
Performance
Engineering of
Software Systems

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

LECTURE 19
GPU PROGRAMMING

Xuhao Chen
September 20, 2024

1

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

What is a GPU?

2

 Graphics Processing Units

ray tracing 3D renderinggaming

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Why GPU?

3

 CPU
~10s cores
 Low Latency
Good for serial processing
Good for interactive tasks
 Task parallelism

 GPU
 100s ~ 1000s cores
High throughput
Good for parallel processing
Good for big-data tasks
Data parallelism

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Why GPU?

4

Throughput Power Throughput/Power

Intel Skylake 128 SP GFLOPS/4 Cores 100+ Watts ~1 GFLOPS/Watt

NVIDIA V100 15 TFLOPS 200+ Watts ~75 GFLOPS/Watt

Also,

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Compute Intensive Applications

5

 Bioinformatics

 Computational
Chemistry

 Computational
Finance

 Computational Fluid
Dynamics

 AI & Machine Learning

 Block Chain

 Data Science, Medical Imaging,
Imaging & Computer Vision,
Weather and Climate, …

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

GPU Architecture

7

GPU

Streaming Multiprocessor (SM)
SM SM SM

SM SM SM

L2 cache

Global Memory

SP0 SP1 SP2 SP31
… L1

cache

SIMT: single-instruction multiple threads

thread 0 t1 t2 t31

Warp (32 threads)

Scalar Processor
Synchronous Execution, a.k.a, lock-step

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

3 Ways of GPU Acceleration

8

Applications

GPU-accelerated
libraries

OpenACC Directives
Programming

Languages

Seamless linking
to GPU-enabled
libraries.

Simple directives
for easy GPU-
acceleration of
new and existing
applications

Most powerful and
flexible way to design
GPU accelerated
applications

cuFFT, cuBLAS,
Thrust, NPP, IMSL,

CULA, cuRAND, etc.
PGI Accelerator C/C++, Fortran,

Python, Java, etc.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

3 Ways of GPU Acceleration

9

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

GPU Accelerated Libraries

10

NVIDIA cuBLAS NVIDIA cuRAND

NVIDIA cuSPARSE

NVIDIA NPP

NVIDIA cuFFTC++ STL Features
for CUDA

Sparse Linear
Algebra

http://code.google.com/p/thrust/downloads/list

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Thrust: Rapid Parallel C++ Development

11

 Resembles C++ STL
 High-level interface
 Enhances developer productivity
 Enables performance portability

between GPUs and multicore CPUs

 Flexible
 CUDA, OpenMP, and TBB backends
 Extensible and customizable
 Integrates with existing software

 Open source

// generate 32M random numbers on host
thrust::host_vector<int> h_vec(32 << 20);
thrust::generate(h_vec.begin(),
 h_vec.end(),
 rand);

// transfer data to device (GPU)
thrust::device_vector<int> d_vec = h_vec;

// sort data on device
thrust::sort(d_vec.begin(), d_vec.end());

// transfer data back to host
thrust::copy(d_vec.begin(),
 d_vec.end(),
 h_vec.begin());

http://developer.nvidia.com/thrust or http://thrust.googlecode.com

http://developer.nvidia.com/thrust
http://thrust.googlecode.com/

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Libraries: Easy, High-Quality Acceleration

12

• Ease of use: Using libraries enables GPU acceleration without in-depth
 knowledge of GPU programming

• “Drop-in”: Many GPU-accelerated libraries follow standard APIs, thus
 enabling acceleration with minimal code changes

• Quality: Libraries offer high-quality implementations of functions
 encountered in a broad range of applications

• Performance: NVIDIA libraries are tuned by experts

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

3 Ways of GPU Acceleration

13

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

OpenACC Directives

14

 Simple Compiler hints
 Compiler Parallelizes code
 Works on many-core GPUs

& multicore CPUs
Program myscience
 ... serial code ...
!$acc kernels
 do k = 1,n1
 do i = 1,n2
 ... parallel code ...
 enddo
 enddo
!$acc end kernels
 ...
End Program myscience

CPU GPU

Your original
Fortran or C code

OpenACC
compiler

Hint

Easy Open Powerful

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

3 Ways of GPU Acceleration

15

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

GPU Programming Languages

16

OpenACC, CUDA CC

Thrust, CUDA C++C++

OpenACC, CUDA FortranFortran

PyCUDA, PyOpenCL, NumbaPython

MATLAB, Mathematica, LabVIEWNumerical analytics

Theano, Tensorflow, Caffe, Torch, etc.Machine Learning

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

PROGRAM A GPU
WITH CUDA

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

17

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Heterogeneous Computing

18

 Terminology
Host: The CPU and its memory (host memory)
Device: The GPU and its memory (device memory)

