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In this homework you will experiment with vectorization. You will practice examining and comparing the
LLVM IR and assembly outputs of clang for vectorized code. You will examine cases when clang can and
cannot vectorize code. You will experiment with compiler builtins to vectorize code by hand.

Vectorization is a general optimization technique that can buy you an order of magnitude performance
increase in some cases. It is also a delicate operation. On the one hand, vectorization is automatic: when
clang is told to optimize aggressively, it will automatically try to vectorize every loop in your program.
On the other hand, very small changes to loop structure cause clang to give up and not vectorize at all.
Furthermore, these small changes may allow your code to vectorize but not yield the expected speedup. We
will discuss how to identify these cases so that you can get the most out of your vector units.
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1 Getting started

You can get this assignment’s code using MIT’s internal GitHub system:

$ git clone git@github.mit.edu:6172-fall21/homework3_<your_kerberos>.git homework3

This repository contains a compilervec/ subdirectory and a matmul/ subdirectory. The compilervec/

subdirectory contains the code for Section 2 and the first five write-up questions. The matmul/

subdirectory contains code for Section 3.
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01 #include <stdint.h>
02 #include <stdlib.h>
03 #include <math.h>
04

05 #define SIZE (1L << 16)
06

07 void test(uint8_t * a, uint8_t * b) {
08 uint64_t i;
09

10 for (i = 0; i < SIZE; i++) {
11 a[i] += b[i];
12 }
13 }

Figure 1: Original C code in example1.c.

Submitting your solutions

We will use the same submission procedures as in Homework 2. Submit your write-up on
Gradescope and your code via Git by the deadline stated at the top of this handout. For each
write-up question (some write-ups include multiple questions, e.g., write-up 10), respond with a short
(1–3 sentence) response or a code snippet (if requested). Please ensure that all the times you quote
are obtained with awsrun.

2 Vectorization in clang

Consider a loop that performs an elementwise operation, such as addition, between two inde-
pendent arrays A and B, storing the result in array C. This loop is an example of a data parallel
loop, since the data processed in distinct iterations i1 and i2 can be safely distributed across dif-
ferent hardware processing elements and processed in parallel. Compilers can take advantage
of data parallelism using vectorization, which means directing the hardware to process different
data elements in distinct lanes of the processor’s vector units. Vector units perform the same
operation simultaneously on every lane of the vector unit. This pattern of parallel processing
is called single instruction, multiple data, or SIMD. Vectorization is a delicate operation: very
small changes to loop structure may cause clang to give up and not vectorize at all, or to vec-
torize your code but not yield the expected speedup. Occasionally, unvectorized code may be
faster than vectorized code. Before we can understand this fragility, we must get a handle on
how to interpret what clang is actually doing when it vectorizes code. In Section 3, you will see
the actual performance impacts of vectorizing code.
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14 example1.c:12:3: remark: vectorized loop (vectorization width: 16, interleaved count: 2)
15 [-Rpass=loop-vectorize]
16 for (i = 0; i < SIZE; i++) {
17 ^

Figure 2: Example vectorization report from compiling example1.c. For more information on autovector-
ization reports see https://llvm.org/docs/Vectorizers.html

2.1 Example 1

We will start with the simple loop shown in Figure 1, which is available in the compilervec/

subdirectory of the Git repository. Using this example, we shall examine the LLVM IR and
assembly code clang generates for a simple vectorizable loop. We shall also examine some simple
ways to control how clang vectorizes code. The provided Makefile allows you to generate the
compiled and optimized LLVM IR for this vectorizable loop using the LLVMIR=1 flag, as follows:

$ make clean; make LLVMIR=1 VECTORIZE=1 example1.o

Similarly, you can generate the assembly code for this example using the ASSEMBLE=1 flag:

$ make clean; make ASSEMBLE=1 VECTORIZE=1 example1.o

The VECTORIZE=1 flag directs clang to generate a vectorization report, which indicates which
loops in the program were successfully vectorized and which were not. You should see the
vectorization report shown in Figure 2 as output when you run either of these commands. This
report indicates that the loop has been vectorized. But this report doesn’t tell the whole story,
as we shall see when we investigate the LLVM IR and assembly outputs for the example. Let’s
first inspect the LLVM IR output from running the above make command with LLVMIR=1. This
command will produce the file example1.ll, which contains the optimized LLVM IR for the
example. You should find that the contents of example1.ll resembles that in Figures 3 and 4. The
line numbers will most likely differ on your machine. For line numbers in this homework,
refer to the documented code below. The vectorized operations in the LLVM IR output are
those that operate on an LLVM vector type, such as <16 x i8> in lines 29–69 in example1.ll.
Note: For all examples, you might find additional content in the compiled LLVM IR and assembly
outputs, such as !dbg metadata tags and calls to @llvm.dbg.value in the LLVM IR, and additional
comments, labels, and .loc directives in the assembly output. This additional output reflects the
debugging symbols compiled with the example codes and can safely be ignored when studying
vectorization.

