
Performance Engineering of Software Systems October 27, 2021
Massachusetts Institute of Technology 6.172
Saman Amarasinghe, Charles E. Leiserson, and Jonathan Ragan-Kelley Handout 13

Homework 8: Cache-Oblivious Algorithms

Due: 11:59 p.m. (et) on Tuesday, Nov 2, 2021

Last Updated: October 27, 2021

Contents

1 Getting started . 1
2 Cache complexity of matrix multiplication . 1
3 Tableau construction . 2

3.1 Iterative formulation . 2
3.2 Recursive formulation . 4

1 Getting started

Please answer the recitation Checkoff Item and ask your TA for a checkoff. Then, answer the
writeup questions in this handout and submit an individual writeup on Gradescope.

For more information on cache-oblivious algorithms, see the following paper: https://doi.org/
10.1145/2071379.2071383.

For this homework, assume that all matrices are stored in row-major layout.

2 Cache complexity of matrix multiplication

During Lecture 15 we discussed the cache complexity of n× n matrix multiplication, under the
tall cache assumption. Let M be the cache size and B be the cache line size. For the naive
approach, there were two cases: (i) if n > M/B, then Θ

(
n3) cache misses occur; and (ii) if

M1/2 < n ≤ M/B, then Θ
(
n3/B

)
cache misses occur. For the blocking approach, with block

size s < M1/2, the number of cache misses that occur is Θ
(
n3/BM1/2). The cache-oblivious

approach achieves the same complexity as the blocking approach without the need of the voodoo
parameter s.

Checkoff Item 1: Assume we want to multiply two rectangular matrices with sizes m× n
and n× r. Given the same tall cache assumption, analyze the complexity for one of the

https://doi.org/10.1145/2071379.2071383
https://doi.org/10.1145/2071379.2071383

Handout 13 — Homework 8: Cache-Oblivious Algorithms 2

following three options: the two cases for the naive approach, n >M/B and
M/r < n <M/B; the blocking approach; and the cache-oblivious approach. You may pick
whichever approach you want to analyze.

3 Tableau construction

Consider the tableau-construction problem from the Lecture 9 Addendum. The problem involves
filling an N×N tableau, where each entry of the tableau is calculated as a function of some of its
neighbors. Specifically, consider that the (i, j)-th element of the tableau is filled using an equation
of the form

A[i][j] = f
(

A[i− 1][j− 1], A[i][j− 1], A[i− 1][j]
)
,

where f is an arbitrary function.

3.1 Iterative formulation

Consider the simple iterative loop in the following code snippet for filling a tableau:

01 #define A(i, j) A[N + (i) - (j) - 1]
02

03 void tableau(double *A, size_t N) {
04 for (size_t i = 1; i < N; i++) {
05 for (size_t j = 1; j < N; j++) {
06 A(i, j) = f(A(i-1, j-1), A(i, j-1), A(i-1, j));
07 }
08 }
09 }

In this problem, we are only interested in computing the final value of the tableau, stored in
A(N-1,N-1), hence we really only need to store 2N − 1 elements during computation. The algo-
rithm declares A as an array of size 2N − 1.

The algorithm initializes the first row and column of the tableau and then invokes the tableau()

function as shown in the code snippet below:

https://canvas.mit.edu/courses/11151/files/1791796?module_item_id=456709

Handout 13 — Homework 8: Cache-Oblivious Algorithms 3

10 for (size_t i = 0; i < N; i++) {
11 A(i, 0) = INIT_VAL;
12 }
13 for (size_t j = 0; j < N; j++) {
14 A(0, j) = INIT_VAL;
15 }
16 tableau(A, N);
17 res = A(N - 1, N - 1);

Write-up 1: Explain why 2N − 1 space is sufficient and how the tableau() function utilizes
the 2N − 1 space.

Recall the tall cache assumption, which states that B2 < cM, where B is the size of the cache
line,M is the size of the cache, and c ≤ 1 is a constant.

Write-up 2: Assuming that the cache is tall and uses an optimal replacement strategy, give a
tight upper bound on the cache complexity Q(n) for each of the following cases using
O-notation:

1. n ≥ αM ,

2. n < αM ,

where α ≤ 1 is a sufficiently small constant.

Handout 13 — Homework 8: Cache-Oblivious Algorithms 4

3.2 Recursive formulation

Now consider the recursive tableau implementation shown in the following code snippet:

18 #define A(i, j) A[N + (i) - (j) - 1]
19

20 void recursive_tableau(double *A, size_t rbegin, size_t rend, size_t cbegin,
21 size_t cend) {
22 if (rend-rbegin == 1 && cend-cbegin == 1) {
23 size_t i = rbegin, j = cbegin;
24 A(i, j) = f(A(i-1, j-1), A(i, j-1), A(i-1, j));
25 } else {
26 size_t rmid = rend-rbegin > 1 ? (rbegin + (rend-rbegin) / 2) : rend;
27 size_t cmid = cend-cbegin > 1 ? (cbegin + (cend-cbegin) / 2) : cend;
28 recursive_tableau(A, rbegin, rmid, cbegin, cmid);
29 if (cend > cmid)
30 recursive_tableau(A, rbegin, rmid, cmid, cend);
31 if (rend > rmid)
32 recursive_tableau(A, rmid, rend, cbegin, cmid);
33 if (rend > rmid && cend > cmid)
34 recursive_tableau(A, rmid, rend, cmid, cend);
35 }
36 }

This algorithm also stores only 2N − 1 elements during the computation. The algorithm ini-
tializes A and invokes the recursive_tableau() function similarly to the iterative algorithm, as
shown below:

37 for (size_t i = 0; i < N; i++) {
38 A(i, 0) = INIT_VAL;
39 }
40 for (size_t j = 0; j < N; j++) {
41 A(0, j) = INIT_VAL;
42 }
43 if (N > 1) {
44 recursive_tableau(A, 1, N, 1, N);
45 }
46 res = A(N-1, N-1);

This recursive algorithm divides the tableau into four quadrants to compute. As shown in the
Tableau Construction addendum, slides 3–5, after the first quadrant is computed, we can then
compute the second and third quadrants in parallel. Parallelizing this way results in Θ

(
n2) work,

Θ
(
nlg 3) span, and Θ

(
n2−lg 3) parallelism. We also show in slides 7–9 a more parallel construction

that divides the tableau 9 ways.

Handout 13 — Homework 8: Cache-Oblivious Algorithms 5

Write-up 3: Derive the general formula for work and span, assuming a k2-way tableau
construction (i.e., the tableau is divided up into k2 pieces of size n/k× n/k).

Write-up 4: Answer the following, assuming that the cache is tall and uses an optimal
replacement strategy.

1. Show the recurrence relation for the cache complexity Q(n) using the 4-way
construction of the recursive_tableau() function.

2. Draw the recursion tree and label the internal nodes and leaves with their cache
complexity Q(n). What’s the height of the recursion tree?

3. How many leaves are in the recursion tree?

4. Using the recursion tree and the recurrence relation, derive a simplified expression for
Q(n).

Write-up 5: Assume, as usual, that the cache is tall and uses an optimal replacement
strategy. Assuming a k2-way tableau construction, show that if we are “unlucky,” meaning
that the size of a subpiece is just slightly above the cache size, then we have
Q(n) = Θ

(
n2k/MB

)
. Also show that if we are lucky and this situation does not arise, then

we have Q(n) = Θ
(
n2/MB

)
.

	Getting started
	Cache complexity of matrix multiplication
	Tableau construction
	Iterative formulation
	Recursive formulation

