
Performance Engineering of Software Systems November 8, 2021
Massachusetts Institute of Technology 6.172
Saman Amarasinghe, Charles E. Leiserson, and Jonathan Ragan-Kelley Handout 17

Project 4: Leiserchess

Last Updated: November 18, 2021

In this project, you will optimize and improve a bot that plays a variant of laser-chess — Leiserchess
(pronounced “LYE-sir-chess”). Compared to past projects, this final project has a large and complex code
base; navigating and optimizing it will put to test all the skills you have gained over this term.

Note: It is a good idea to reread the Course Information handout before you get started! Also, reread this
document regularly, since your understanding of it will improve as you become more familiar with the code
base.

Contents

1 Due dates . 1
2 Introduction . 2
3 Getting started . 3
4 Background: alpha-beta search . 4
5 Deliverables . 8

5.1 Preliminaries . 8
5.2 Design . 10
5.3 Beta . 13
5.4 Final . 14

6 Evaluation . 15
7 Words of wisdom . 16
8 Rules and fine print . 20
9 Exhibition tournament . 21

1 Due dates

2 Team contract: 11:59 p.m. on Wednesday, November 10, 2021

2 Recitation checkoff: Friday, November 12, 2021

2 Design document submission: 11:59 p.m. on Monday, November 15, 2021

2 MITPOSSE meeting deadline: 11:59 p.m. on Monday, November 22, 2021

2 Beta submission: 11:59 p.m. on Wednesday, November 24, 2021

Handout 17 — Project 4: Leiserchess 2

2 Beta write-up: 11:59 p.m. on Thursday, November 29, 2021

2 Presentation slides: 11:59 p.m. on Monday December 6, 2021

2 Presentation: Tuesday, December 7, 2021

2 Final submission: 11:59 p.m. on Wednesday, December 8, 2021

2 Final write-up: 5:00 p.m. on Thursday, December 9, 2021

2 Exhibition tournament: 2:30 p.m. on Friday, December 10, 2021

Remember that status reports are due weekly at 11:59 p.m. every Thursday. All times are in the
Eastern Time zone (ET).

2 Introduction

In this final assignment, you start with a high quality game-playing bot for Leiserchess 2021, a
two-player laser-chess game similar to Laser Chess and Khet. The document Leiserchess 2021: A
Laser-Chess Game, which you can find in the file Leiserchess_2021.pdf once you download the
code base, describes the rules of the game. The code base is much larger than the code bases
of Projects 1–3. The core AI encompasses many algorithms and heuristics, not just one or two
simple algorithms.

In a sense, this project is like what you may encounter in real life as a software performance engi-
neer. You must find opportunities to improve the performance of a sizable and complex program
implemented by domain experts. It is your job to improve performance without compromising
the program’s correctness. But performance isn’t just running time (although it is correlated).
It is how well your bot plays against other bots. And correctness is not a binary mathematical
notion. You may have some leeway to change what the program does, as long as it conforms to
a more human measure of correctness. As in real-world situations, you have a limited amount
of time to figure out what is slow and how to improve performance. Of course, you’ll want
to address the low-hanging fruit first (there’s plenty), but eventually, you’ll need to implement
significant design changes. You must be judicious in what you take on, doing experiments and
back-of-the-envelope-calculations to select wise courses of action that yield the best increment of
performance for the time spent.

Your starting point is a software bot that plays the Leiserchess game. The AI we provide already
does a good job of playing the game, and if you play games against it, you’ll likely find that it
is hard to beat. It implements Principal Variation Search (or PVS), a search algorithm commonly
used in high-performance chess engines. We recommend that you browse the materials on the
Chess Programming Wiki (https://www.chessprogramming.org) to learn about PVS. The website
also contains a wealth of information about chess-playing programs, many of which are similar
in software structure to our Leiserchess bot, as well as to game engines for other two-person
games with perfect information, such as chess, checkers, and Go.

https://www.chessprogramming.org

Handout 17 — Project 4: Leiserchess 3

The code base includes several other major software components besides a search algorithm. The
player software includes a transposition table, a static evaluation function, and a move generator.
It also contains UI code that allows you or another program to interact with the game engine
via a UCI-like interface (https://en.wikipedia.org/wiki/Universal_Chess_Interface). Outside
of the player code itself, there is also ancillary software for autotesting, autotuning parameters,
evaluating playing ability, and other useful tools.