Now run the make command above with the flag ASSEMBLE=1 to generate the assembly code for
this example. The command will generate the file example1.s, which contains the assembly
code for this example. You should find that the contents of example1.s resembles that shown in
Figures 5 and 6.

https://llvm.org/docs/Vectorizers.html
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18 ; Function Attrs: argmemonly norecurse nounwind uwtable
19 define dso_local void @test(i8* nocapture, i8* nocapture readonly)
20 local_unnamed_addr #0 {
21 %3 = getelementptr i8, i8* %0, i64 65536
22 %4 = getelementptr i8, i8* %1, i64 65536
23 %5 = icmp ugt i8* %4, %0
24 %6 = icmp ugt i8* %3, %1
25 %7 = and i1 %5, %6
26 br i1 %7, label %45, label %8
27

28 ; <label>:8: ; preds = %2, %8
29 %9 = phi i64 [ %43, %8 ], [ 0, %2 ]
30 %10 = getelementptr inbounds i8, i8* %1, i64 %9
31 %11 = bitcast i8* %10 to <16 x i8>*
32 %12 = load <16 x i8>, <16 x i8>* %11, align 1, !tbaa !2, !alias.scope !5
33 %13 = getelementptr inbounds i8, i8* %10, i64 16
34 %14 = bitcast i8* %13 to <16 x i8>*
35 %15 = load <16 x i8>, <16 x i8>* %14, align 1, !tbaa !2, !alias.scope !5
36 %16 = getelementptr inbounds i8, i8* %0, i64 %9
37 %17 = bitcast i8* %16 to <16 x i8>*
38 %18 = load <16 x i8>, <16 x i8>* %17, align 1, !tbaa !2, !alias.scope !8, !noalias !5
39 %19 = getelementptr inbounds i8, i8* %16, i64 16
40 %20 = bitcast i8* %19 to <16 x i8>*
41 %21 = load <16 x i8>, <16 x i8>* %20, align 1, !tbaa !2, !alias.scope !8, !noalias !5
42 %22 = add <16 x i8> %18, %12
43 %23 = add <16 x i8> %21, %15
44 %24 = bitcast i8* %16 to <16 x i8>*
45 store <16 x i8> %22, <16 x i8>* %24, align 1, !tbaa !2, !alias.scope !8, !noalias !5
46 %25 = bitcast i8* %19 to <16 x i8>*
47 store <16 x i8> %23, <16 x i8>* %25, align 1, !tbaa !2, !alias.scope !8, !noalias !5
48 %26 = or i64 %9, 32
49 %27 = getelementptr inbounds i8, i8* %1, i64 %26
50 %28 = bitcast i8* %27 to <16 x i8>*
51 %29 = load <16 x i8>, <16 x i8>* %28, align 1, !tbaa !2, !alias.scope !5
52 %30 = getelementptr inbounds i8, i8* %27, i64 16
53 %31 = bitcast i8* %30 to <16 x i8>*
54 %32 = load <16 x i8>, <16 x i8>* %31, align 1, !tbaa !2, !alias.scope !5
55 %33 = getelementptr inbounds i8, i8* %0, i64 %26
56 %34 = bitcast i8* %33 to <16 x i8>*
57 %35 = load <16 x i8>, <16 x i8>* %34, align 1, !tbaa !2, !alias.scope !8, !noalias !5
58 %36 = getelementptr inbounds i8, i8* %33, i64 16
59 %37 = bitcast i8* %36 to <16 x i8>*
60 %38 = load <16 x i8>, <16 x i8>* %37, align 1, !tbaa !2, !alias.scope !8, !noalias !5
61 %39 = add <16 x i8> %35, %29
62 %40 = add <16 x i8> %38, %32

Figure 3: First part of LLVM IR from compiling the code in Figure 1.
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63 %41 = bitcast i8* %33 to <16 x i8>*
64 store <16 x i8> %39, <16 x i8>* %41, align 1, !tbaa !2, !alias.scope !8, !noalias !5
65 %42 = bitcast i8* %36 to <16 x i8>*
66 store <16 x i8> %40, <16 x i8>* %42, align 1, !tbaa !2, !alias.scope !8, !noalias !5
67 %43 = add nuw nsw i64 %9, 64
68 %44 = icmp eq i64 %43, 65536
69 br i1 %44, label %72, label %8, !llvm.loop !10
70

71 ; <label>:45: ; preds = %2, %45
72 %46 = phi i64 [ %70, %45 ], [ 0, %2 ]
73 %47 = getelementptr inbounds i8, i8* %1, i64 %46
74 %48 = load i8, i8* %47, align 1, !tbaa !2
75 %49 = getelementptr inbounds i8, i8* %0, i64 %46
76 %50 = load i8, i8* %49, align 1, !tbaa !2
77 %51 = add i8 %50, %48
78 store i8 %51, i8* %49, align 1, !tbaa !2
79 %52 = or i64 %46, 1
80 %53 = getelementptr inbounds i8, i8* %1, i64 %52
81 %54 = load i8, i8* %53, align 1, !tbaa !2
82 %55 = getelementptr inbounds i8, i8* %0, i64 %52
83 %56 = load i8, i8* %55, align 1, !tbaa !2
84 %57 = add i8 %56, %54
85 store i8 %57, i8* %55, align 1, !tbaa !2
86 %58 = or i64 %46, 2
87 %59 = getelementptr inbounds i8, i8* %1, i64 %58
88 %60 = load i8, i8* %59, align 1, !tbaa !2
89 %61 = getelementptr inbounds i8, i8* %0, i64 %58
90 %62 = load i8, i8* %61, align 1, !tbaa !2
91 %63 = add i8 %62, %60
92 store i8 %63, i8* %61, align 1, !tbaa !2
93 %64 = or i64 %46, 3
94 %65 = getelementptr inbounds i8, i8* %1, i64 %64
95 %66 = load i8, i8* %65, align 1, !tbaa !2
96 %67 = getelementptr inbounds i8, i8* %0, i64 %64
97 %68 = load i8, i8* %67, align 1, !tbaa !2
98 %69 = add i8 %68, %66
99 store i8 %69, i8* %67, align 1, !tbaa !2