Host: the CPU and its memory Device: the GPU and its memory

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

CPU-GPU Heterogeneous Computing

19

Application Code

GPU CPU

Use GPU to
Parallelize

Compute-Intensive
Functions

Rest of Sequential
CPU Code

+

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Heterogeneous Computing with CUDA

20

 CUDA Compute Unified Device Architecture

…

Highly parallel

do_something_on_host();
kernel<<<nBlk, nTid>>>(args);
cudaDeviceSynchronize();
do_something_else_on_host();

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Simple Processing Flow

22

1. Copy input data from CPU memory
to GPU memory

PCI Bus

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Simple Processing Flow

23

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance

PCI Bus

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Simple Processing Flow

24

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance

3. Copy results from GPU memory to
CPU memory

PCI Bus

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Heterogeneous Computing with CUDA C

25

 Let’s start with simply adding two integers

a b c

__global__ void add(int *a, int *b, int *c) {
 *c[i] = *a + *b;
}

Vector Addition

 Here __global__ is a CUDA C/C++ keyword meaning
 add() will execute on the device
 add() will be called from the host

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Addition on the Device

26

 Note that we use pointers for the variables

__global__ void add(int *a, int *b, int *c) {
 *c = *a + *b;
}

 add() runs on the device, so a, b and c
must point to device memory

 We need to allocate memory on the GPU

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Memory Management

27

 Host and device memory are separate entities
Device pointers point to GPU memory

May be passed to/from host code
May not be dereferenced in host code

Host pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

 Simple CUDA API for handling device memory
 cudaMalloc(), cudaFree(), cudaMemcpy()
 Similar to the C equivalents malloc(), free(), memcpy()

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Addition on the Device: main()

28

int main(void) {
 int a, b, c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = sizeof(int);

 // Allocate space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Setup input values
 a = 2;
 b = 7;

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Vector Addition on the Device: main()

29

 // Copy inputs to device
 cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU
 add<<<1,1>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

RUNNING IN
PARALLEL

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

30

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Moving to Parallel Execution

31

GPU computing is about massive parallelism

So how do we run code in parallel on the device?

Instead of executing add() once, execute 𝑁𝑁 times in parallel

 add<<< 1, 1 >>>();

 add<<< N, 1 >>>();

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Thread Batching: Grids and Blocks

32

 A kernel is executed as a grid of thread
blocks
 All threads within a thread block share a

portion of data memory
 Threads/blocks have 1D/2D/3D IDs

 A thread block is a batch of threads that
can cooperate with each other by:
 Synchronizing their execution
 For hazard-free common memory accesses

 Efficiently sharing data through a low latency
shared memory

 Two threads from two different thread
blocks cannot directly cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Vector Addition on the Device

33

 With add() running in parallel we can do vector addition

 Each parallel invocation of add() is referred to as a block
 The set of blocks is referred to as a grid
 Each invocation can refer to its block index using blockIdx.x

 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

 By using blockIdx.x to index into the array, each block handles a
different index

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Vector Addition on the Device

34

__global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

 On the device, each block can execute in parallel:

c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Vector Addition on the Device: add()

35

• Returning to our parallelized add() kernel

 __global__ void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
 }

• Let’s take a look at main()…

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Vector Addition on the Device: main()

36

#define N 512
 int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Vector Addition on the Device: main()

37

// Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N blocks
 add<<<N,1>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Review (1 of 2)

38

 Difference between host and device
Host CPU
Device GPU

 Using __global__ to declare a function as device code
 Executes on the device
 Called from the host

 Passing parameters from host code to a device function

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Review (2 of 2)

39

 Basic device memory management
 cudaMalloc()
 cudaMemcpy()
 cudaFree()

 Launching parallel kernels
 Launch N copies of add() with add<<<N,1>>>(…);
Use blockIdx.x to access block index

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

INTRODUCING
THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

40

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

CUDA Threads

 Terminology: a block can be split into parallel threads

 Let’s change add() to use parallel threads instead of
parallel blocks

We use threadIdx.x instead of blockIdx.x

Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {
 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}

41

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Vector Addition Using Threads: main()

#define N 512
 int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);

42

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Vector Addition Using Threads: main()

// Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N threads
 add<<<1,N>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

43

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

COMBINING THREADS
AND BLOCKS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

44

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and Threads

With M threads/block a unique index for each thread is given by
 int index = threadIdx.x + blockIdx.x * M;

No longer as simple as using blockIdx.x and threadIdx.x
 Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

45

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Indexing Arrays: Example

 Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;
 = 5 + 2 * 8;
 = 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

46

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Vector Addition with Blocks and Threads

What changes need to be made in main()?

