
Performance Engineering of Software Systems September 9, 2021
Massachusetts Institute of Technology 6.172
Saman Amarasinghe, Charles E. Leiserson, and Jonathan Ragan-Kelley Handout 2

Homework 1: Getting Started

Due: 11:59 p.m. (et) on Monday, September 13, 2021

Last Updated: September 10, 2021

This homework introduces the environment and tools you will be using to complete your future project
assignments. It includes a quick C primer. You should use this assignment to familiarize yourself with the
tools you will be using throughout the course.

Contents

1 Immediate action items . 1
2 Software engineering . 2
3 Virtual machine setup . 2
4 Version control . 2
5 Visual Studio Code . 3
6 C primer . 4
7 Basic tools . 10
8 Using AWSRUN . 18
9 C style guidelines . 19
10 Submission . 19

1 Immediate action items

Download and install the 6.172 virtual machine (VM) by completing Part 1 of the 6.172 soft-
ware setup instructions at https://github.mit.edu/6172-fall21/student_software/tree/main/
vmware. This must be done before your recitation section on Friday, September 10, 2021, as the
recitation will begin with Part 2 of the instructions. The VM download size is roughly 7.5 GB,
and it takes roughly 16 GB of disk space after installation.

While waiting for the 6.172 VM to download, please complete the Course Information Quizlet at:
https://bit.ly/3ttZr4R, and the recitation sign up form at: https://mit.co1.qualtrics.com/

jfe/form/SV_d6ep1bSbcKuAgGG. The Course Information Quizlet will count for a portion of your
HW1 grade.

https://github.mit.edu/6172-fall21/student_software/tree/main/vmware
https://github.mit.edu/6172-fall21/student_software/tree/main/vmware
https://bit.ly/3ttZr4R
https://mit.co1.qualtrics.com/jfe/form/SV_d6ep1bSbcKuAgGG
https://mit.co1.qualtrics.com/jfe/form/SV_d6ep1bSbcKuAgGG

Handout 2 — Homework 1: Getting Started 2

2 Software engineering

Best practices

A good software engineer strives to write programs that are fast, correct, and maintainable. Here
are a few best practices which we feel are worth reminding you of:

• Maintainability: Comment your code, use meaningful variable names, insert whitespaces,
and follow a consistent style.

• Code organization: Break up large functions into smaller subroutines, write reusable helper
functions, and avoid duplicate code.

• Version control: Write descriptive commit messages, and commit your changes frequently
(but don’t commit anything which doesn’t compile).

• Assertions: Frequently make assertions within your code so that you know quickly when
something goes wrong.

Pair programming

Pair programming is a technique in which two programmers work on the same machine. Ac-
cording to Laurie Williams from North Carolina State University: “One of the programmers,
the driver, has control of the keyboard/mouse and actively implements the program. The other
programmer, the observer, continuously observes the work of the driver to identify tactical (syn-
tactic, spelling, etc.) defects, and also thinks strategically about the direction of the work.” The
programmers work equally to develop a piece of software as they periodically switch roles.

3 Virtual machine setup

Follow the instructions in the following link to set up your 6.172 development environment:
https://github.mit.edu/6172-fall21/student_software.

If you have trouble with any of these steps, please post a Piazza note to the instructors.

4 Version control

We will use the Git distributed version control system for code release and submission. We will
be using MIT’s internal GitHub system at github.mit.edu, not github.com. The baseline code for
this assignment is in the repository https://github.mit.edu/6172-fall21/homework1.

https://github.mit.edu/6172-fall21/student_software
github.mit.edu
github.com
https://github.mit.edu/6172-fall21/homework1

Handout 2 — Homework 1: Getting Started 3

Git Setup

After setting up your virtual machine, you will have to introduce yourself to Git (give Git your
name and email so that you will be identified when you commit changes).

In a terminal inside your VM, enter:

$ git config --global user.name "<your_name>"
$ git config --global user.email <your_kerberos>@mit.edu

You should, of course, use your real name and MIT email address.