100 %70 = add nuw nsw i64 %46, 4
101 %71 = icmp eq i64 %70, 65536
102 br i1 %71, label %72, label %45, !llvm.loop !12
103

104 ; <label>:72: ; preds = %8, %45
105 ret void
106 }

Figure 4: Second part of LLVM IR from compiling the code in Figure 1.
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107 test: # @test
108 .cfi_startproc
109 # %bb.0:
110 leaq 65536(%rsi), %rax
111 cmpq %rdi, %rax
112 jbe .LBB0_2
113 # %bb.1:
114 leaq 65536(%rdi), %rax
115 cmpq %rsi, %rax
116 jbe .LBB0_2
117 # %bb.4:
118 xorl %eax, %eax
119 .p2align 4, 0x90
120 .LBB0_5: # =>This Inner Loop Header: Depth=1
121 movzbl (%rsi,%rax), %ecx
122 addb %cl, (%rdi,%rax)
123 movzbl 1(%rsi,%rax), %ecx
124 addb %cl, 1(%rdi,%rax)
125 movzbl 2(%rsi,%rax), %ecx
126 addb %cl, 2(%rdi,%rax)
127 movzbl 3(%rsi,%rax), %ecx
128 addb %cl, 3(%rdi,%rax)
129 addq $4, %rax
130 cmpq $65536, %rax # imm = 0x10000
131 jne .LBB0_5
132 jmp .LBB0_6

Figure 5: First part of assembly output from compiling the code in Figure 1.

Both the LLVM IR and assembly output show that clang uses multiversioning to vectorize the
loop. Consider the LLVM IR, for example. On lines 21–26, the code first checks if there is any
aliasing between the arrays a and b. Aliasing means that the arrays overlap, such that some
memory locations accessed through a are also accessed through b. If there is aliasing, then a
simple non-vectorized loop is run (lines 72–102). If there is no aliasing, then a vectorized version
of the loop is run (lines 29–69).

Write-up 1: Compare the LLVM IR output and the assembly output for example1.c. Which
lines of the assembly output correspond to the following ranges of lines of the LLVM IR
output?

• Lines 21–26
• Lines 29–69
• Lines 72–102
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133 .LBB0_2:
134 xorl %eax, %eax
135 .p2align 4, 0x90
136 .LBB0_3: # =>This Inner Loop Header: Depth=1
137 movdqu (%rsi,%rax), %xmm0
138 movdqu 16(%rsi,%rax), %xmm1
139 movdqu (%rdi,%rax), %xmm2
140 paddb %xmm0, %xmm2
141 movdqu 16(%rdi,%rax), %xmm0
142 paddb %xmm1, %xmm0
143 movdqu 32(%rdi,%rax), %xmm1
144 movdqu 48(%rdi,%rax), %xmm3
145 movdqu %xmm2, (%rdi,%rax)
146 movdqu %xmm0, 16(%rdi,%rax)
147 movdqu 32(%rsi,%rax), %xmm0
148 paddb %xmm1, %xmm0
149 movdqu 48(%rsi,%rax), %xmm1
150 paddb %xmm3, %xmm1
151 movdqu %xmm0, 32(%rdi,%rax)
152 movdqu %xmm1, 48(%rdi,%rax)
153 addq $64, %rax
154 cmpq $65536, %rax # imm = 0x10000
155 jne .LBB0_3
156 .LBB0_6:
157 retq

Figure 6: Second part of assembly output from compiling the code in Figure 1.

158 void test(uint8_t * restrict a, uint8_t * restrict b) {
159 uint64_t i;
160

161 for (i = 0; i < SIZE; i++) {
162 a[i] += b[i];
163 }
164 }

Figure 7: First modification to example1.c, which uses the restrict keyword.
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Although this code is vectorized, multiversioning introduces additional overhead due to the
initial check for aliasing and the size of the code. In our case, we know that the arrays a and b

never alias, meaning that these overheads are unnecessary. We can get clang to generate faster
vectorized code, without the overheads of multiversioning, by informing clang that a and b never
alias. To accomplish this, we can annotate the pointers using the restrict qualifier in standard
C, as shown in Figure 7.

Compiling the code in Figure 7 with LLVMIR=1 should produce LLVM IR resembling that shown
in Figures 8 and 9. Notice that the function pointer arguments in the LLVM IR are marked with
the noalias attribute, reflecting the restrict qualifier added to the function arguments in the C
code. Compiling the code in Figure 7 with ASSEMBLE=1 should produce assembly code resembling
that shown in Figure 10.

The generated code avoids the overheads of multiversioning, but it can still be improved. Some
processors can perform more efficient vector operations on aligned data, which is stored at mem-
ory addresses that are multiples of the vector width. In the example code, both the generated
LLVM IR and assembly indicate that the compiler does not assume that the data is aligned. In
the LLVM IR, the align attribute on the vector load and store instructions shows that clang only
assumes that the data are 1-byte aligned. Correspondingly, the assembly code uses the movdqu

instruction, which performs an unaligned move. There are various ways we can get clang to
generate more efficient vectorized code for aligned data. One way is to define a custom data type
with an attribute that conveys the data alignment of that type. Another is to use a specialized
memory-allocation routine, such as aligned_alloc in modern C, to ensure that dynamically allo-
cated memory is properly aligned. Third, clang supports the __builtin_assume_aligned intrinsic
that we can use to tell clang to assume that a given pointer has a specified alignment.

Modify example1.c to use the __builin_assume_aligned intrinsic as shown in Figure 11. Then,
recompile example1.c to produce LLVM IR output. The LLVM IR should resemble that shown in
Figure 12. As the LLVM IR shows, the align attribute on the vector load and store operations
matches the specified alignment of 16 bytes.

