:
writeA(A_wants = true) writeA(turn = B) .

∙ Bob’s program order:
writeB(turn = A) readB(A_wants) readB(turn) .

17

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Proof of Mutual Exclusion
Alice Bob

∙ Assume WLOG that Bob was the last to write to turn :
writeA(turn = B) writeB(turn = A) .

∙ Alice’s program order:
writeA(A_wants = true) writeA(turn = B) .

∙ Bob’s program order:
writeB(turn = A) readB(A_wants) readB(turn) .

∙ What did Bob read?
 A_wants: ?
 turn: ?

A_wants = true;
turn = B;
while (B_wants && turn==B);
frob(&x); //critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false;

1

2

3

5

A
true

Bob should spin. Contradiction. ∎

true 4

A;

18

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Starvation Freedom

Theorem: Peterson’s algorithm guarantees starvation freedom:
While Alice wants to execute her critical section, Bob cannot
execute his critical section twice in a row, and vice versa.

Proof. Exercise. ∎

19

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

RELAXED MEMORY CONSISTENCY

21

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Memory Models Today

∙ No modern-day processor implements sequential consistency.

∙ All implement some form of relaxed consistency.

∙ Hardware actively reorders instructions.

∙ Compilers may reorder instructions too.

22

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Instruction Reordering

Q. Why might the hardware or compiler decide to reorder
these instructions?

A. To obtain higher performance by covering load latency —
instruction-level parallelism.

mov 1, a ;Store
mov b, %ebx ;Load

mov b, %ebx ;Load
mov 1, a ;Store

Program Order Execution Order

23

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Instruction Reordering

Q. When is it safe for the hardware or compiler to perform
this reordering?

A. When a ≠ b.
A′. And there’s no concurrency.

mov 1, a ;Store
mov b, %ebx ;Load

mov b, %ebx ;Load
mov 1, a ;Store

Program Order Execution Order

24

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Hardware Reordering

∙ The processor can issue STORE’s faster than the network can
handle them ⇒ store buffer.

∙ Since a LOAD can stall the processor until it is satisfied, loads
take priority, bypassing the store buffer.

∙ If a LOAD address matches an address in the store buffer, the
store buffer returns the result.

∙ Thus, a LOAD can bypass a STORE to a different address.

Memory
System

Load Bypass

Processor Network
Store Buffer

25

© 2008–2022 by the MIT 6.106/6.172 Lecturers

x86-64 Total Store Order

1. LOAD’s are not reordered with LOAD’s.
2. STORE’s are not reordered with STORE’s.
3. STORE’s are not reordered with prior LOAD’s.
4. A LOAD may be reordered with a prior

STORE to a different location but not with a
prior STORE to the same location.

5. LOAD’s and STORE’s are not reordered with
LOCK instructions.

Store1

Store2

Load1

Store3

Store4

Load3

Load2

Load4

Load5

Instruction Trace

Locally:

6. STORE’s to the same location respect a
global total order.

7. LOCK instructions respect a global total
order.

8. Memory ordering preserves transitive
visibility (“causality”).

Globally:

26

© 2008–2022 by the MIT 6.106/6.172 Lecturers

1. LOAD’s are not reordered with LOAD’s.
2. STORE’s are not reordered with STORE’s.
3. STORE’s are not reordered with prior LOAD’s.
4. A LOAD may be reordered with a prior

STORE to a different location but not with a
prior STORE to the same location.

5. LOAD’s and STORE’s are not reordered with
LOCK instructions.

6. STORE’s to the same location respect a
global total order.

7. LOCK instructions respect a global total
order.

8. Memory ordering preserves transitive
visibility (“causality”).

Locally:

Globally:

x86-64 Total Store Order

Store1

Store2

Load1

Store3

Store4

Load3

Load2

Load4

Load5

L
O
A
D
S

Instruction Trace

Total Store Ordering (TSO)
is weaker than sequential

consistency.

27

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Impact of Reordering

1

2

3

4

mov 1, a ;Store
mov b, %ebx ;Load

mov 1, b ;Store
mov a, %eax ;Load

Processor 0 Processor 1

28

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Impact of Reordering

Instruction reordering violates
sequential consistency!

The ordering 〈2, 4, 1, 3〉 produces %eax = %ebx = 0.