Cloning Homework 1

To make a clone — a local copy of the repository for your work — type:

$ git clone git@github.mit.edu:6172-fall21/homework1_<your-kerberos>.git homework1

You should frequently commit and push your changes back to the repository:

$ git commit -am ’Your commit message’
$ git push

For more advanced usage of Git, please refer to your favorite search engine.

5 Visual Studio Code

In section 3, you configured Visual Studio Code as the editor for your 6.172 Virtual Machine. The
setup script included some recommended extensions that will be helpful for the class, such as
syntax highlighting for C and a GUI for Git. You may install additional extensions, such as key
bindings for Vim (https://marketplace.visualstudio.com/items?itemName=vscodevim.vim) or
Emacs (https://marketplace.visualstudio.com/items?itemName=tuttieee.emacs-mcx).

Checkoff: Show a LA or TA that you are able to view the Homework 1 code both in the browser
and in VS Code.

VS Code Live Share (Optional)

You may use VS Code Live Share for real-time collaboration on your projects. You will practice
using VS Code Live Share for this first homework.

https://marketplace.visualstudio.com/items?itemName=vscodevim.vim
https://marketplace.visualstudio.com/items?itemName=tuttieee.emacs-mcx

Handout 2 — Homework 1: Getting Started 4

• Step 1 Open VS Code and connect to your 6.172 Virtual Machine

• Step 2 Click Open Folder and select the homework1 folder.

• Step 3 Press Ctrl-Shift-P (Cmd-Shift-P on macOS) and type “Live Share: Start Collaboration
Session (Share)”

• Step 4 Sign in with Microsoft. Use your MIT email. The sign-in flow should redirect you
to MIT Touchstone. Click Allow and follow the prompts to grant permission and finish
signing in. After signing in, you should be bounced back into VS Code.

Please use Google Chrome, Firefox, or Microsoft Edge; Safari has issues loading the sign in page.

If the sign-in flow hangs, please check the VMWare GUI for your virtual machine. If it is asking you
to choose a password for your new keyring, leave the password fields blank and click "Continue".
Click "Continue" again when it warns about storing passwords unencrypted.

• Step 5 Copy the link and open it in your browser.

• Step 6 Choose the option to join in your browser

• Step 7 Sign in (again) using your Microsoft account and MIT email.

6 C primer

This section provides a short introduction to the C programming language. The code used in the
exercises is located in homework1/c-primer in your repository.

Why use C?

• Simple: No complicated object-oriented abstractions like Java/C++.

• Powerful: Offers direct access to memory (but does not offer protection in accessing mem-
ory).

• Fast: No overhead of a runtime or JIT compiler, and no behind-the-scenes runtime features
(like garbage collection) that use machine resources.

• Ubiquitous: C is the most popular language for low-level and performance-intensive soft-
ware like device drivers, operating-system kernels, and microcontrollers.

Handout 2 — Homework 1: Getting Started 5

01 // All occurrences of ONE will be replaced by 1.
02 #define ONE 1
03

04 // Macros can also behave similar to inline functions.
05 // Note that parentheses around parameters are required to preserve order of
06 // operations. Otherwise, you can introduce bugs when substitution happens.
07 #define MIN(a,b) ((a) < (b) ? (a) : (b))
08

09 int c = ONE, d = ONE + 5;
10 int e = MIN(c, d);
11

12 #ifndef NDEBUG
13 // This code will be compiled only when
14 // the macro NDEBUG is not defined.
15 // Recall that if clang is passed -DNDEBUG on the command line,
16 // then NDEBUG will be defined.
17 if (something) {}
18 #endif

Figure 1: A sample C program. If -DNDEBUG is not on, the preprocessor will include the if statement
in line 17.

Preprocessing

The C preprocessor modifies source code before it is passed to the compilation phase. Specifically,
it performs string substitution of #define macros, conditionally omits sections of code, processes
#include directives to import entire files’ worth of code, and strips comments from code.

As an example, consider the code in preprocess.c, which is replicated in Figure 1.