 Use the built-in variable blockDim.x for threads per block

 Combined version of add() to use parallel threads and
parallel blocks

__global__ void add(int *a, int *b, int *c) {
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 c[index] = a[index] + b[index];
}

int index = threadIdx.x + blockIdx.x * blockDim.x;

47

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

#define N (2048*2048)
 #define THREADS_PER_BLOCK 512
 int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);

Addition with Blocks and Threads: main()

48

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

// Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU
 add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

Addition with Blocks and Threads: main()

49

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Handling Arbitrary Vector Sizes

Update the kernel launch:
 add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

 Typical problems are not friendly multiples of blockDim.x

 Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 if (index < n)
 c[index] = a[index] + b[index];
}

50

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Why Bother with Threads?

 Threads seem unnecessary
 They add a level of complexity
 What do we gain?

 Unlike parallel blocks, threads have mechanisms to:
 Communicate
 Synchronize

 To look closer, we need a new example…

51

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

COOPERATING
THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

52

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

1D Stencil

 Consider applying a 1D stencil to a 1D array of elements
 Each output element is the sum of input elements within a radius

 If radius is 3, then each output element is the sum of 7
input elements:

radius radius

53

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Implementing Within a Block

 Each thread processes one output element
 blockDim.x elements per block

 Input elements are read several times
 With radius 3, each input element is read seven times

54

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Sharing Data Between Threads

 Terminology: within a block, threads share data via shared
memory

 Extremely fast on-chip memory, user-managed

 Declare using __shared__, allocated per block

 Data is not visible to threads in other blocks

55

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers
blockDim.x output elements

halo on left halo on right

Implementing With Shared Memory

 Cache data in shared memory
 Read (blockDim.x + 2 * radius) input elements from global memory to

shared memory
 Compute blockDim.x output elements
 Write blockDim.x output elements to global memory

 Each block needs a halo of radius elements at each boundary

56

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] =
 in[gindex + BLOCK_SIZE];
 }

Stencil Kernel

57

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

// Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

Stencil Kernel

58

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Data Race!

 The stencil example will not work…

 Suppose thread 15 reads the halo before thread 0 has fetched it…

59

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex – RADIUS = in[gindex – RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 int result = 0;

 result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

__syncthreads()

 void __syncthreads();

 Synchronizes all threads within a block
 Used to prevent RAW / WAR / WAW hazards

 All threads must reach the barrier
 In conditional code, the condition must be uniform across the block

60

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Stencil Kernel

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + radius;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex – RADIUS] = in[gindex – RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();

61

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Stencil Kernel

// Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

62

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Review (1 of 2)

 Launching parallel threads
 Launch N blocks with M threads per block with kernel<<<N,M>>>(…);
 Use blockIdx.x to access block index within grid
 Use threadIdx.x to access thread index within block

 Allocate elements to threads:

 int index = threadIdx.x + blockIdx.x * blockDim.x;

63

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Review (2 of 2)

 Use __shared__ to declare a variable/array in shared memory
 Data is shared between threads in a block
 Not visible to threads in other blocks

 Use __syncthreads() as a barrier
 Use to prevent data hazards

64

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

MANAGING THE
DEVICE

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

65

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Coordinating Host & Device

 Kernel launches are asynchronous
 Control returns to the CPU immediately

 CPU needs to synchronize before consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have completed

66

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Reporting Errors

 All CUDA API calls return an error code (cudaError_t)
 Error in the API call itself

 OR
 Error in an earlier asynchronous operation (e.g. kernel)

 Get the error code for the last error:
 cudaError_t cudaGetLastError(void)

 Get a string to describe the error:
 char *cudaGetErrorString(cudaError_t)

 printf("%s\n", cudaGetErrorString(cudaGetLastError()));

67

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Device Management

 Application can query and select GPUs
 cudaGetDeviceCount(int *count)
 cudaSetDevice(int device)
 cudaGetDevice(int *device)
 cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

 Multiple threads can share a device

 A single thread can manage multiple devices
 cudaSetDevice(i) to select current device
 cudaMemcpy(…) for peer-to-peer copies

 requires OS and device support

68

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Summary: What have we learned?