Your mission is to improve the bot’s ability to play Leiserchess. You may be able get improve-
ments from implementing a smarter AI, but this approach turns out to be harder than it may
seem at first. Since the game engine evaluates a player’s available moves using heuristic search
of a game tree, the more the positions and the deeper the search, the stronger the bot tends to be.
Consequently, if two bots implement exactly the same functionality they run at different speeds,
the faster one tends to be stronger because it can explore more positions and search deeper.
Thus, for a reasonably good AI such as the one we have provided you, your can expect software
performance engineering to be vastly more effective at quickly improving the strength of the bot
than modifying the AI itself, although there may be some tweaks to the AI that can help.

You are free to employ any strategy you wish to improve your program’s game-playing perfor-
mance. The final measure of performance will be your program’s ability to beat other game-
playing programs, including other students’ bots. But you will not compete with other students
for your grade. (We’ll resolve this apparent paradox in Section 6.) As always, we want you and
your classmates consider yourselves a single learning team, sharing ideas and resources on Pi-
azza (and receiving credit for doing so). But, after your final bot has been submitted, the course
staff will run run the programs head to head in a friendly exhibition tournament for bragging
rights, and a prize for the winners. Also, the course staff will set up a “scrimmage server” where
you can try out the latest version of your bot against your classmates’ bots, as well as against
reference bots provided by the course staff.

3 Getting started

You can use your team name to get the project code:

$ git clone git@github.mit.edu:6172-fall21/project4_<team-name>.git project4

You can also browse the code using a read-only repository:

$ git clone git@github.mit.edu:6172-fall21/project4.git project4

You will also need to install some dependencies on your 6.172 virtual machine to use some of
the project scripts, which you can do by running:

$./scripts/setup.sh

There is significantly more documentation in this project than in other projects; for convenience,
here are additional supporting documents you will find useful:

https://en.wikipedia.org/wiki/Universal_Chess_Interface

Handout 17 — Project 4: Leiserchess 4

1. Leiserchess_2021.pdf: Introduction to Leiserchess rules, available as linked in the Piazza
announcement and also on Canvas under Files.

2. README.md: Description of the code base structure, how to launch a game server and how
to test your code.

3. player/README.md: Summary of code files that you may find yourself modifying.

4. tester/README.md: Guide on how to use the autotesting framework.

5. engine-interface.txt: description of commands you can send Leiserchess at the command
line. See /player/leiserchess.c for more information.

6. Slides from Leiserchess code walk.

The main codebase that you will be working with is the game engine in the player/ directory.
You can use make to compile the player code, which generates leiserchess. This program fol-
lows the Universal Chess Interface (UCI), which is a set of text commands sent via stdin that a
Leiserchess engine must respond to at any point during runtime. Those commands are described
in the UCI document, engine-interface.txt. The given implementation supports an additional
command, perft. This command counts all possible moves to a given depth, which makes it a
valuable debugging tool for your move-generation code.

Familiarize yourself with the Leiserchess game. The rules document provides some tips. Play a
few games against the reference bot, a teammate, or a friend. You can run the game in your own
browser using instructions included in the top-level README.md file in the codebase. You might
be surprised how often students in the past have reported discovering a bug in their own code
that they would not have discovered had they not learned the basic player strategies first hand
by playing. Besides, in addition to helping you to learn how to write fast code, the course staff
wants it to be fun. This project is about performance-engineering a game engine after all!