Write-up 2: The optimized assembly code in Figure 13 is shorter than the previous version,
shown in Figure 10. What changed? In other words, how else has clang optimized the
assembly code, thanks to the alignment information?

Now, finally, we get the nice and tight vectorized code (movdqa is an aligned move) we were
looking for, because clang has used packed SSE instructions to add 16 bytes at a time. It also
manages to load and store two elements at a time, which it did not do before. The question is,
now that we understand what we need to tell the compiler, how much more complex can the
loop be before autovectorization fails.

The Makefile allows us to compile example1.c with AVX2 instructions using the AVX2=1 flag.
Compile the assembly code for example1.c with AVX2 instructions using the following com-
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165 ; Function Attrs: argmemonly norecurse nounwind uwtable
166 define dso_local void @test(i8* noalias nocapture, i8* noalias nocapture readonly)
167 local_unnamed_addr #0 {
168 br label %3
169

170 ; <label>:3: ; preds = %3, %2
171 %4 = phi i64 [ 0, %2 ], [ %38, %3 ]
172 %5 = getelementptr inbounds i8, i8* %1, i64 %4
173 %6 = bitcast i8* %5 to <16 x i8>*
174 %7 = load <16 x i8>, <16 x i8>* %6, align 1, !tbaa !2
175 %8 = getelementptr inbounds i8, i8* %5, i64 16
176 %9 = bitcast i8* %8 to <16 x i8>*
177 %10 = load <16 x i8>, <16 x i8>* %9, align 1, !tbaa !2
178 %11 = getelementptr inbounds i8, i8* %0, i64 %4
179 %12 = bitcast i8* %11 to <16 x i8>*
180 %13 = load <16 x i8>, <16 x i8>* %12, align 1, !tbaa !2
181 %14 = getelementptr inbounds i8, i8* %11, i64 16
182 %15 = bitcast i8* %14 to <16 x i8>*
183 %16 = load <16 x i8>, <16 x i8>* %15, align 1, !tbaa !2
184 %17 = add <16 x i8> %13, %7
185 %18 = add <16 x i8> %16, %10
186 %19 = bitcast i8* %11 to <16 x i8>*
187 store <16 x i8> %17, <16 x i8>* %19, align 1, !tbaa !2
188 %20 = bitcast i8* %14 to <16 x i8>*
189 store <16 x i8> %18, <16 x i8>* %20, align 1, !tbaa !2
190 %21 = or i64 %4, 32
191 %22 = getelementptr inbounds i8, i8* %1, i64 %21
192 %23 = bitcast i8* %22 to <16 x i8>*
193 %24 = load <16 x i8>, <16 x i8>* %23, align 1, !tbaa !2
194 %25 = getelementptr inbounds i8, i8* %22, i64 16
195 %26 = bitcast i8* %25 to <16 x i8>*
196 %27 = load <16 x i8>, <16 x i8>* %26, align 1, !tbaa !2
197 %28 = getelementptr inbounds i8, i8* %0, i64 %21
198 %29 = bitcast i8* %28 to <16 x i8>*
199 %30 = load <16 x i8>, <16 x i8>* %29, align 1, !tbaa !2
200 %31 = getelementptr inbounds i8, i8* %28, i64 16
201 %32 = bitcast i8* %31 to <16 x i8>*
202 %33 = load <16 x i8>, <16 x i8>* %32, align 1, !tbaa !2

Figure 8: First part of LLVM IR from compiling the code in Figure 7.
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203 %34 = add <16 x i8> %30, %24
204 %35 = add <16 x i8> %33, %27
205 %36 = bitcast i8* %28 to <16 x i8>*
206 store <16 x i8> %34, <16 x i8>* %36, align 1, !tbaa !2
207 %37 = bitcast i8* %31 to <16 x i8>*
208 store <16 x i8> %35, <16 x i8>* %37, align 1, !tbaa !2
209 %38 = add nuw nsw i64 %4, 64
210 %39 = icmp eq i64 %38, 65536
211 br i1 %39, label %40, label %3, !llvm.loop !5
212

213 ; <label>:40: ; preds = %3
214 ret void
215 }

Figure 9: Second part of LLVM IR from compiling the code in Figure 7.

216 test: # @test
217 .cfi_startproc
218 # %bb.0:
219 xorl %eax, %eax
220 .p2align 4, 0x90
221 .LBB0_1: # =>This Inner Loop Header: Depth=1
222 movdqu (%rsi,%rax), %xmm0
223 movdqu 16(%rsi,%rax), %xmm1
224 movdqu (%rdi,%rax), %xmm2
225 paddb %xmm0, %xmm2
226 movdqu 16(%rdi,%rax), %xmm0
227 paddb %xmm1, %xmm0
228 movdqu 32(%rdi,%rax), %xmm1
229 movdqu 48(%rdi,%rax), %xmm3
230 movdqu %xmm2, (%rdi,%rax)
231 movdqu %xmm0, 16(%rdi,%rax)
232 movdqu 32(%rsi,%rax), %xmm0
233 paddb %xmm1, %xmm0
234 movdqu 48(%rsi,%rax), %xmm1
235 paddb %xmm3, %xmm1
236 movdqu %xmm0, 32(%rdi,%rax)
237 movdqu %xmm1, 48(%rdi,%rax)
238 addq $64, %rax
239 cmpq $65536, %rax # imm = 0x10000
240 jne .LBB0_1
241 # %bb.2:
242 retq

Figure 10: Assembly output from compiling the code in Figure 7.
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243 void test(uint8_t * restrict a, uint8_t * restrict b) {
244 uint64_t i;
245

246 a = __builtin_assume_aligned(a, 16);
247 b = __builtin_assume_aligned(b, 16);
248

249 for (i = 0; i < SIZE; i++) {
250 a[i] += b[i];
251 }
252 }

Figure 11: Second modification to example1.c, to instruct clang to assume a particular alignment on
pointers.

mand:

$ make clean; make ASSEMBLE=1 VECTORIZE=1 AVX2=1 example1.o

You should see assembly output like the one in Figure 14. From that output, we can confirm
that the loop is vectorized using the vmov and vpadd AVX2 instructions and uses the 256-bit %ymm
registers.

