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In this project you will optimize a graphical N-body gravity simulation program for multicore processors
using the OpenCilk parallel programming platform. It is a good idea to fully read this handout and reread
the Course Information handout before you get started!
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2 Getting started

Snailspeed Ltd. has been put onto the map due to its newly patented iRotate algorithm. Due to
your role in Snailspeed’s rise to prominence, you have been promoted to CCTO (Co-Chief Tech-
nology Officer). Custom engraved door plates and corner offices aren’t cheap; and, unfortunately,
Snailspeed didn’t have enough revenue left over to hire additional engineers. Instead, Snailspeed
has hired a small team of corporate management consultants from InchWorm Advisors.

InchWorm Advisors have suggested that Snailspeed pivot towards the development of multicore
software in order to remain on the cutting edge. As a result of these discussions, Snailspeed is
planning to launch SnailSim, a disruptively high-performance graphical N-body gravity simula-
tion program designed for multicore processors.

It is up to you and your fellow CCTO to transform SnailSim from dream to reality. InchWorm
Advisors have suggested that you look into the OpenCilk task-parallel programming platform to
parallelize SnailSim. OpenCilk may be the key, according to Inchworm Advisors, to transforming
Snailspeed Ltd. into a major player in the high-performance computing industry.

Team formation and contract

Teams will be formed by random matching and posted on Piazza. You and your teammate must
write a team contract specifying how your team will operate — a set of conventions that you
plan to abide by. The requirements for the team contract are the same as before. For guidance
in writing your team contract, please refer to the description for Project 1. Only one copy of the
contract needs to be submitted on Gradescope. Please add both teammates to the submission.

Getting the code

Before beginning to work on Project 2, please update your apt packages:

$ sudo apt update && sudo apt upgrade

The course staff will release the teams on a spreadsheet through Piazza, notifying you of your
team-name. You can then get the project code:

$ git clone git@github.mit.edu:6172-Fall21/project2_<team-name>.git project2

You can also browse the code before that by cloning a read-only repository:

$ git clone git@github.mit.edu:6172-Fall21/project2.git project2
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Pair programming

We strongly recommend that teams practice pair programming as described in the Project 1 hand-
out. This style of programming leads to bugs being caught earlier, both programmers always re-
maining familiar with the code, and fewer repetitive stress injuries (RSI). Pair programming also
makes it easy for you to maintain balanced commits among your team members’ usernames.

3 Introduction to the codebase

In this project, you will be optimizing a 3D N-body gravity simulation with rendering. The
simulation consists of a 3D virtual environment filled with colored spheres that bounce off one
another according to simplified physics.

To get acquainted with the code, let’s begin by compiling and running two important binaries.

3.1 Running the simulation

The simulation can be executed either with or without a graphical display. While collecting
performance data, execute the program without the graphical display to obtain more accurate
performance measurements. The execution syntax is as follows.

Usage: ./main [-f FILE_NAME] [-n NUM_FRAMES] [-m] [-g] [-t] [-h]
-f fileName Input file name Optional, may not be used with -t flag
-n numFrames Number of frames to run Optional, may not be used with -t flag
-m Writes ref_test files Optional, may not be used with -t or -g flag
-g Runs code with graphics Optional, may not be used with -t or -m flag
-t Runs performance tests Optional, no other flags may be used
-h This help message

The input file is optional and defaults to simulations/250.txt. The simulations/ directory
contains several (fun!) examples of input files. Use the -g option to look at them. Figure 1 shows
a screenshot from simulations/250.txt.

Here’s the output of one run with the default input:

$ ./main
Num spheres: 250
Img size: 256x512
Num frames: 10
---- RESULTS ----
Time elapsed: 1215 ms
---- END RESULTS ----

Benchmark your serial code on the awsrun machines by using the ./main -t command or noting
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Figure 1: Screenshot from simulations/250.txt input produced by running ./main -g.

the time elapsed on the execution of a certain file. The awsrun machines, however, don’t have
access to your local files. Use the -f flag to specify the input if you’re executing on a local file.

