Homework 8: Cache-Oblivious Algorithms

Due: 11:59 p.m. (et) on Tuesday, Nov 2, 2021
Last Updated: October 27, 2021

Contents

1 Getting started 1
2 Cache complexity of matrix multiplication 1
3 Tableau construction 2
3.1 Iterative formulation 2
3.2 Recursive formulation 4

1 Getting started

Please answer the recitation Checkoff Item and ask your TA for a checkoff. Then, answer the writeup questions in this handout and submit an individual writeup on Gradescope.
For more information on cache-oblivious algorithms, see the following paper: https://doi.org/ 10.1145/2071379. 2071383.

For this homework, assume that all matrices are stored in row-major layout.

2 Cache complexity of matrix multiplication

During Lecture 15 we discussed the cache complexity of $n \times n$ matrix multiplication, under the tall cache assumption. Let \mathcal{M} be the cache size and \mathcal{B} be the cache line size. For the naive approach, there were two cases: (i) if $n>\mathcal{M} / \mathcal{B}$, then $\Theta\left(n^{3}\right)$ cache misses occur; and (ii) if $\mathcal{M}^{1 / 2}<n \leq \mathcal{M} / \mathcal{B}$, then $\Theta\left(n^{3} / \mathcal{B}\right)$ cache misses occur. For the blocking approach, with block size $s<\mathcal{M}^{1 / 2}$, the number of cache misses that occur is $\Theta\left(n^{3} / \mathcal{B} \mathcal{M}^{1 / 2}\right)$. The cache-oblivious approach achieves the same complexity as the blocking approach without the need of the voodoo parameter s.

Checkoff Item 1: Assume we want to multiply two rectangular matrices with sizes $m \times n$ and $n \times r$. Given the same tall cache assumption, analyze the complexity for one of the
following three options: the two cases for the naive approach, $n>\mathcal{M} / \mathcal{B}$ and $\mathcal{M} / r<n<\mathcal{M} / \mathcal{B}$; the blocking approach; and the cache-oblivious approach. You may pick whichever approach you want to analyze.

3 Tableau construction

Consider the tableau-construction problem from the Lecture 9 Addendum. The problem involves filling an $N \times N$ tableau, where each entry of the tableau is calculated as a function of some of its neighbors. Specifically, consider that the (i, j)-th element of the tableau is filled using an equation of the form

$$
A[i][j]=f(A[i-1][j-1], A[i][j-1], A[i-1][j]),
$$

where f is an arbitrary function.

3.1 Iterative formulation

Consider the simple iterative loop in the following code snippet for filling a tableau:

```
#define A(i, j) A[N + (i) - (j) - 1]
void tableau(double *A, size_t N) {
    for (size_t i = 1; i < N; i++) {
        for (size_t j = 1; j < N; j++) {
            A(i, j) = f(A(i-1, j-1), A(i, j-1), A(i-1, j));
        }
    }
}
```

In this problem, we are only interested in computing the final value of the tableau, stored in $\mathrm{A}(\mathrm{N}-1, \mathrm{~N}-1)$, hence we really only need to store $2 N-1$ elements during computation. The algorithm declares A as an array of size $2 N-1$.
The algorithm initializes the first row and column of the tableau and then invokes the tableau() function as shown in the code snippet below:

```
for (size_t i = 0; i < N; i++) {
    A(i, 0) = INIT_VAL;
}
for (size_t j = 0; j < N; j++) {
    A(0, j) = INIT_VAL;
}
tableau(A, N);
res = A(N - 1, N - 1);
```

Write-up 1: Explain why $2 N-1$ space is sufficient and how the tableau() function utilizes the $2 \mathrm{~N}-1$ space.

Recall the tall cache assumption, which states that $\mathcal{B}^{2}<c \mathcal{M}$, where \mathcal{B} is the size of the cache line, \mathcal{M} is the size of the cache, and $c \leq 1$ is a constant.

Write-up 2: Assuming that the cache is tall and uses an optimal replacement strategy, give a tight upper bound on the cache complexity $Q(n)$ for each of the following cases using O-notation:

1. $n \geq \alpha \mathcal{M}$,
2. $n<\alpha \mathcal{M}$,
where $\alpha \leq 1$ is a sufficiently small constant.

3.2 Recursive formulation

Now consider the recursive tableau implementation shown in the following code snippet:

```
#define A(i, j) A[N + (i) - (j) - 1]
void recursive_tableau(double *A, size_t rbegin, size_t rend, size_t cbegin,
                    size_t cend) {
    if (rend-rbegin == 1 && cend-cbegin == 1) {
        size_t i = rbegin, j = cbegin;
        A(i, j) = f(A(i-1, j-1), A(i, j-1), A(i-1, j));
    } else {
        size_t rmid = rend-rbegin > 1 ? (rbegin + (rend-rbegin) / 2) : rend;
        size_t cmid = cend-cbegin > 1 ? (cbegin + (cend-cbegin) / 2) : cend;
        recursive_tableau(A, rbegin, rmid, cbegin, cmid);
        if (cend > cmid)
            recursive_tableau(A, rbegin, rmid, cmid, cend);
        if (rend > rmid)
            recursive_tableau(A, rmid, rend, cbegin, cmid);
        if (rend > rmid && cend > cmid)
            recursive_tableau(A, rmid, rend, cmid, cend);
    }
}
```

This algorithm also stores only $2 N-1$ elements during the computation. The algorithm initializes A and invokes the recursive_tableau() function similarly to the iterative algorithm, as shown below:

```
for (size_t i = 0; i < N; i++) {
    A(i, 0) = INIT_VAL;
}
for (size_t j = 0; j < N; j++) {
    A(0, j) = INIT_VAL;
}
if (N > 1) {
    recursive_tableau(A, 1, N, 1, N);
}
6 res = A(N-1, N-1);
```

This recursive algorithm divides the tableau into four quadrants to compute. As shown in the Tableau Construction addendum, slides 3-5, after the first quadrant is computed, we can then compute the second and third quadrants in parallel. Parallelizing this way results in $\Theta\left(n^{2}\right)$ work, $\Theta\left(n^{\lg 3}\right)$ span, and $\Theta\left(n^{2-\lg 3}\right)$ parallelism. We also show in slides 7-9 a more parallel construction that divides the tableau 9 ways.

Write-up 3: Derive the general formula for work and span, assuming a k^{2}-way tableau construction (i.e., the tableau is divided up into k^{2} pieces of size $n / k \times n / k$).

Write-up 4: Answer the following, assuming that the cache is tall and uses an optimal replacement strategy.

1. Show the recurrence relation for the cache complexity $Q(n)$ using the 4-way construction of the recursive_tableau() function.
2. Draw the recursion tree and label the internal nodes and leaves with their cache complexity $Q(n)$. What's the height of the recursion tree?
3. How many leaves are in the recursion tree?
4. Using the recursion tree and the recurrence relation, derive a simplified expression for $Q(n)$.

Write-up 5: Assume, as usual, that the cache is tall and uses an optimal replacement strategy. Assuming a k^{2}-way tableau construction, show that if we are "unlucky," meaning that the size of a subpiece is just slightly above the cache size, then we have $Q(n)=\Theta\left(n^{2} k / \mathcal{M B}\right)$. Also show that if we are lucky and this situation does not arise, then we have $Q(n)=\Theta\left(n^{2} / \mathcal{M B}\right)$.