Write-up 3: The AVX2-vectorized code uses unaligned move instructions. Modify
example1.c to make sure it uses aligned move instructions for the best performance, and
paste the relevant assembly code in your writeup. Commit and push your final
implementation of example1.c.

2.2 Example 2

The next example illustrates how different implementations of a loop can lead to different vec-
torizations. Consider the code in example2.c, which is reproduced in Figure 15. Examine the
LLVM IR and assembly that clang compiles for example2.c. You can use similar commands to
those described in Section 2.1:

$ make clean; make LLVMIR=1 VECTORIZE=1 example2.o
$ make clean; make ASSEMBLE=1 VECTORIZE=1 example2.o

Contrast the LLVM IR and assembly output from compiling example2.c to the output you get if
you modify example2.c as shown in Figure 16. You should find that, compared to the original,
the revised version of example2.c produces a tighter vectorized loop. For example, the assembly
output for the second implementation should look similar to that shown in Figure 17.
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253 ; <label>:9: ; preds = %9, %2
254 %10 = phi i64 [ 0, %2 ], [ %44, %9 ]
255 %11 = getelementptr inbounds i8, i8* %1, i64 %10
256 %12 = bitcast i8* %11 to <16 x i8>*
257 %13 = load <16 x i8>, <16 x i8>* %12, align 16, !tbaa !2
258 %14 = getelementptr inbounds i8, i8* %11, i64 16
259 %15 = bitcast i8* %14 to <16 x i8>*
260 %16 = load <16 x i8>, <16 x i8>* %15, align 16, !tbaa !2
261 %17 = getelementptr inbounds i8, i8* %0, i64 %10
262 %18 = bitcast i8* %17 to <16 x i8>*
263 %19 = load <16 x i8>, <16 x i8>* %18, align 16, !tbaa !2
264 %20 = getelementptr inbounds i8, i8* %17, i64 16
265 %21 = bitcast i8* %20 to <16 x i8>*
266 %22 = load <16 x i8>, <16 x i8>* %21, align 16, !tbaa !2
267 %23 = add <16 x i8> %19, %13
268 %24 = add <16 x i8> %22, %16
269 %25 = bitcast i8* %17 to <16 x i8>*
270 store <16 x i8> %23, <16 x i8>* %25, align 16, !tbaa !2
271 %26 = bitcast i8* %20 to <16 x i8>*
272 store <16 x i8> %24, <16 x i8>* %26, align 16, !tbaa !2
273 %27 = or i64 %10, 32
274 %28 = getelementptr inbounds i8, i8* %1, i64 %27
275 %29 = bitcast i8* %28 to <16 x i8>*
276 %30 = load <16 x i8>, <16 x i8>* %29, align 16, !tbaa !2
277 %31 = getelementptr inbounds i8, i8* %28, i64 16
278 %32 = bitcast i8* %31 to <16 x i8>*
279 %33 = load <16 x i8>, <16 x i8>* %32, align 16, !tbaa !2
280 %34 = getelementptr inbounds i8, i8* %0, i64 %27
281 %35 = bitcast i8* %34 to <16 x i8>*
282 %36 = load <16 x i8>, <16 x i8>* %35, align 16, !tbaa !2
283 %37 = getelementptr inbounds i8, i8* %34, i64 16
284 %38 = bitcast i8* %37 to <16 x i8>*
285 %39 = load <16 x i8>, <16 x i8>* %38, align 16, !tbaa !2
286 %40 = add <16 x i8> %36, %30
287 %41 = add <16 x i8> %39, %33
288 %42 = bitcast i8* %34 to <16 x i8>*
289 store <16 x i8> %40, <16 x i8>* %42, align 16, !tbaa !2
290 %43 = bitcast i8* %37 to <16 x i8>*
291 store <16 x i8> %41, <16 x i8>* %43, align 16, !tbaa !2
292 %44 = add nuw nsw i64 %10, 64
293 %45 = icmp eq i64 %44, 65536
294 br i1 %45, label %46, label %9, !llvm.loop !5

Figure 12: LLVM IR from compiling the code in Figure 11.
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295 test: # @test
296 .cfi_startproc
297 # %bb.0:
298 xorl %eax, %eax
299 .p2align 4, 0x90
300 .LBB0_1: # =>This Inner Loop Header: Depth=1
301 movdqa (%rdi,%rax), %xmm0
302 movdqa 16(%rdi,%rax), %xmm1
303 movdqa 32(%rdi,%rax), %xmm2
304 movdqa 48(%rdi,%rax), %xmm3
305 paddb (%rsi,%rax), %xmm0
306 paddb 16(%rsi,%rax), %xmm1
307 movdqa %xmm0, (%rdi,%rax)
308 movdqa %xmm1, 16(%rdi,%rax)
309 paddb 32(%rsi,%rax), %xmm2
310 paddb 48(%rsi,%rax), %xmm3
311 movdqa %xmm2, 32(%rdi,%rax)
312 movdqa %xmm3, 48(%rdi,%rax)
313 addq $64, %rax
314 cmpq $65536, %rax # imm = 0x10000
315 jne .LBB0_1
316 # %bb.2:
317 retq

Figure 13: Assembly compiled from the code in Figure 11.