3.2 Running the reference testing tool

To help you get started with reference testing, a method of correctness testing described in Sec-
tion 4.1, we are providing a tool to check correctness by comparing implementations. This tool
provides a visualization of your error and statistics about your correctness. It also separates
rendering tests from simulation tests to help isolate bugs. The execution syntax is as follows.

Usage: ./ref_test [-r] [-s] [-g] [-h]
-r Run tool for render function
-s Run tool for simulate function
-g Display graphical heatmap while ref testing
-h This help message

Before you run the ref_test binary, however, you must run the main binary with the -m flag
enabled. The main binary then produces a set of four files that are necessary for the reference
testing tool to run. Once you have those files, you may run the ref_test binary with either the -r

render flag or the -s simulate flag (plus the -g flag if you would like to view the visualization).
If you specified the -g flag, ref_test pulls up a screen showing the frame-by-frame heatmap of
your errors. If you see a black screen, don’t worry! That means you have no errors.

After the heatmap has been displayed for each frame, or if you choose to run the tool without the
-g flag, the ref_test prints out a few summary statistics about your run. We highly recommend
using these statistics to test correctness. A maximum error of 0 implies correctness.

This tool is far from perfect! Don’t be afraid to tweak it for your own purposes or post changes
to Piazza. We appreciate all contributions (and they can help your class-contribution grade).
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3.3 Modifying the files

While grading, the course staff will call only five functions: simulate(), simulateOrig(), render(),
renderOrig(), and sort(). Thus, your grade is only affected by changes to these files: (i) simulate.c,
(ii) simulate.h, (iii) render.c, (iv) render.h, and (v) Makefile. When you submit your code, the
course staff will revert all other files to their original states. Feel free to explore the codebase, but
please keep in mind that changes to files that are not in this list will be reverted for grading.

4 Optimizing the serial code

The first part of the project is to make algorithmic changes to the render() function to reduce
the total work performed by the serial code. Currently, the rendering code uses an extremely
inefficient algorithm to determine the color of a given pixel. At each time step, the algorithm
iterates through all pixels, and for each pixel, it iterates through all spheres to see if that pixel
should take the color of that sphere. This exhaustively iterative method is expensive, requiring
Θ(MN) ray-sphere intersection tests for a size-M image and a scene containing N spheres.

Begin by implementing a new rendering algorithm that uses the mathematical concept of a pro-
jection to reduce the total amount of spheres that must be checked for each pixel. Please do not,
at this point, complicate matters by using OpenCilk (or any other parallelization method) to par-
allelize your rendering algorithm. Parallelization will happen in the second part of this project,
described in Section 5. Generally, when parallelizing code, it’s advised to first to exploit all the
serial performance enhancements you can, while preserving your options for parallelization later.

4.1 Guidelines and advice

Before you modify the implementation, please consider the following guidelines and advice:

• Fast math: You may not use the compiler flag -ffast-math. This flag allows the compiler
to reorder certain mathematical operations, which may result in nondeterministic floating-
point results. Since the course staff needs to grade the correctness of your code, nondeter-
minism is not okay. Although use of this flag is disallowed for your submission, feel free
to play with it. (Please report on your experiments with -ffast-math in your write-ups.)

• Reference testing: You will find it useful in this project to check the correctness of your
optimizations using reference testing: a method of correctness testing that compares the
execution of two different implementations of a function to ensure that the implementations
behave identically. We have provided a tool called ref_test for this purpose.

Let’s say that you have modified the render() function in render.c. There are two ways
to test. The first is to write unit tests. The second is to compare two versions of the func-
tion: the original implementation renderOrig() and your new implementation render().
The reference testing tool relies on this structure. By preserving the original behavior in
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renderOrig() and simulateOrig() and developing new code in render() and simulate(),
you will be able to use ref_test to perform reference testing.