4 Background: alpha-beta search

The PVS algorithm used by the Leiserchess bot for game-tree searching is a refinement of the
alpha-beta pruning algorithm, which is itself an optimization of a brute-force minimax search
algorithm. Let us begin with a brief overview of alpha-beta algorithm.

Game trees

We can view each possible game position — configuration of pieces on a board, which player’s
turn it is to move, and sometimes other information — as a node of a game tree, where the
starting position is the root. The two players are usually called White and Black, corresponding
to the traditional colors of chess pieces. Each child of a given node is the position that arises from
making one of the player-on-move’s legal moves from the node’s position. If a player makes a

Handout 17 — Project 4: Leiserchess 5

move that wins the game, the child position is a leaf in the game tree. A leaf may also arise
because making a given move in a position results in a draw. Each level of the game tree is called
a ply. In chess literature, a move is a move by White followed by a move by Black, that is, two
plies starting with White.

The same position may correspond to multiple nodes in a game tree. A transposition is a
sequence of moves from a given starting position that results in a position that may also be
reached by a different sequence of moves from the starting position. For example, suppose that
White makes a move a, Black responds with b, and White then moves c. In many situations, the
position that arises could also arise if White moves c, Black moves b, and then White moves a.
The Leiserchess bot contains a transposition table to identify when a node has been encountered
earlier in the search.

For simple games like Tic-Tac-Toe, the game tree is small enough that it can be completely
generated, even without a computer, allowing for perfect knowledge to compute a winning (or
at least non-losing) strategy. The game tree for complex games like chess and Leiserchess is far
too large to generate completely because it grows exponentially with ply. For example, there are
20 possible positions after White’s first move in chess, 400 possible positions after Black’s first
move, 8,902 positions after White’s second move, etc. By the 15th ply, the number of positions
is 2,015,099,950,053,364,471,960. No one knows exactly how many different chess positions can
arise from the starting position, but in 1950, Claude Shannon estimated the number at 10120. A
more recent statistical estimate by John Tromp puts the number at 4.48 × 1044 ± 0.371044 with a
confidence of 95%. If you could explore 1 trillion board positions every picosecond, it would still
take a trillion decades to explore them all. The Leiserchess game tree appears extensive as well.
If you’d like to try estimating its size, please share your results on Piazza.

Alpha-beta pruning

Alpha-beta search uses a concept called pruning to avoid searching the entire tree. There are two
types of pruning: mathematical and heuristic. A mathematical prune occurs when a subtree
of a game-tree search need not be explored because the values in the subtree cannot affect the
score at the root. Alpha-beta and PVS are examples of mathematical pruning. Heuristic pruning
occurs when a subtree is not searched because the game AI deems it unlikely to affect the score
at the root. Examples of heuristic pruning in Leiserchess include futility pruning. For chess,
mathematical pruning can reduce the average number of moves per position near the beginning
of the game from about 31 to closer to 6, and heuristic pruning can reduce that even further to
below 2.

To understand alpha-beta pruning, imagine a game tree where you are exploring the two subtrees
of the root, as in Figure 1, from left to right. We begin to explore the left subtree and analyze
the moves our opponent could make. One position is an immediate loss for us, labeled B in the
figure. Assuming our opponent is as intelligent as we are, if we make the move corresponding
to position A, our opponent will make us lose by making the move which leads to B. There is no
point in exploring any of the other children of A, as we already know our opponent already has

Handout 17 — Project 4: Leiserchess 6

A

PrunedB

Figure 1: Alpha-beta pruning.

a good move B. We stop exploring this subtree, or prune away the subtree, and instead focus on
the other subtree in the hopes of finding a better move. Another way of thinking about this is
that once you have found out that a move is bad, there is no need to find out exactly how bad it
is.