Write-up 4: Provide a theory for why the compiler generates dramatically different
assembly for these two different implementations of example2.c.

2.3 Example 3

Consider example3.c, whose code is reproduced in Figure 18. Generate either the LLVM IR or
assembly for example3.c, using make commands similar to those in Section 2.1.

Write-up 5: (Optional) Determine why clang does not generate vector instructions for this
code. Do you think it would be faster if it did vectorize? Explain.
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318 test: # @test
319 .cfi_startproc
320 # %bb.0:
321 xorl %eax, %eax
322 .p2align 4, 0x90
323 .LBB0_1: # =>This Inner Loop Header: Depth=1
324 vmovdqu (%rdi,%rax), %ymm0
325 vmovdqu 32(%rdi,%rax), %ymm1
326 vmovdqu 64(%rdi,%rax), %ymm2
327 vmovdqu 96(%rdi,%rax), %ymm3
328 vpaddb (%rsi,%rax), %ymm0, %ymm0
329 vpaddb 32(%rsi,%rax), %ymm1, %ymm1
330 vpaddb 64(%rsi,%rax), %ymm2, %ymm2
331 vpaddb 96(%rsi,%rax), %ymm3, %ymm3
332 vmovdqu %ymm0, (%rdi,%rax)
333 vmovdqu %ymm1, 32(%rdi,%rax)
334 vmovdqu %ymm2, 64(%rdi,%rax)
335 vmovdqu %ymm3, 96(%rdi,%rax)
336 subq $-128, %rax
337 cmpq $65536, %rax # imm = 0x10000
338 jne .LBB0_1
339 # %bb.2:
340 vzeroupper
341 retq

Figure 14: Assembly output from compiling the code in Figure 11 with AVX2 instructions.

342 void test(uint8_t * restrict a, uint8_t * restrict b) {
343 uint64_t i;
344

345 uint8_t * x = __builtin_assume_aligned(a, 16);
346 uint8_t * y = __builtin_assume_aligned(b, 16);
347

348 for (i = 0; i < SIZE; i++) {
349 /* max() */
350 if (y[i] > x[i]) x[i] = y[i];
351 }
352 }

Figure 15: Original C code in example2.c.
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353 void test(uint8_t * restrict a, uint8_t * restrict b) {
354 uint64_t i;
355

356 uint8_t * x = __builtin_assume_aligned(a, 16);
357 uint8_t * y = __builtin_assume_aligned(b, 16);
358

359 for (i = 0; i < SIZE; i++) {
360 /* max() */
361 x[i] = (y[i] > x[i]) ? y[i] : x[i];
362 }
363 }

Figure 16: Modified C code for example2.c.

364 test: # @test
365 .cfi_startproc
366 # %bb.0:
367 xorl %eax, %eax
368 .p2align 4, 0x90
369 .LBB0_1: # =>This Inner Loop Header: Depth=1
370 movdqa (%rsi,%rax), %xmm0
371 movdqa 16(%rsi,%rax), %xmm1
372 pmaxub (%rdi,%rax), %xmm0
373 pmaxub 16(%rdi,%rax), %xmm1
374 movdqa %xmm0, (%rdi,%rax)
375 movdqa %xmm1, 16(%rdi,%rax)
376 movdqa 32(%rsi,%rax), %xmm0
377 movdqa 48(%rsi,%rax), %xmm1
378 pmaxub 32(%rdi,%rax), %xmm0
379 pmaxub 48(%rdi,%rax), %xmm1
380 movdqa %xmm0, 32(%rdi,%rax)
381 movdqa %xmm1, 48(%rdi,%rax)
382 addq $64, %rax
383 cmpq $65536, %rax # imm = 0x10000
384 jne .LBB0_1
385 # %bb.2:
386 retq

Figure 17: Assembly output from compiling the code in Figure 16.
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387 void test(uint8_t * restrict a, uint8_t * restrict b) {
388 uint64_t i;
389

390 for (i = 0; i < SIZE; i++) {
391 a[i] = b[i + 1];
392 }
393 }

Figure 18: Original C code in example3.c.

3 Optimizing matrix multiplication using vectorization

We will now explore how to optimize dense square matrix multiplication using vectorization.
For this section, we will be working with the matrix-multiplication code in matmul.c within the
matmul/ subdirectory of the Git repository. This code implements a simple tiled algorithm for
square matrix multiplication, where the dimension n of the matrices is 1024. The matmul_base

routine matmul.c is called to process a single tile. We will investigate a couple aspects of how
clang can automatically vectorize this code. We will then use an extension supported by clang

to implement a more efficient vectorized base case ourselves.

3.1 autovectorization of matrix multiplication

Let us first investigate how clang vectorizes the code matmul.c. Compile matmul.c using make

with AVX2 and fused multiply add (FMA) instructions as follows:

$ make VECTORIZE=1 AVX2=1 FMA=1

You will see from the vectorization report that this matrix multiplication code — specifically, the
vectorization report indicates the loop in matmul_base — is not vectorized:

matmul.c:45:7: remark: loop not vectorized [-Rpass-missed=loop-vectorize]
for (int k = 0; k < size; ++k) {
^

In addition, you can examine the LLVM IR and assembly generated from compiling matmul.c

and verify that the compiled matmul_base function does not include vector instructions. You
can generate LLVM IR or assembly for matmul.c by passing the LLVMIR=1 and ASSEMBLE=1 flags,
respectively, to make. The vmulsd and vaddsd instructions operate on scalar floating-point values.