• Serial optimization: You may be tempted to jump directly into parallelizing your code as
a means to gain performance. Generally, however, the best parallel programs are those
that are first highly optimized serially and then made parallel afterwards. We therefore
recommend making the serial version of the program as fast as possible before parallelizing.

• Determinacy-race freedom: Your code must be free of determinacy races. This means you may
not use parallel constructs involving locking, memory synchronization, or atomics. Stick to
the cilk_spawn, cilk_sync, and cilk_for keywords for your parallelization.

4.2 Rendering through ray tracing

To render a scene, the code uses a highly simplified version of ray tracing. Ray tracing is a
rendering algorithm that mimics the behavior of the human eye in order to create realistic images.
As with human vision, there are three key parameters we must set to fix the the 2D image we
see when presented with a given 3D scene: the position of the eye, the plane onto which we
project the image, and the size of the image. Since there are many different ways to represent
these objects, let’s look at the specifics as they are written in the code.

• Viewpoint e is defined by a 3D position.

• Projection plane P is defined by two 3D vectors, u and v, that lie in P. We define u and v
to be orthnonormal for computational ease. Remember that the term orthonormal refers to
vectors that are orthogonal to each other and of unit size. Points on P lie in 3D space, and
therefore require three coordinates to fully specify their position.

• Image I, viewed from e, is then defined by a grid of size M (of height h and width w such
that M = hw) on projection plane P. Points on the image lie in 2D space relative to the
projection plane, and therefore require only two coordinates to fully specify their position.

In our case, a scene is composed of N spheres indexed from 0 to N − 1. Each sphere is defined
by position, velocity, acceleration, radius, mass, color, and reflectivity. To see how modifying
the rendering parameters changes a rendered image, let’s consider a scene consisting of a single
green sphere i, rendered with projection plane P, eye location e, and image size M, as illustrated
in Figure 2(a). What is the impact is of changing the rendering parameters?

What happens, for example, if you change the position e of the eye? This parameter is fairly
intuitive to understand. Imagine staring in the same direction as you walk side to side or sit
down and stand up without changing the direction in which you’re looking. The section of
the scene you’re looking at shifts as your position shifts. In Figure 2(b), observe the result of
rendering sphere i when you replace e with a new position e′, representing an upwards shift of
the eye, while keeping P and M constant.
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(a) The image (left) of a scene containing a single sphere and its corresponding ray-tracing diagram
(right) showing the eye (box, top right), the projection plane (grid), and the subset of the plane that

constitutes the image (shaded purple). A sample of rays from the eye to the image are shown in red.

(b) The scene from (a) with a new viewpoint. As compared to (a), the eye and the corresponding image
(shaded purple) have shifted up.

(c) The scene from (a) with a new projection plane where the plane is slanted differently.

Figure 2: A comparison of the results of rendering the same scene under different parameters.
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Return again to Figure 2(a), where we render the sphere with eye position e and projection
plane P. What happens if you change P to P′, representing a slant of the plane, while keeping
e and M fixed? The resulting scene is shown in Figure 2(c). This image corresponds to keeping
the position of the eye fixed, but changing the angle from which the eye looks. Since you are no
longer looking at the sphere head-on, Figure 2(c) renders an ellipse instead of a circle.

p

r
s

row x

col y

Figure 3: A visual example of the basic ray tracing algorithm showing the eye, the projection plane,
the subset of the plane that constitutes the image, and a sphere. Each red ray from the eye to a pixel
determines the color of that pixel from the objects in the scene that the ray intersects. An example for ray
r, which intersects pixel (x, y) and corresponding 3D point p, is labeled.

Given a scene to render, you must fix the eye position, the projection plane, and the image size in
order to fully specify the image. Now, what happens after you’ve fixed your parameters? How
do you go from an infinite 3D scene to a finite 2D image? This is where the idea of ray tracing
comes in. Follow along with Figure 3 to understand the procedure.