Static evaluation

Pruning helps cut away part of the game tree, but it doesn’t solve the problem that the tree is still
too big to explore to the point of a loss. Each position is assigned a score by a static evaluator
function, where this score is a measure of how good the position is for the player. The static
evaluator can be expensive, and it is often difficult to write an accurate one. Instead we explore
the game tree to a given depth, and we use our static evaluator on the leaves. Using these scores,
we can establish lower and upper bounds, alpha and beta, respectively, on the scores of the
moves available to us at any position. The alpha value is the highest score we are guaranteed
to get, and the beta is the lowest score our opponent can force us to get. In Figure 2, the alpha

and beta values of the root node are initialized to negative infinity and positive infinity, since we
have no knowledge of possible scores. We evaluate the left child to have the score of 5. Now we
know we are guaranteed at least a 5 and update our alpha value accordingly. We then begin to
explore the right child. The right child’s values are initialized to that of the parent, 5 for alpha

and infinity for beta. Node A evaluates to −3, meaning our opponent can force us into a score
at least as bad as −3 if we choose the move that takes us to the right child’s position. We update
the beta value accordingly. Pruning occurs whenever alpha exceeds beta. In this example we
saw that we had a move with a score of 5 available in the left subtree. By entering the right tree,
our opponent can force us to get at most −3. There is no point in exploring the rest of the moves
to find out as no better outcome can occur.

While having an accurate static evaluator looks to be the most important thing, there is a big
trade-off between having an accurate static evaluator and a fast one. A fast static evaluator
allows for a deeper search of the tree in a given time limit, which usually translates into a
stronger player, as it can look more moves ahead. The provided evaluation function contains

Handout 17 — Project 4: Leiserchess 7

(−∞,∞)

5 (5,∞)

−3 Pruned

→ (5,∞)

→ (5,−3)

Figure 2: Pruning with alpha-beta values.

the best heuristics that the course staff could come up with. We recommend that you start by
performance engineering the provided evaluator, though you’re also free to modify it and add
your own heuristics.

Parallelizing the search

For your final submission, your bot should be parallel. The lecture on Tuesday, November 16,
will explain strategies for parallel game-tree search. The beta will only evaluate your program
on one core, and we will not evaluate parallel performance until the final submission. While
you are working on the design document and beta, however, you should identify sources of
nondeterminism in the serial code, including operations involving the transposition table, the
best-move history table, and the killer-move history table. You would be well advised to put in
switches to turn off nondeterminism for some kinds of testing.

Here are a few ideas about how to parallelize your code. Keep them in mind as you optimize the
serial code.

The idea behind parallelizing alpha-beta and Principal Variation Search is to search some selected
subtrees of the game tree in parallel, which involves speculative parallelism (the subject of the
lecture on November 19) because you might search a subtree that would have been pruned due
to a beta cutoff. You should consider two things when introducing speculative parallelism into
your program. The first is to abort computations that are not needed as soon as possible so that
a beta cutoff terminates unnecessary searches of subtrees. The second is to avoid the execution
of computations that are likely to be aborted, which allows your parallel program to obtain the
full benefits of parallelization. After all, even if searches are correctly aborted, your program will
not actually search deeper in the game tree if your additional processing cores are used to search
subtrees that are highly likely to be aborted.

An additional consideration when parallelizing your code is contending with races. Care must
be taken, for example, to ensure there are no races on the alpha and beta values. You will also
find that the search algorithm maintains some tables for memoizing moves, etc. Races can occur

Handout 17 — Project 4: Leiserchess 8

on these tables and you will have to decide whether the races are tolerable. Nota bene: Unlike
other programs you have seen so far, some races in game engines are OK. In particular, you
should consider how concurrency impacts the transposition table, killer-move table, and best-
move history used by your programs. Some races may be tolerable, others may result in incorrect
behavior, and others might be correct but compromise the benefits of various heuristics.