Handout 2 — Homework 1: Getting Started 6

19 short s; // short signed integer
20 unsigned int i; // standard-length unsigned integer
21 long l; // long signed integer
22 long long l; // extra-long signed integer
23 char c; // represents 1 ASCII character (1 byte)
24 float f; // standard-precision floating point number
25 double d; // double-precision floating point number

Figure 2: Some of the primitive types in C.

Exercise: Direct clang to preprocess preprocess.c.

$ clang -E preprocess.c

The preprocessed code will be output to the console. Now, rerun the C preprocessor with the
following command:

$ clang -E -DNDEBUG preprocess.c

You will notice that the if statement won’t appear in the preprocessor output.

Data types and their sizes

C supports a variety of primitive types, including the types listed in Figure 2.

Note: On most 64-bit machines and compilers, a standard-precision value (e.g. int, float) is 32
bits. A short is usually 16 bits, and a long or a double is usually 64. The precisions of these types
are weakly defined by the C standard, however, and may vary across compilers and machines.
Confusingly, sometimes int and long are the same precision, and sometimes long and long long

are the same, both longer than int. Sometimes, int, long, and long long all mean the exact same
thing!

For throwaway variables or variables which will stay well under precision limits, use a regular
int. The precisions of these values are set in order to maximize performance on machines with
different word sizes. If you are working with bit-level manipulation, it is better to use unsigned
data types such as uint64_t (unsigned 64-bit int). Otherwise, it is often better to use a non-
explicit variable such as a regular int.

Furthermore, if you know the architecture you’re working with, it is often better to write code
with explicit data types instead (such as the ones in Figure 3).

You can define more complex data types by composing primitive types into a struct. For exam-
ple, one example of a struct definition in C is provided in Figure 4.

Exercise: Edit sizes.c to print the sizes of each of the following types: int, short, long, char,
float, double, unsigned int, long long, uint8_t, uint16_t, uint32_t, uint64_t, uint_fast8_t,

Handout 2 — Homework 1: Getting Started 7

26 #include <stdint.h>
27

28 uint64_t unsigned_64_bit_int;
29 int16_t signed_16_bit_int;

Figure 3: Examples of explicit types in C.

30 typedef struct {
31 int id;
32 int year;
33 } student;
34

35 student you;
36 // access values on a struct with .
37 you.id = 12345;
38 you.year = 3;

Figure 4: Examples of a struct declaration in C.

uint_fast16_t, uintmax_t, intmax_t, __int128, int[] and student. Note that __int128 is a clang
C extension, and not part of standard C. To check the size of an int array, print the size of the
array x declared in the provided code.

To compile and run this code, use the following command:

$ make sizes && ./sizes

To avoid creating repetitive code, you may find it useful to define a macro and call it for each of
the types.

If you are interested in learning more about built-in types, check out
http://en.cppreference.com/w/c/types/integer .

Pointers

Pointers are first-class data types that store addresses in memory. A pointer can store the address
of anything in memory, including another pointer. In other words, it is possible to have a pointer
to a pointer.

Arrays behave very similarly to pointers: both hold information about the type and location of
values in memory. There are a few gotchas involved with treating pointers and arrays equiva-
lently, however.1 Consider the following (buggy) snippet of code from pointer.c in Figure 5.

1For further reading, try the challenge at https://blogs.oracle.com/linux/the-ksplice-pointer-challenge-v2
after class.

https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html#C-Extensions
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html#C-Extensions
http://en.cppreference.com/w/c/types/integer
https://blogs.oracle.com/linux/the-ksplice-pointer-challenge-v2

Handout 2 — Homework 1: Getting Started 8

39 int main(int argc, char* argv[]) { // What is the type of argv?
40 int i = 5;
41 // The & operator here gets the address of i and stores it into pi
42 int* pi = &i;
43 // The * operator here dereferences pi and stores the value -- 5 --
44 // into j.
45 int j = *pi;
46