Consider a particular pixel in the 2D image you want to produce. Denote this pixel as the ordered
pair (x, y) representing the pixel’s x- and y-coordinates within the 2D image (labeled in purple in
Figure 3). Since the image you want to produce is a subset of the projection plane, there is some
known 3D point p (labeled in black in Figure 3) on that plane that corresponds to pixel (x, y).
To determine the color of pixel (x, y), define a ray r (labeled in red in Figure 3) from the eye to
point p. Any sphere that intersects ray r has a 2D projection that includes pixel (x, y). In other
words, some part of the sphere is mapped to (x, y) when you project the sphere from 3D to 2D.
Of course, with multiple spheres, because spheres closer to the eye occlude spheres farther away,
you actually only use pixel (x, y) to render the sphere closest to the eye that intersects ray r.

Let’s review. To determine the color of pixel (x, y), you must find point p on the projection
plane, calculate ray r from the eye to point p, and find the sphere closest to the eye that intersects
ray r, if such a sphere exists. If this sphere exists, pixel (x, y) adopts the color of that sphere
(realistically shaded according to the Lambert diffuse). If no such sphere exists, the pixel adopts
the background color (black). The image is rendered by repeating this process for each pixel, as
in Figure 3. For a scene with N spheres, since we check all N spheres for intersections with r, the
same ray-sphere intersection calculation is repeated N times per pixel. This strategy is inefficient.

https://en.wikipedia.org/wiki/Lambertian_reflectance
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Fortunately, this problem contains spatial locality that you can exploit. Consider some sort of
projection algorithm to replace the current ray tracing algorithm. Here’s the main idea: instead
of iterating through the spheres for each pixel to determine the pixel’s color, iterate through the
spheres only once in order of increasing distance from the eye and color in the appropriate pixels
as you go. Since you iterate in order of increasing distance, once a pixel is colored, you need
never color it again as you continue iterating through the spheres. This way, you need only visit
each sphere once and each pixel once, yielding an algorithm with runtime Θ(M + N) instead of
Θ(MN) as before, where N is the number of spheres and M is the size of the image.

As you test your code, you may want to consider a few key questions for the write-up:

• What speedup did you achieve? Was this performance what you expected?

• What design choices did you make while rewriting the render function to use the idea of
projections? For example, how did you determine which pixels to color for each sphere?

• Does this implementation seem parallelizable? Do you foresee any determinacy races?

Remember that the color of each pixel and the position of each sphere in the new code should
be the same as in the old code. Verify your code using ref_test or by writing your own tests. To
ensure accurate performance results, run ./main -t on an awsrun machine.

4.3 Physics simulation

The function simulate() implements the physics of the spheres as they interact. There are two
main components to the 3D physics of the simulation: gravitational forces between every pair of
the N spheres and elastic collisions between spheres. This simulation aspect of the project is just
as important as the rendering aspect, although we do recommend tackling simulation second.

Each sphere i has the following properties related to the physics of the simulation: i.accel,
i.vel, i.pos, and i.mass. Acceleration, velocity, and position are updated after each time step.
These calculations are handled in the functions updateAccelerations(), updateVelocities(),
and updatePositions(), which you can find in file simulate.c of the starter code.

The simulation discretizes time by partitioning the time line into small intervals. A time step is
a point in time connecting two adjacent intervals. At each time step, the simulation updates the
acceleration, velocity, and position of all spheres based on their values at the previous time step.
Let’s denote the acceleration of sphere i at time t as a(t)i , velocity as v(t)i , and position as p(t)i . For
a given time step t, let t− ∆t be the time of the previous time step.