 Write and launch CUDA C/C++ kernels
 __global__, blockIdx.x, threadIdx.x, <<<>>>

 Manage GPU memory
 cudaMalloc(), cudaMemcpy(), cudaFree()

 Manage communication and synchronization
 __shared__, __syncthreads()
 cudaMemcpy() vs. cudaMemcpyAsync()
 cudaDeviceSynchronize()

69

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Getting Started

77

 Download CUDA Toolkit & SDK: www.nvidia.com/getcuda

 Nsight IDE (Eclipse or Visual Studio): www.nvidia.com/nsight

 Programming Guide/Best Practices: www.docs.nvidia.com

 Questions:
NVIDIA Developer forums: devtalk.nvidia.com
 Search or ask on: www.stackoverflow.com/tags/cuda

 General: www.nvidia.com/cudazone

http://www.nvidia.com/getcuda
http://www.nvidia.com/nsight
http://www.docs.nvidia.com/
http://www.stackoverflow.com/tags/cuda
http://www.nvidia.com/cudazone

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Learn More

78

 These languages are supported on all CUDA-capable GPUs.
 You might already have a CUDA-capable GPU in your laptop or desktop PC!

MATLAB
http://www.mathworks.com/discovery/
matlab-gpu.html

CUDA C/C++
http://developer.nvidia.com/cuda-toolkit

Thrust C++ Template Library
http://developer.nvidia.com/thrust

CUDA Fortran
http://developer.nvidia.com/cuda-toolkit

GPU.NET
http://tidepowerd.com

PyCUDA (Python)
http://mathema.tician.de/software/pycuda

Mathematica
http://www.wolfram.com/mathematica/new
-in-8/cuda-and-opencl-support/

http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/thrust
http://developer.nvidia.com/cuda-toolkit
http://tidepowerd.com/
http://mathema.tician.de/software/pycuda
http://www.wolfram.com/mathematica/new-in-8/cuda-and-opencl-support/

	Lecture 19 �GPU Programming
	What is a GPU?
	Why GPU?
	Why GPU?
	Compute Intensive Applications
	GPU Architecture
	3 Ways of GPU Acceleration
	3 Ways of GPU Acceleration
	GPU Accelerated Libraries
	Thrust: Rapid Parallel C++ Development
	Libraries: Easy, High-Quality Acceleration
	3 Ways of GPU Acceleration
	OpenACC Directives
	3 Ways of GPU Acceleration
	GPU Programming Languages
	Slide Number 17
	Heterogeneous Computing
	CPU-GPU Heterogeneous Computing
	Heterogeneous Computing with CUDA
	Simple Processing Flow
	Simple Processing Flow
	Simple Processing Flow
	Heterogeneous Computing with CUDA C
	Addition on the Device
	Memory Management
	Addition on the Device: main()
	Vector Addition on the Device: main()
	Slide Number 30
	Moving to Parallel Execution
	Thread Batching: Grids and Blocks
	Vector Addition on the Device
	Vector Addition on the Device
	Vector Addition on the Device: add()
	Vector Addition on the Device: main()
	Vector Addition on the Device: main()
	Review (1 of 2)
	Review (2 of 2)
	Slide Number 40
	CUDA Threads
	Vector Addition Using Threads: main()
	Vector Addition Using Threads: main()
	Slide Number 44
	Indexing Arrays with Blocks and Threads
	Indexing Arrays: Example
	Vector Addition with Blocks and Threads
	Addition with Blocks and Threads: main()
	Addition with Blocks and Threads: main()
	Handling Arbitrary Vector Sizes
	Why Bother with Threads?
	Slide Number 52
	1D Stencil
	Implementing Within a Block
	Sharing Data Between Threads
	Implementing With Shared Memory
	Slide Number 57
	Stencil Kernel
	Data Race!
	__syncthreads()
	Stencil Kernel
	Stencil Kernel
	Review (1 of 2)
	Review (2 of 2)
	Slide Number 65
	Coordinating Host & Device
	Reporting Errors
	Device Management
	Summary: What have we learned?
	Getting Started
	Learn More