47 char c[] = "6.172";
48 char* pc = c; // Valid assignment: c acts like a pointer to c[0] here.
49 char d = *pc;
50 printf("char d = %c\n", d); // What does this print?
51

52 // compound types are read right to left in C.
53 // pcp is a pointer to a pointer to a char, meaning that
54 // pcp stores the address of a char pointer.
55 char** pcp;
56 pcp = argv; // Why is this assignment valid?
57

58 const char* pcc = c; // pcc is a pointer to char constant
59 char const* pcc2 = c; // What is the type of pcc2?
60

61 // For each of the following, why is the assignment:
62 *pcc = ’7’; // invalid?
63 pcc = *pcp; // valid?
64 pcc = argv[0]; // valid?
65

66 char* const cp = c; // cp is a const pointer to char
67 // For each of the following, why is the assignment:
68 cp = *pcp; // invalid?
69 cp = *argv; // invalid?
70 *cp = ’!’; // valid?
71

72 const char* const cpc = c; // cpc is a const pointer to char const
73 // For each of the following, why is the assignment:
74 cpc = *pcp; // invalid?
75 cpc = argv[0]; // invalid?
76 *cpc = ’@’; // invalid?
77

78 return 0;
79 }

Figure 5: An example of valid and invalid pointer usage in C.

Handout 2 — Homework 1: Getting Started 9

Exercise: Compile pointer.c using the following command:

$ make pointer

You will see compilation errors corresponding to the invalid statements mentioned in the above
program. Why are these statements invalid? Comment out those invalid statements and recom-
pile the program. (Do not worry if you see additional warnings about unused variables.)

Write-up 1: Answer the questions in the comments in pointer.c. For example, why are
some of the statements valid and some are not?

Write-up 2: For each of the types in the sizes.c exercise above, print the size of a pointer to
that type. Recall that obtaining the address of an array or struct requires the & operator.
Provide the output of your program (which should include the sizes of both the actual type
and a pointer to it) in the write-up.

Argument passing

In C, arguments2 to a function are passed by value. That means that if you pass an integer to
function foo(int f), a new variable f will be initialized inside foo with the same value as the
integer you passed in.

For instance, consider the code in Figure 6 that swaps two integers. Why doesn’t it work as
expected?

There are two ways to fix this code. One way is to change swap() to be a macro, causing the
operations to be evaluated in the scope of the macro invocation. Another way is to change
swap() to use pointers. We will now ask you to fix the code by using pointers.

Write-up 3: File swap.c contains the code to swap two integers. Rewrite the swap() function
using pointers and make appropriate changes in main() function so that the values are
swapped with a call to swap(). Compile the code with make swap and run the program with
./swap. Provide your edited code in the write-up. Verify that the results of both sizes.c and
swap.c are correct by using the python script verifier.py.

2In general, parameters are the variables that appear in a function definition, and arguments are the data that are
actually passed in at runtime.

Handout 2 — Homework 1: Getting Started 10

80 void swap(int i, int j) {
81 int temp = i;
82 i = j;
83 j = temp;
84 }
85

86 int main() {
87 int k = 1;
88 int m = 2;
89 swap(k, m);
90 // What does this print?
91 printf("k = %d, m = %d\n", k, m);
92 }

Figure 6: An incorrect implementation of swap() in C.

7 Basic tools

The code that we will be using in this section is located in homework1/matrix-multiply.

Building and running your code

You can build the code by going to the homework1/matrix-multiply directory and typing make.
The program will compile using Tapir, a cutting-edge derivative of Clang/LLVM. Notice that we
are only compiling with optimization level 1 (i.e., -O1).

Exercise: Modify your Makefile so that the program is compiled using optimization level 3 (i.e.,
-O3).

Write-up 4: Now, what do you see when you type make clean; make?

You can then run the built binary by typing ./matrix_multiply. The program should print out
something and then crash with a segmentation fault.

Using a debugger

While running your program, if you encounter a segmentation fault, bus error, or assertion
failure, or if you just want to set a breakpoint, you can use the debugging tool GDB.