The acceleration a(t)i of sphere i at time t is provided by the Newtonian law for the forces of

gravity. Let d(t)ij be the vector difference of the positions of spheres i and j at time t, let G be the
gravitational constant, and let mj be the mass of sphere j. The net acceleration of sphere i due to
the gravitational forces from the other N − 1 spheres at time t is then given by the formula
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a(t)i =
N−1∑
j=0
j 6=i

Gmj

|d(t)ij |3
·
−→
d(t)ij .

The acceleration calculation involves Θ(N2) work to update all spheres. There are methods in
the literature, including the Barnes-Hut algorithm and the Fast Multipole Method, for reducing
the work asymptotically. We do not recommend that you implement one of these methods. The
constants in these algorithms are unlikely to make them faster than the naive Θ(N2) for the
relatively small problem instances we’ll be dealing with, and they will wreak havoc on your
ability to control floating-point accuracy. As further reasoning, the course staff would like you
to know that none of our optimized implementations contain such algorithms or other advanced
ideas such as k-d trees. You are free to do as you wish, but our advice is to mine the many other
sources of performance before risking much or any time implementing such algorithms.

After calculating a(t)i , the simulation algorithm finds v(t)i and p(t)i :

v(t)i ← ∆t · a(t)i + v(t−∆t)
i ,

p(t)i ← ∆t · v(t)i + p(t−∆t)
i .

The simulation handles collisions between spheres as follows. Suppose that the time of the
current time step is t and the time of the next time step is t′. If a collision will happen between
t and t′ as determined by a geometric collision checker in simulate.c, the collision checker finds
the time t′′ of the first collision that occurs between times t and t′. Then, the code breaks the
interval [t, t′] into two mini time intervals: [t, t′′] and [t′′, t′]. The effects of the collision are
calculated after updating acceleration, velocity, and position for time t′′. The code then iterates
on interval [t′′, t′], again subdividing it if a collision will occur before t′.

4.4 Floating-point woes

One particularly hairy aspect of N-body simulation and rendering is dealing with floating-point
numbers. Floating-point arithmetic is not associative. In particular, there might be faster ways of
computing things like velocity, but unless the same operations are performed in the same order,
floating-point error can occur, causing you to fail the reference test. Thus, you should proceed
with caution when modifying formulas.

The code uses double-precision floats for calculations to mitigate the effects of round-off. As you
change the code, use ref_test with the -g flag to visualize the locations of floating-point error.

More subtleties arise when writing “shortcut” code. For example, you may use the fact that if the
bounding cubes of two spheres do not overlap, then they cannot collide. Taking advantage of this
observation can reduce the number of pairs of spheres for which you perform a collision check.
Since this operation for collision detection is different than the condition used in the original
code, however, it is possible, due to round-off error when computing the bounding box, for the
original code to report a collision while the bounding cubes do not intersect.
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4.5 Optimization ideas

Look for opportunities for serial optimization within the render() and simulate() functions and
describe what you did. Here are some optimization ideas to help you get started:

• Replace the ray tracing algorithm by implementing a projection algorithm that maps 3D
spheres to 2D shapes. Iterate through the spheres and color in the projection for each
sphere as you go. The course staff highly recommends this as a place to start.

• A large number of calculations are repeated in each time step. For example, the rendering
code recalculates the color of each sphere, even though the color never changes. Consider
precomputing these calculations and storing results for reuse.

• Many calculations are repeated even within the same loop. For example, when calculating
the force of gravity between spheres i and j, we effectively calculate the force of gravity
between spheres j and i. Take advantage of this symmetry.

• Although the method given for testing whether two spheres collide is fairly efficient, you
may wish to explore more efficient ways of testing for sphere collision.

5 Parallelization

Once you have optimized your serial execution, you can begin parallelizing with OpenCilk. Par-
allelization can be tricky because race conditions and nondeterminism can arise if you implement
parallelism incorrectly. Careful parallelization is key to improving the performance of your code.

Profiling the serial code

Profiling your application can help determine where you should focus your time when paralleliz-
ing your code. The goal is to identify a region of code that comprises a large percentage of the
total execution time but is amenable to a potentially large degree of coarse-grained parallelism.
Run awsrun perf record and aws-perf-report to see the profiling statistics.