1

2

3

4

mov 1, a ;Store
mov b, %ebx ;Load

mov 1, b ;Store
mov a, %eax ;Load

2

1

4

3

mov b, %ebx ;Load
mov 1, a ;Store

mov a, %eax ;Load
mov 1, b ;Store

Processor 0 Processor 1

29

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Further Impact of Reordering

Peterson’s algorithm revisited

 The LOAD’s of B_wants and A_wants can be reordered
before the STORE’s of A_wants and B_wants, respectively.

 Both Alice and Bob might enter their critical sections
simultaneously!

Alice Bob
A_wants = true;
turn = B;
while (B_wants && turn==B);
frob(&x); //critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false;

30

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Memory Fences

∙ A memory fence (or memory barrier) is a hardware action
that enforces an ordering constraint between the instructions
before and after the fence.

∙ A memory fence can be issued explicitly as an instruction (x86:
mfence) or be performed implicitly by locking, exchanging,
and other synchronizing instructions.

∙ The Tapir/LLVM compiler implements a memory fence via the
function atomic_strand_fence() defined in the C header
file stdatomic.h.*

∙ The typical cost of a memory fence is comparable to that of an
L2-cache access.

*See http://en.cppreference.com/w/c/atomic .

31

http://en.cppreference.com/w/c/atomic

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Memory fences can restore sequential consistency.

Alice Bob
A_wants = true;
turn = B;
while (B_wants && turn==B);
frob(&x); //critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false;

A_wants = true;
turn = B;
atomic_thread_fence();
while (B_wants && turn==B);
frob(&x); //critical section
A_wants = false;

B_wants = true;
turn = A;
atomic_thread_fence();
while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false;

Well, sort of. You also need to make sure that the
compiler doesn’t screw you over.

32

Restoring Consistency

© 2008–2022 by the MIT 6.106/6.172 Lecturers

In addition to the memory fence
∙ you must declare variables as volatile to prevent the compiler from

optimizing away memory references;
∙ you need compiler fences around frob() and borf() to prevent compiler

reordering.

Alice Bob
atomic_store(&A_wants, true);
atomic_store(&turn, B);
while (atomic_load(&B_wants) &&
 atomic_load(&turn)==B);
frob(&x); //critical section
atomic_store(&A_wants, false);

atomic_store(&B_wants, true);
atomic_store(&turn, A);
while (atomic_load(&A_wants) &&
 atomic_load(&turn)==A);
borf(&x); //critical section
atomic_store(&B_wants, false);

widget x; //protected variable
_Atomic bool A_wants = false;
_Atomic bool B_wants = false;
_Atomic enum {A, B} turn;

33

Restoring Consistency

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Alice Bob
atomic_store(&A_wants, true);
atomic_store(&turn, B);
while (atomic_load(&B_wants) &&
 atomic_load(&turn)==B);
frob(&x); //critical section
atomic_store(&A_wants, false);

atomic_store(&B_wants, true);
atomic_store(&turn, A);
while (atomic_load(&A_wants) &&
 atomic_load(&turn)==A);
borf(&x); //critical section
atomic_store(&B_wants, false);

The C11 language standard defines its own weak memory model in which
you can control hardware and compiler reordering of memory operations
by
∙ declaring variables as _Atomic; and
∙ using the functions atomic_load(), atomic_store(), etc. as needed.

See http://en.cppreference.com/w/c/atomic.

widget x; //protected variable
_Atomic bool A_wants = false;
_Atomic bool B_wants = false;
_Atomic enum {A, B} turn;

34

Restoring Consistency with C11

http://en.cppreference.com/w/c/atomic

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Implementing General Mutexes

Theorem [Burns-Lynch]. Any n-thread deadlock-free
mutual-exclusion algorithm using only LOAD and STORE
memory operations requires Ω(n) space.

Theorem [Attiya et al.]: Any n-thread deadlock-free
mutual-exclusion algorithm on a modern machine must
use an expensive operation such as a memory fence or
an atomic COMPARE-AND-SWAP operation.

Thus, hardware designers are justified when they
implement special operations to support atomicity.