The reason clang does not vectorize the given matmul.c code is in part because of floating-point
arithmetic and in part because of limitations in clang’s autovectorization capabilities. Floating-
point arithmetic is not associative, meaning that reordering floating-point operations can change
the value those operations produce. Some applications that use floating-point arithmetic are
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sensitive to such changes. To support such applications, compilers are not allowed by default
to reorder floating-point computation. This restriction inhibits clang’s ability to find an efficient
vectorization of the program.

We have a couple of options for addressing this issue. First, because we do not mind slight
changes in the floating-point values computed when multiplying matrices, it would be acceptable
for us to pretend that floating-point arithmetic is associative. We can instruct clang to assume
that floating-point arithmetic is associative by passing the -ffast-math flag at compile time. The
Makefile allows us to pass the -ffast-math flag to clang at compile time by specifying the flag
EXTRA_CFLAGS="-ffast-math" as follows:

$ make VECTORIZE=1 AVX2=1 FMA=1 EXTRA_CFLAGS="-ffast-math"

Alternatively, we can reorder the loops in matmul_base to enable vectorization, even without
the -ffast-math flag. Hint: The LLVM IR and assembly output from compiling matmul.c is
substantially more complicated than what you have seen in previous examples. It can be hard,
therefore, to identify the LLVM IR or assembly code for the matrix-multiplication routine in
particular. One way to find the relevant LLVM IR or assembly output is to search the output file
for the two calls to the timing code, such as clock_gettime, because the matrix-multiplication
code of interest should appear between these calls. Another strategy is to use perf record and
perf report to help search for the matrix-multiplication code. Because a large fraction of the
running time of this program is spent in the matrix-multiplication code, this code should appear
near the top of perf’s profile. When using this second strategy, be careful not to confuse the
matrix-multiplication code you are optimizing with that used to check correctness.

Write-up 6: Compile the original matmul code and run it using awsrun to measure its
original running time. Then, try to enable vectorization using -ffast-math, and examine the
output of the vectorization report. Does the matmul code vectorize? Why or why not? Note
that the vectorization report might contain a second entry for the loop in matmul_base if
clang inlines the matmul_base function into its caller function, main.

Write-up 7: You can mandate that clang vectorize a particular loop using a pragma
directive. For example, to require clang to vectorize the k loop in matmul_base, you can add
the following pragma before the loop:

#pragma clang loop vectorize(enable) interleave(enable)

Add a pragma before the k loop to require vectorization of that loop. Verify that the
vectorization report confirms that clang now vectorizes the loop. Run the resulting
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executable with awsrun. How does the performance of the program with the pragma
compare to that of the original? From examining the LLVM IR or assembly output for this
version of matmul, propose an explanation for the new performance you observed.

Write-up 8: (Optional) Remove the pragma added by the previous write-up, and now try to
enable vectorization by reordering the loops in matmul_base. You should find an order of
loops that allows clang to vectorize (without -ffast-math). What’s the running time of this
vectorized code, as measured with awsrun?

3.2 Data types and vectorization

In some situations, one can use lower-precision floating-point arithmetic and still produce ac-
ceptable results. Such an optimization can improve performance, not only by reducing the space
required, but also by enabling vectorization to operate on more elements of input at a time.

Write-up 9: (Optional) Change the element type of the matrices from double to float. You
can make this change by changing the typedef statement that defines the el_t type, which
is the type of the matrices used in this matrix-multiplication code. How does this change
affect the vectorization of the code? What’s the running time of the new code, as measured
with awsrun?

3.3 A simple outer-product base case

For matrix multiplication, we can use the vector hardware more intelligently than clang does.
In this section, you’ll implement a vectorized base case by hand, using compiler built-ins. This
base case is a simplified version of that used in the matrix-multiplication case study in Lecture 1.
For simplicity, we’ll consider this base case for the problem of multiplying two n × n matrices A

and B.

Although matrix multiplication is typically formulated using dot products between rows of A

and columns of B, a more efficient base case can be developed by considering the computation
of a w × v submatrix of C using outer products of w-height subcolumns of A and v-length subrows
of B. In other words, consider the v elements

〈
ci,j, ci,j+1, . . . , ci,j+v−1

〉
in a row of a w× v submatrix

of C. This row can be computed using the following formula on sets of v consecutive elements in
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rows of B: 〈
ci,j, ci,j+1, . . . , ci,j+v−1

〉
=

n−1∑
k=0

ai,k ·
〈
bk,j, bk,j+1, . . . , bk,j+v−1

〉
This outer-product base case offers several features that make it efficient to compute using vector
instructions. By choosing the dimensions of the submatrix carefully, the whole w × v submatrix
of C can be stored in vector registers, and most of the computation can be performed directly
on vector registers, without writing results back to memory. In addition, each product between
ai,k and v consecutive elements in a row of B can be computed using elementwise products
between vectors. By choosing v to equal the vector width, for example, each product can be
performed by broadcasting the element ai,k to all entries of a vector register and then performing
an elementwise product between that vector and a second vector register storing the v consecutive
elements of B. Finally, each sum into a row of the C submatrix can be performed using an
elementwise sum between vectors.

The GCC vector extension

The compiler’s autovectorization capabilities struggle to figure out this outer-product base case,
so we’re going to implement it ourselves.