Parallelizing the application

Parallelize your code by including cilk_spawn, cilk_sync, and cilk_for keywords appropriately
in the regions of code you have identified as worth parallelizing. If you do not see much code
suitable for parallelization using the Cilk primitives, you may want take another look at both the
render.c and simulate.c files.

In order to benchmark your parallel code, use:

$ awsrun8 ./main -t
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The awsrun8 command will run your code on an 8-core machine. Warning: If you benchmark
using awsrun (no 8), it will run on a single core machine, and you will get inaccurate results.

For any changes you make, verify that your code reports the same coloring of pixels and positions
of spheres as before. Additionally, verify that the code is race-free by running it through the
Cilksan determinacy-race detector. Note: Run the Cilksan binary locally on your VM.

Profiling the parallel code

You can determine the work and span of your parallel code by executing with Cilkscale. How
much parallelism do you see? Vary any parameters your algorithm may take as well as any other
spawn cut-offs you used. What is the maximum amount of parallelism you can achieve?

5.1 Parallel Algorithms

The serial algorithm for finding force between bodies i, j using some function f() looks like this:

for (int i = 0; i < N; i++) {
for {int j = 0; j < N; j++) {

if (i != j) force[i] += f(i, j);
}

}

You can get an easy factor of 2 speedup by traversing only unique pairs like so:

for (int i = 0; i < N; i++) {
for {int j = i+1; j < N; j++) {

force = f(i, j);
force[i] += force;
force[j] -= force;

}
}

One especially tricky portion of the simulation comes with parallelizing these pairwise effects.
Naively, to parallelize the above code, one would just replace the outer loop with a cilk_for:

cilk_for (int i = 0; i < N; i++) {
for {int j = i+1; j < N; j++) {

force = f(i, j);
force[i] += force;
force[j] -= force;

}
}
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Figure 4: A figure representing the recursion of a triangle. The purple subtriangles can be processed
in parallel, and the green rectangle can be processed either before or after. Green and purple cannot be
processed at the same time, however, without creating a determinacy race.

Figure 5: A figure representing the recursion of a rectangle. The purple subrectangles can be processed
in parallel, and then the green subrectangles can be processed in parallel. However, green and purple
cannot be processed at the same time without creating a determinacy race.

This, however, produces a race condition. force[j] may be updated over many different values
of i at once. If reads and writes across cores occur out-of-order, we may get an incorrect result.

To properly parallelize this block of code, we use a clever recursive algorithm, whose recursive
calls may be written as independent cilk_spawn’s.

First, we divide the triangular region described by the double loop

for (int i = 0; i < N; i++) {
for {int j = i+1; j < N; j++) {

into two smaller triangular regions and a single rectangular region, as in Figure 4. The two
triangular regions can be then run in parallel. This is because those regions update force[i] and
force[j] for different values of i and j, so there are no races. The rectangle, however, races with
both triangles, so it must be processed either before or after the triangles.

Fortunately, by further dividing the rectangle into four subrectangles as in Figure 5, we observe
that the rectangle can also be processed in parallel. Subrectangles that are diagonal from each
other can run in parallel since they update force[i] and force[j] for different values of i, j,
causing no races. If all four subrectangles were to run in parallel, however, there would be a race.
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Figure 6: A figure representing the recursion of triangle and rectangle two levels down. A rectangle is
recursively broken into subrectangles, and a triangle is broken into two subtriangles and a rectangle, which
are then recursively subdivided. Same-colored regions may be spawned concurrently without racing.

Parallelizing render

The rendering algorithm should be sped up with parallelization as well. In the 2D projection
algorithm, each pixel can be colored independently of the other pixels, making it fairly straight-
forward to parallelize. As you change and optimize the rendering algorithm, it will be important
to ensure that this independence remains in the presence of more complex data structures.