Exercise: Start a debugging session in GDB:

Handout 2 — Homework 1: Getting Started 11

$ gdb --args ./matrix_multiply

This command should give you a GDB prompt, at which you should type run or r:

$ (gdb) run

Your program will crash, giving you back a prompt, where you can type backtrace or bt to get
a stack trace:

93 Program received signal SIGSEGV, Segmentation fault.
94 0x0000000000400de4 in matrix_multiply_run ()
95 (gdb) bt
96 #0 0x0000000000400de4 in matrix_multiply_run ()
97 #1 0x0000000000400bbe in main ()

This stack trace says that the program crashes in matrix_multiply_run, but it doesn’t give any
other information about the error. In order to get more information, build a “debug” version of
the code. First, quit GDB by typing quit or q:

98 (gdb) q
99 A debugging session is active.

100

101 Inferior 1 [process 26817] will be killed.
102

103 Quit anyway? (y or n) y

Next, build a debug version of the code by typing make DEBUG=1:

104 $ make DEBUG=1
105 clang -g -DDEBUG -O0 -Wall -std=c99 -D_POSIX_C_SOURCE=200809L -c -o testbed.o testbed.c
106 clang -g -DDEBUG -O0 -Wall -std=c99 -D_POSIX_C_SOURCE=200809L -c -o matrix_multiply.o \
107 matrix_multiply.c
108 clang -o matrix_multiply testbed.o matrix_multiply.o -lrt -flto -fuse-ld=gold

The major differences from the optimized build are ‘-g’ (add debug symbols to your program)
and ‘-O0’ (compile without any optimizations). Once you have created a debug build, you can
start a debugging session again:

Handout 2 — Homework 1: Getting Started 12

109 $ gdb --args ./matrix_multiply
110 (gdb) r
111 ...
112 Program received signal SIGSEGV, Segmentation fault.
113 0x00000000004011cf in matrix_multiply_run (A=0x603270, B=0x6031d0, C=0x603130)
114 at matrix_multiply.c:90
115 90 C->values[i][j] += A->values[i][k] * B->values[k][j];

GDB can tell that a segmentation fault occurs at at matrix_multiply.c line 90. You can ask GDB
to print values using print or p:

116 (gdb) p A->values[i][k]
117 $1 = 7
118 (gdb) p B->values[k][j]
119 Cannot access memory at address 0x0
120 (gdb) p B->values[k]
121 $2 = (int *) 0x0
122 (gdb) p k
123 $3 = 4

The printouts suggest that B->values[4] is 0x0, which means B doesn’t have row 5. There is
something wrong with the matrix dimensions.

Using assertions

The tbassert package is a useful tool for catching bugs before your program goes off into the
weeds. If you look at matrix_multiply.c, you should see some assertions in matrix_multiply_run

routine that check that the matrices have compatible dimensions.

Exercise: Uncomment these lines and a line to include tbassert.h at the top of the file. Then,
build and run the program again using GDB. Make sure that you build using make DEBUG=1. You
should see the following:

124 (gdb) r
125 ...
126 Running matrix_multiply_run()...
127 matrix_multiply.c:80 (int matrix_multiply_run(const matrix *, const matrix *, matrix *))
128 Assertion A->cols == B->rows failed: A->cols = 5, B->rows = 4
129

130 Program received signal SIGABRT, Aborted.
131 0x00007ffff7843c37 in raise () from /lib/x86_64-linux-gnu/libc.so.6

Handout 2 — Homework 1: Getting Started 13

GDB says that “Assertion ‘A->cols == B->rows’ failed”, which is much better than the former
segmentation fault. The assertion provides a printf-like API that allows you to print values in
your own output, as above. Even if you don’t print values in your assertions, however, the debug
build still has the symbols for GDB, as above. But unlike the above, if you try to print A->cols,
you will fail. The reason is that GDB is not in the stack frame you want. You can get the stack
trace to see which frame you want (#3 in this case), and type frame 3 or f 3 to move to frame #3.
After that, you can print A->cols and B->rows.