To simplify the task of implementing hand-vectorized code, clang supports the GCC vector
extension to C. This vector extension provides an attribute for defining a vector type, as follows:

typedef float vfloat_t __attribute__((__vector_size__(32)));

This type definition defines a new type, vfloat_t, which is a vector of float’s whose total size,
indicated by the argument to the __vector_size__ attribute, is 32 bytes. With this definition of
a vector type, one can write C code that defines vector variables using standard C syntax. For
example, the following code uses the above type definition to declare the variable b_vec as a
vector of float’s and the variables a_vec and c_vec as arrays of 2 vfloat_t’s each:

vfloat_t b_vec;
vfloat_t a_vec[2], c_vec[2];

One can express elementwise vector operations using C’s primitive operations — such as +,
-, *, and so on — on variables of a vector type. The following code, for example, computes
the elementwise product between a_vec[0] and b_vec and adds that product elementwise into
c_vec[0]:

c_vec[0] += a_vec[0] * b_vec;

Individual elements of a vector-type variable can be accessed using standard C notation for
indexing arrays. For example, the following code initializes the entries in b_vec with consecutive
elements in an array B, starting at index i:
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394 .LBB0_5: # Parent Loop BB0_2 Depth=1
395 # Parent Loop BB0_3 Depth=2
396 # Parent Loop BB0_4 Depth=3
397 # => This Inner Loop Header: Depth=4
398 vmovaps %ymm3, %ymm4
399 vmovaps %ymm2, %ymm5
400 vmovaps %ymm1, %ymm6
401 vmovups (%rdx), %ymm7
402 vbroadcastss (%rsi,%r11), %ymm3
403 vfmadd213ps %ymm4, %ymm7, %ymm3 # ymm3 = (ymm7 * ymm3) + ymm4
404 vbroadcastss (%r12,%r11), %ymm2
405 vfmadd213ps %ymm5, %ymm7, %ymm2 # ymm2 = (ymm7 * ymm2) + ymm5
406 vbroadcastss (%rax,%r11), %ymm1
407 vfmadd213ps %ymm6, %ymm7, %ymm1 # ymm1 = (ymm7 * ymm1) + ymm6
408 vbroadcastss (%rbx,%r11), %ymm4
409 vfmadd231ps %ymm4, %ymm7, %ymm0 # ymm0 = (ymm7 * ymm4) + ymm0
410 addq $4, %r11
411 addq %rcx, %rdx
412 addq $-1, %r8
413 jne .LBB0_5

Figure 19: Example assembly output for the innermost loop from compiling an implementation of the
outer-product base case.

for (int e = 0; e < sizeof(vfloat_t)/sizeof(float); ++e)
b_vec[e] = B[i + e];

From examining the LLVM IR or assembly for this code, you should find that clang compiles
and optimizes this loop into a vector load from the address &B[i]. Similarly, you can broadcast
the value of the i-th entry of an array A to each element in a_vec[0] as follows:

for (int e = 0; e < sizeof(vfloat_t)/sizeof(float); ++e)
a_vec[0][e] = A[i];

You should find that clang compiles and optimizes this loop over the vector elements to replace it
with a single vector broadcast instruction in assembly, such as broadcast or vbroadcast. You can
find further documentation about the GCC vector extension at the following webpage: https:

//gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html.1

We can use the GCC vector extension to implement the outer-product base case by hand. Through
careful coding, we can produce a matrix multiplication code with a highly efficient base case that

1You can also find documentation on the GCC vector extension here: https://releases.llvm.org/9.0.0/tools/
clang/docs/LanguageExtensions.html#vectors-and-extended-vectors. This page includes particulars of clang’s sup-
port for the GCC vector extension, but mixes in discussion of other vector extensions, including the OpenCL, AltiVec,
and NEON vector extensions, which can be confusing. For this exercise, the documentation in this handout and on
the GCC webpage should suffice.

https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://releases.llvm.org/9.0.0/tools/clang/docs/LanguageExtensions.html#vectors-and-extended-vectors
https://releases.llvm.org/9.0.0/tools/clang/docs/LanguageExtensions.html#vectors-and-extended-vectors
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outperforms what clang’s autovectorization can produce. Figure 19 presents an example of the
assembly code of the innermost loop of the base case that clang produces from an implemen-
tation of the outer-product base case using the GCC vector extension as described here. This
implementation improves the running time of the matrix-multiplication code to approximately
0.1 seconds, as measured via awsrun.

Write-up 10: Modify the matmul_base function in matmul.c to implement the outer-product
base case, using clang’s support for the GCC vector extension. You can modify the
matmul_base liberally — such as by changing the loops in matmul_base or creating new
functions in matmul.c and calling them from matmul_base — but your changes should be
restricted to the matmul_base subroutine. Examine the LLVM IR and assembly to verify that
clang produces vectorized code for your implementation of this base case. Run the
compiled matmul executable and allow it to check that the optimized code correctly
multiplies matrices. For bonus points, try to optimize your implementation of the base case
to beat the performance of clang’s autovectorization. (But don’t invest too much 6.172 time
into this write-up, at the expense of your project!) What dimensions did you choose for the
C submatrix computed by this outer-product base case, in order to use the vector registers
efficiently? How did you choose those dimensions? How did you modify the loops in
matmul_base to execute your base case efficiently? How did the performance of your final
implementation compare to that of clang’s autovectorization? Commit and push your final
optimized implementation of matmul.c.

Hint: To generate code that uses the fused multiply add instruction, vfmadd, compile the code
with the -ffast-math flag.

4 Turn-in

When you’ve written up answers to all of the above questions, turn in your write-up by uploading
it to Gradescope, and commit and push your code to your Git repository.
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