35

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

COMPARE-AND-SWAP

36

© 2008–2022 by the MIT 6.106/6.172 Lecturers

The Lock-Free Toolbox

Memory operations
∙ LOAD
∙ STORE
∙ CAS (COMPARE-AND-SWAP)

37

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Compare-and-Swap

The COMPARE-AND-SWAP operation is provided by the
cmpxchg instruction on x86-64. The C header file
stdatomic.h provides CAS via the built-in function

atomic_compare_exchange_strong()
which can operate on various integer types.*

* See http://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange .

Specification
bool CAS(T *x, T old, T new) {
 if (*x == old) {
 *x = new;
 return true;
 }
 return false;
}

∙ Executes atomically.
∙ Implicit fence.

38

http://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Mutex Using CAS

void lock(int *lock_var) {
 while (!CAS(*lock_var, false, true));
}

void unlock(int *lock_var) {
 *lock_var = false;
}

Theorem. An n-thread deadlock-free
mutual-exclusion algorithm using CAS can
be implemented using Θ(1) space.

Just the space for the mutex itself. ∎

Proof.

39

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Summing Problem

int compute(const X& v);
int main() {
 const int n = 1000000;
 extern X myArray[n];
 // ...

 int result = 0;
 cilk_for (int i = 0; i < n; ++i) {
 result += compute(myArray[i]);
 }
 printf("The result is: %f\n”, result);
 return 0;
}

Race!

40

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Mutex Solution

int compute(const X& v);
int main() {
 const int n = 1000000;
 extern X myArray[n];
 mutex L;
 // ...

 int result = 0;
 cilk_for (int i = 0; i < n; ++i) {
 int temp = compute(myArray[i]);
 L.lock();
 result += temp;
 L.unlock();
 }
 printf("The result is: %f\n”, result);
 return 0;
}

41

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Mutex Solution

int compute(const X& v);
int main() {
 const int n = 1000000;
 extern X myArray[n];
 mutex L;
 // ...

 int result = 0;
 cilk_for (int i = 0; i < n; ++i) {
 int temp = compute(myArray[i]);
 L.lock();
 result += temp;
 L.unlock();
 }
 printf("The result is: %f\n”, result);
 return 0;
}

Q. What happens if the
operating system swaps
out a loop iteration just
after it acquires the
mutex?

A. All other loop iterations
must wait.

Yet all we want is
to atomically
execute a LOAD
of x followed by
a store of x.

42

© 2008–2022 by the MIT 6.106/6.172 Lecturers

CAS Solution

int result = 0;
cilk_for (int i = 0; i < n; ++i) {
 int temp = compute(myArray[i]);
 int old, new;
 do {
 old = result;
 new = old + temp;
 } while (!CAS(&result, old, new));
}

Q. Now what happens if the
operating system swaps
out a loop iteration?

A. No other loop iteration
needs to wait. The
algorithm is nonblocking.

43

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

LOCK-FREE ALGORITHMS

44

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Lock-Free Stack

77 75head:

struct Node {
 Node* next;
 int data;
};

struct Stack {
 Node* head;
 ⋮

45

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Lock-Free PUSH

81

77 75

node:

head:

void push(Node* node) {
 do {
 node->next = head;
 } while (!CAS(&head, node->next, node));
}

46

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Lock-Free PUSH with Contention

81

77 75head:

33

The COMPARE-AND-SWAP fails!

void push(Node* node) {
 do {
 node->next = head;
 } while (!CAS(&head, node->next, node));
}

47

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Lock-Free POP

Node* pop() {
 Node* current = head;
 while (current) {
 if (CAS(&head, current, current->next)) break;
 current = head;
 }
 return current;
}

15 94 26head:

current:

48

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Performance Considerations

COMPARE-AND-SWAP acquires a cache line in exclusive mode,
invalidating the cache line in other caches.
● Result: High contention if all processors CAS to same cache line.

Better
● First, read the memory location to check whether the value

changed before attempting a CAS.
● Only CAS if the value didn’t change.

Similar to the trick we saw last lecture where the Intel
implementation of a lock reads the lock status before attempting
the xchg operation.

49

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Lock-Free Push and Pop

Node* pop() {
 Node* current = head;
 while (current) {
 if (head == current &&
 CAS(&head, current, current->next)) break;
 current = head;
 }
 return current;
}

void push(Node* node) {
 do {
 node->next = head;
 } while (head != node->next ||
 !CAS(&head, node->next, node));
}

50

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Lock-Free Data Structures

∙ Efficient lock-free algorithms are known for a variety of classical data
structures (e.g., linked lists, queues, skip lists, hash tables).