5 Deliverables

This final project is structured slightly differently from past projects. Mostly notably, this project
starts with a design phase where each group will submit a design document. This document
will be made public to the rest of the class much like beta code releases, and it will be the topic
for the MITPOSSE review meeting. In addition, for the final submission, we require each group
to create slides and deliver a 10-minute presentation involving all team members to the course
staff. This section provides a breakdown of each part of the project.

5.1 Preliminaries

A team-formation Google form has been posted on Piazza. You are expected to work in groups of
four students. (If you wish to work in a group of other than four students, please petition on the
Google sign-up form.) If you cannot find enough classmates to form a full team of four, please
sign up for the team that you have assembled (even if it is you alone), and the course staff will
match you with others in the class. You may work with anybody in the class, including previous
project partners and classmates who have the same MITPOSSE Deputy. Team assignments will
be based on the team/partial team preferences entered on the form, and a public Google sheet
of all teams will be posted on Piazza.

Team contract

All teammates must agree to a team contract, which is to be submitted on Gradescope by Wednes-
day, November 10. For guidance in writing your team contract, refer to Project 1’s description.
Only one copy of the contract needs to be submitted on Gradescope. Please add all teammates
to the submission.

Lectures

The lecture on Tuesday, November 9, will overview the Project 4 code base and describe how
the Leiserchess engine works. You would be well advised to attend this lecture, because this
code base is substantially larger than the code bases for Projects 1–3. In addition, the lecture on
Tuesday, November 16, will explain strategies for parallelizing the search.

Handout 17 — Project 4: Leiserchess 9

Recitation checkoffs

The recitation on Friday, November 12, will go over the Leiserchess code base and present some
helpful tips for the project. The following checkoffs are meant to familiarize you with parts of
the code base, point out possible gotchas, and help you get started on modifying the code. Each
team member should complete the checkoff items individually.

Checkoff Item 1: Modify the UCI interface to add a new command fen, which should print
out the FEN string representation of the current game position.

Hint: See main() in leiserchess.c, and pos_to_fen() in fen.c. You can enter the UCI
interface by running make in the player/ directory, then running ./leiserchess.

Checkoff Item 2: Open the UCI interface and type go depth 3, which searches for the best
move to a depth of 3 and prints out each “best move so far” it finds during the search. Redo
this process several times by quitting and restarting the UCI, then retyping the command.
Continue until you observe some nondeterminism. Look through the source code and
identify where the nondeterminism arises. Modify the code so that the relevant parts of the
output (i.e., the parts other than timing information) are deterministic. Describe how you
can support turning this source of nondeterminism on and off. (You need not write the code
at this time.) Why do you think the original programmers made the program
nondeterministic in the ways it is?

Hint: See searchRoot() in search.c.

Checkoff Item 3: Keeping your change from the previous part, now type go depth 3 several
times in the UCI interface without quitting and restarting in between. Which parts of the
output are still changing from run to run? Why? Again without writing code, identify the
source of the nondeterminism in the code, and describe how you could turn it off.

Hint: What global state is being modified?

Checkoff Item 4: In the UCI interface, type perft. This commands prints out the number of
legal move sequences there are of a given depth, starting from the current position. Running

Handout 17 — Project 4: Leiserchess 10

perft is useful as a quick “smoke test” indicating if you broke the move generation when
you modified the code. (If your modified code passes perft, however, it still may contain a
bug. There are no false positives, but there may be false negatives.) Modify the move
generation to introduce a minor bug, and confirm that perft now returns different counts.

Hint: One way is to make a small change to generate_all() in move_gen.c.

Checkoff Item 5: Change the transposition table from direct mapped to k-way associative
for a value k of your choosing. Looking at the infrastructure available in the project, how
could you go about picking the best value of k, as well as the best size for the transposition
table?

Hint: See tt.c.

Checkoff Item 6: Run the autotester on two bots that search to different depths. What
would you need to make it easy to run the autotester on two bots that use transposition
tables of different associativity or sizes?