132 (gdb) bt
133 #0 0x00007ffff7843c37 in raise () from /lib/x86_64-linux-gnu/libc.so.6
134 #1 0x00007ffff7847028 in abort () from /lib/x86_64-linux-gnu/libc.so.6
135 #2 0x000000000040121b in matrix_multiply_run (A=0x603270, B=0x6031d0, C=0x603130)
136 at matrix_multiply.c:79
137 #3 0x0000000000400db2 in main (argc=1, argv=0x7fffffffdf58) at testbed.c:127
138 (gdb) f 3
139 #3 0x0000000000400db2 in main (argc=1, argv=0x7fffffffdf58) at testbed.c:127
140 127 matrix_multiply_run(A, B, C);
141 (gdb) p A->cols
142 $1 = 5
143 (gdb) p B->rows
144 $2 = 4

You should see the values 5 and 4, which indicates that you are multiplying matrices of incom-
patible dimensions.

You will also see an assertion failure with a line number for the failing assertion without using
GDB. Since the extra checks performed by assertions can be expensive, they are disabled for
optimized builds, which are the default in the Makefile. As a result, if you make the program
without DEBUG=1, you will not see an assertion failure.

You should sprinkle assertions liberally throughout your code to check important invariants in
your program, since they will make your life easier when debugging. In particular, most non-
trivial loops and recursive functions should have an assertion of the loop or recursion invariant.

Exercise: Fix testbed.c, which creates the matrices, rebuild your program, and verify that it now
works. You should see “Elapsed execution time...” after executing the following command:

$./matrix_multiply

Commit and push your changes to the Git repository:

$ git commit -am ’Your commit message’
$ git push origin main

Next, check the result of the multiplication. Run the following command:

Handout 2 — Homework 1: Getting Started 14

$./matrix_multiply -p

The program will print out the result. The result seems to be wrong, however. You can check the
multiplication of zero matrices by running

$./matrix_multiply -pz

Using a memory checker

Some memory bugs do not crash the program, so GDB cannot tell you where the bug is. You can
use the memory checking tools AddressSanitizer and Valgrind to track these bugs.

AddressSanitizer

Clang’s built-in AddressSanitizer is a quick memory error checker that uses compiler instrumen-
tation and a run-time library. It can detect a wide variety of bugs (including memory leaks). To
use AddressSanitizer, we need to pass the appropriate flags. First, do

$ make clean

to get rid of the existing build. Next, do

$ make ASAN=1

to build with AddressSanitizer’s instrumentation, yielding the following (you may also get a
warning by the gold linker, ld.gold):

145 $ make ASAN=1
146 clang -O1 -g -fsanitize=address -Wall -std=c99 -D_POSIX_C_SOURCE=200809L -c \
147 testbed.c -o testbed.o
148 clang -O1 -g -fsanitize=address -Wall -std=c99 -D_POSIX_C_SOURCE=200809L -c \
149 matrix_multiply.c -o matrix_multiply.o
150 clang -o matrix_multiply testbed.o matrix_multiply.o -lrt -flto -fuse-ld=gold \
151 -fsanitize=address

Finally, run the program with

$./matrix_multiply

Handout 2 — Homework 1: Getting Started 15

Write-up 5: What output do you see from AddressSanitizer regarding the memory bug?
Paste it into your write-up here.

Valgrind

Valgrind is another tool for checking memory leaks. If you want to check a program but are not
able to instrument it, Valgrind is a good option for detecting memory bugs.

Exercise: First, do

$ make clean && make DEBUG=1

to get rid of the existing build and get a fresh build. Run Valgrind using

$ valgrind ./matrix_multiply -p

You need the -p switch, since Valgrind only detects memory bugs that affect outputs. You should
also use a “debug” version to get a good result. This command should print out many lines. The
important ones are

152 ==43644== Use of uninitialised value of size 8
153 ==43644== at 0x508899B: _itoa_word (_itoa.c:179)
154 ==43644== by 0x508C636: vfprintf (vfprintf.c:1660)
155 ==43644== by 0x50933D8: printf (printf.c:33)
156 ==43644== by 0x401137: print_matrix (matrix_multiply.c:68)
157 ==43644== by 0x400E0E: main (testbed.c:133)

This output indicates that the program used a value before initializing it. The stack trace indicates
that the bug occurs in testbed.c:140, which is where the program prints out matrix C.