∙ In theory, a thread might starve. Because of contention, its operation
might never complete. In practice, starvation rarely happens.

∙ Transactional memory possibly offers one way to revolutionize this area.

 TM allows a block of code to execute atomically without worrying about
locks or complicated lock-free protocols.

Practical issues with lock-free programming
∙ memory management
∙ contention
∙ the ABA problem

51

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

THE ABA PROBLEM

52

© 2008–2022 by the MIT 6.106/6.172 Lecturers

The ABBA problem

53

© 2008–2022 by the MIT 6.106/6.172 Lecturers

ABA Example

15 94 26head:

current:

54

1. Strand 1 begins to pop the node containing 15, but stalls after
reading current->next.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

1515

ABA Example

94 26head:

current:

1. Strand 1 begins to pop the node containing 15, but stalls after
reading current->next.

2. Strand 2 pops the node containing 15.

55

© 2008–2022 by the MIT 6.106/6.172 Lecturers

9494

ABA Example

15 26head:

current:

1. Strand 1 begins to pop the node containing 15, but stalls after
reading current->next.

2. Strand 2 pops the node containing 15.
3. Strand 2 pops the node containing 94.

56

© 2008–2022 by the MIT 6.106/6.172 Lecturers

77

ABA Example

94 26head:

current:

1. Strand 1 begins to pop the node containing 15, but stalls after
reading current->next.

2. Strand 2 pops the node containing 15.
3. Strand 2 pops the node containing 94.
4. Strand 2 pushes the node 7, reusing the node that contained 15.

57

© 2008–2022 by the MIT 6.106/6.172 Lecturers

ABA Example

7 94 26head:

current:

1. Strand 1 begins to pop the node containing 15, but stalls after
reading current->next.

2. Strand 2 pops the node containing 15.
3. Strand 2 pops the node containing 94.
4. Strand 2 pushes the node 7, reusing the node that contained 15.
5. Strand 1 resumes, and its CAS succeeds, removing 7, but putting

garbage back on the list.

58

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Solutions to ABA

Versioning
∙ Pack a version number with each pointer in the same atomically

updatable word.
∙ Increment the version number every time the pointer is changed.
∙ Compare-and-swap both the pointer and the version number as

a single atomic operation.

Issue
∙ Version numbers may need to be very large.

Reclamation
∙ Prevent node reuse while pending requests exist.
∙ For example, prevent node 15 from being reused as node 7

while Strand 1 still executing.

59

	Lecture 17 �Synchronization without Locks
	Sequential Consistency
	Memory Models
	Sequential Consistency
	Example
	Reasoning about Sequential Consistency
	Mutual Exclusion without Locks
	Mutual-Exclusion Problem
	Mutual-Exclusion Problem
	Peterson’s Algorithm
	Peterson’s Algorithm
	Proof of Mutual Exclusion
	Proof of Mutual Exclusion
	Proof of Mutual Exclusion
	Proof of Mutual Exclusion
	Proof of Mutual Exclusion
	Proof of Mutual Exclusion
	Proof of Mutual Exclusion
	Starvation Freedom
	Relaxed Memory Consistency
	Memory Models Today
	Instruction Reordering
	Instruction Reordering
	Hardware Reordering
	x86-64 Total Store Order
	x86-64 Total Store Order
	Impact of Reordering
	Impact of Reordering
	Further Impact of Reordering
	Memory Fences
	Restoring Consistency
	Restoring Consistency
	Restoring Consistency with C11
	Implementing General Mutexes
	Compare-and-Swap
	The Lock-Free Toolbox
	Compare-and-Swap
	Mutex Using CAS
	Summing Problem
	Mutex Solution
	Mutex Solution
	CAS Solution
	Lock-Free Algorithms
	Lock-Free Stack
	Lock-Free Push
	Lock-Free Push with Contention
	Lock-Free Pop
	Performance Considerations
	Lock-Free Push and Pop
	Lock-Free Data Structures
	The ABA Problem
	The ABBA problem
	ABA Example
	ABA Example
	ABA Example
	ABA Example
	ABA Example
	Solutions to ABA