Performance tuning

In your write-up, describe any decisions, trade-offs, and further optimizations that you made,
including which parts of the code you parallelized using the divide-and-conquer algorithm ex-
plained above. While we will be grading on a machine similar to awsrun8, we expect your code
should not rely on CILK_NWORKERS=8 to perform correctly.

6 Evaluation

Please remember to add all new files to your repository explicitly before committing and
pushing your final changes.

Evaluation measures

Your grade will be based on all of the following:

Performance (of correct code)

As with Project 1, your final performance grade will be computed by comparing the performance
of your submission against a baseline to be announced. Your code will be benchmarked against
inputs not made available to you. Therefore, you should keep your code general and be careful
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not to over-optimize to any specific type of simulation configuration. In addition, you should
keep your code as processor-oblivious as possible as a matter of portability. You can use Cilkscale
to explore whether your parallel code scales well or not. As a reminder, Cilkscale runs your code
serially to compare scalability so you may see the following awsrun8 output:

==== Standard Error ====
Forcing CILK_NWORKERS=1.

For correctness, your code should:

• Match the frames of the starter code pixel-for-pixel for the entire duration of its execution.

• Contain no determinacy races.

Beta group write-up

You are required to submit on Gradescope a beta group write-up discussing the work that you
performed. Please follow the same template for your project write-up as with Project 1. Impor-
tant: Please also push your write-up to your Git repository as a .pdf or readable .txt file.

Similarly to Project 1, as part of your write-up, you must submit a log indicating how you spent
your time on the project. You may choose any method that produces an easy-to-interpret log.

Addressing MITPOSSE comments

The MITPOSSE Deputies will give you feedback on https://github.mit.edu on your code qual-
ity. We expect you to respond thoughtfully to their comments in your final submission. We will
review the MITPOSSE comments and your write-up to ensure that you are addressing them.

Final group write-up

You are required to submit on Gradescope a final group write-up, which builds on the beta group
write-up and additionally discusses the work you performed since the beta release. Similarly to
Project 1, in your final write-up, please include the following information:
• An overview of changes you made to your beta release for the final, their impact, and what

motivated you to make those changes.
• Some comments on meeting with your MITPOSSE mentor.
• An updated project log documenting how you spent your time on the final.

Team contract

You are required to submit on Gradescope your team contract, which sets forth conventions on
how you and your teammate will collaborate. Remember that you should only submit one copy

https://github.mit.edu
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of the team contract on Gradescope and add both teammates to the submission.

Aesthetic test inputs

The staff has provided a few example input files in the simulations directory. A small portion
of your grade is based on the quality of the new inputs you create to test and benchmark your
code. These new inputs will be judged based on whether they satisfy following criteria: (i) the
input has challenging performance or correctness properties; and (ii) the input is aesthetically
interesting or entertaining. We will curate the most interesting inputs and show them in class.

Grade breakdown

We will grade your project submission based on the following point distribution:

Beta Final

Performance (of correct code) 36% 40%
Addressing MITPOSSE comments — 10%
Write-up 5% 5%
Team contract 3% —
Aesthetic test inputs 1% —

Total 45% 55%

As with Project 1, this point distribution serves as a guideline and not as an exact formula. The
staff will also review your Git commit logs to assess the dynamics of your team.

Before you submit

Before you submit your code, complete the checklist below.

2 Run ref_test to verify correctness.

2 Run the Cilksan race detector to confirm that you have no determinacy races.

2 Run the style checker with the following command:

$ find . -regex ’.*\.\(c\|h\)’ -exec clang-format -style=file -i {} \;

2 Ensure that you didn’t modify any files that will be reverted for testing (see Section 3.3).

2 Add your aesthetic test input file to the simulations directory.

2 (Optional) Let us know what you think of the project on Piazza or in your status report!
This is a new project this year, and we would love to hear your feedback.
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