Exercise: Fix matrix_multiply.c to initialize values in matrices before using them. Keep in mind
that the matrices are stored in struct’s. Rebuild your program, and verify that it outputs a
correct answer. Again, commit and push your changes to the Git repository.

Write-up 6: After you fix your program, run ./matrix_multiply -p. Paste the program
output showing that the matrix multiplication is working correctly.

Handout 2 — Homework 1: Getting Started 16

Memory management

The C programming language requires you to free memory after you are done using it, or else
you will have a memory leak. Valgrind can track memory leaks in the program. Run the same
Valgrind command, and you will see these lines towards the end of its output:

158 ==2158== LEAK SUMMARY:
159 ==2158== definitely lost: 48 bytes in 3 blocks
160 ==2158== indirectly lost: 288 bytes in 15 blocks
161 ==2158== possibly lost: 0 bytes in 0 blocks
162 ==2158== still reachable: 0 bytes in 0 blocks
163 ==2158== suppressed: 0 bytes in 0 blocks

This output suggests that there are indeed memory leaks in the program. To get more infor-
mation, you can build your program in debug mode and again run Valgrind, using the flag
--leak-check=full

$ valgrind --leak-check=full ./matrix_multiply -p

The trace shows that all leaks are from the creations of matrices A, B, and C.

Exercise: Fix testbed.c by freeing these matrices after use with the function free_matrix. Re-
build your program, and verify that Valgrind doesn’t complain about anything. Commit and
push your changes to the Git repository.

Write-up 7: Paste the output from Valgrind showing that there is no error in your program.

Checking code coverage

Bugs may exist in code that doesn’t get executed in your tests. You may find it surprising when
someone testing your code (like a professor or a TA) uncovers a crash on a line that you never
exercised. Additionally, lines that are frequently executed are good candidates for optimization.
The Gcov tool provides a line-by-line execution count for your program.

Exercise: To use Gcov, modify your Makefile and add the flags -fprofile-arcs and -ftest-coverage

to the CFLAGS and LDFLAGS variables. You will have to rebuild from scratch using make clean fol-
lowed by make DEBUG=1. Try running your code normally with ./matrix_multiply -p. Observe
that several new .gcda and .gcno files were created during your execution.

Handout 2 — Homework 1: Getting Started 17

Now use the llvm-cov command-line utility on testbed.c:

$ llvm-cov gcov testbed.c

A new file, testbed.c.gcov was created that is identical to the original testbed.c, except that it
has the number of times each line was executed in the code. In that file, you will see:

164 1: 99:if (use_zero_matrix) {
165 #####: 100: for (int i = 0; i < A->rows; i++) {
166 #####: 101: for (int j = 0; j < A->cols; j++) {
167 #####: 102: A->values[i][j] = 0;
168 #####: 103: }
169 #####: 104: }
170 #####: 105: for (int i = 0; i < B->rows; i++) {
171 #####: 106: for (int j = 0; j < B->cols; j++) {
172 #####: 107: B->values[i][j] = 0;
173 #####: 108: }
174 #####: 109: }

The hash marks indicate lines that were never executed. In general, it is unusual to run a code-
coverage utility on a testbed, but a set of untested lines in your core code could lead to unexpected
results when executed by someone else.

Another handy use of Gcov is identifying which lines got executed the most frequently. Code
that gets run the most is often the most costly in terms of performance. Run llvm-cov gcov

matrix_multiply.c and look at the output:

175 5: 86: for (int i = 0; i < A->rows; i++) {
176 20: 87: for (int j = 0; j < B->cols; j++) {
177 80: 88: for (int k = 0; k < A->cols; k++) {
178 64: 89: C->values[i][j] += A->values[i][k] * B->values[k][j];
179 64: 90: }
180 16: 91: }
181 4: 92: }

These are the loops in matrix_multiply_run. Clearly, this function is a good candidate for opti-
mization.

When you are done using Gcov, remove the flags you added to the Makefile because they add
costly overhead to the execution, and will negatively impact your actual performance numbers.
You should never run benchmarks on code that is instrumented with Gcov. Don’t forget to
make clean to remove the instrumented object files.

Handout 2 — Homework 1: Getting Started 18

8 Using AWSRUN

Directly running and timing the execution on your own VMs may give inaccurate results; you
may be running a small VM, and there might also be measurement errors due to interference
with your editor or other programs you are running. To get an accurate timing measure on a
dedicated machine, you can use the AWSRUN utilities.

After compiling your code with make, you can run

$ awsrun ./matrix_multiply

and your job will be queued. The command will not return until the job has been completed and
you get results unless you control-C twice (canceling the process). Once the job is complete, your
output should look something like below:

182 $ awsrun ./matrix_multiply
183

184 Submitting Job: ./matrix_multiply
185 Waiting for job to finish...
186 ==== Standard Error ====
187 Setup
188 Running matrix_multiply_run()...
189

190

191

192 ==== Standard Output ====
193 Elapsed execution time: 0.000001 sec

Performance enhancements

To get an idea of the extent to which performance optimizations can affect the performance of
your program, we will first increase the size of the input to demonstrate the effects of changes in
the code.

Exercise: Increase the size of all matrices to 1000 × 1000.

Now let’s try one of the techniques from the Lecture 1. Right now, the inner loop produces a
sequential access pattern on A and skips through memory on B. Let’s rearrange the loops to
produce a better access pattern.

Exercise: First, you should run the program as is to get a performance measurement. Next, swap
the j and k loops, so that the inner loop strides sequentially through the rows of the C and B

matrices. Rerun the program, and verify that you have produced a speedup. Commit and push
your changes to the Git repository.

Handout 2 — Homework 1: Getting Started 19

Write-up 8: Report the execution time of your programs before and after the optimization.

Compiler optimizations

To get an idea of the extent to which compiler optimizations can affect the performance of your
program, rebuild your program in “debug” mode and run it with AWSRUN.

Exercise: Rebuild it again with optimizations (just type make), and run it with AWSRUN. Both
versions should print timing information, and you should verify that the optimized version is
faster.

Write-up 9: Report the execution time of your programs compiled in debug mode with -O0

and normally with -O3.

9 C style guidelines

Code that adheres to a consistent style is easier to read and debug. Google provides a style guide
for C++ which you may find useful: https://google.github.io/styleguide/cppguide.html

We have provided a Python script clint.py, which is designed to check a subset of Google’s
style guidelines for C code. To run this script on all source files in your current directory use the
command:

$ python clint.py *

The code the staff provides contains no style errors. We suggest, but do not require, that you
use this tool to clean up your source code. Part of your code-quality grade on projects is based
on the readability of your code. It can be difficult to maintain a consistent style when multiple
people are working on the same codebase. For this reason, you may find it useful to use the style
checkers provided by the 6.172 staff during your group projects to keep your code readable.

10 Submission

Commit your changes to your repository and check your code quality by running clint.py. Sub-
mit the write-up as described in Write-ups 1–9 to Gradescope. You do not need to prepare a

https://google.github.io/styleguide/cppguide.html

Handout 2 — Homework 1: Getting Started 20

separate document for your write-ups: most of them will be submitted as inline text on Grade-
scope. Finally, if you haven’t already, commit and push your final submission to the repository:

$ git commit -am ’Done!’
$ git push origin main

	Immediate action items
	Software engineering
	Virtual machine setup
	Version control
	Visual Studio Code
	C primer
	Basic tools
	Using AWSRUN
	C style guidelines
	Submission