Checkoff Item 7: (Optional) The function get_centrality() in the evaluation function
computes the Manhattan distance of a square to the nearest corner of the board. Write a
new function get_euclidean_centrality() to compute the Euclidean distance to the nearest
corner. Modify the evaluation function to use get_euclidean_centrality() instead of
get_centrality(). Use perft to verify that the change preserves the node count.

5.2 Design

Your team must submit a design document by Monday, November 15, which describes perfor-
mance bottlenecks you discover in the game engine, outlines your initial ideas for how to address
those bottlenecks, and describes a division of work going forward. This design phase is intended
to help you start working with the codebase, become familiar with what each component of the
codebase does, and observe how the components interact.

Handout 17 — Project 4: Leiserchess 11

Design document

Your design document should describe your initial plan of attack for optimizing the game engine.
Please describe how you analyze the performance of the game engine, including any back-of-the-
envelope calculations, experiments, and preliminary changes you carried out to do your analyses.
Include the results of your analyses in the design document to justify your initial optimization
plans. Use a profiler to analyze the performance of the game engine and document any hot spots
you see. Also, investigate the following parts of the codebase:

• the best-move history table,

• the transposition table,

• the killer-move table,

• the evaluation function,

• the move generator,

• the board representation.

Describe the performance enhancements to these components that you expect to do, how you
think your improvements will affect your game engine’s performance, and how much time you
think it will take to make the improvements. If no changes to a component are warranted, explain
why.

Focus on serial optimizations to your game engine for this design document, but include a
brief description of your plans for parallelizing the program for your final submission. Make
note of issues you expect to face during the parallelization process, such as what sources of
nondeterminism in the program you expect to deal with. You will likely need to adjust your
plans over the course of the project, especially after project parallelization strategies are presented
in lecture. We encourage you to update your design document regularly, as it can serve as an
effective mode of communication and planning among team members.

As the project is large and complex, you should make a coherent plan for testing your code,
both overall and targeting individual small pieces of the program. By the design-document due
date, you should have started on a basic testing framework to run unit tests, regression tests,
integration tests, etc. At this point, you need not have written many tests, but we would like to
see a “skeletal” testing framework that you can easily augment.

Planning the division of labor for this project is particularly important, because the project in-
volves larger teams and a larger codebase. Please include in your design document a rough
plan for how labor and responsibilities will be divided among the members of your team, using
codenames for the team members.

Checklist for design document

To summarize, your design document should contain the following:

Handout 17 — Project 4: Leiserchess 12

1. No self-identifying information! This includes your team name.

2. A summary of your understanding of how different parts of the program fit together.

3. Profiling data on the reference implementation and any initial efforts made in response to
this data.

4. Two additions that you made to the UCI interface (beyond the checkoff).

5. One or more flags added to the makefile that turns off any sources of nondeterminism.

6. A modification to one of the tables and its effect on performance and/or Elo. Can you
demonstrate that your change is significant? How many trials did you test on?

7. Optimizations you plan to make (and how you prioritize them), supported by profiling
data. You should also estimate the impact of each optimization based on your profiling
and estimate the amount of time each optimization will take. For large tasks, describe your
plan for checking whether the task is worth the effort.

8. Outline the plan for eventual parallelization. Describe sources of nondeterminism and
other hurdles you expect to encounter.

9. Work done on your testing framework and test suites so far, and plans for testing going
forward. In addition, answer how you will compare two versions of your program. Will it
be based on performance or Elo or some other metric? Will it be relative to each other or a
third reference point? What is your threshold for establishing significance?

10. A breakdown of how your team plans on dividing the work, using codenames for team
members to preserve anonmymity. You should convince the course staff that your group
members are performing approximately equal work and that everyone is doing work wor-
thy of a final project for 6.172.

After the due date, your anonymized design document will be made public to the rest of the class,
much as for past projects. Keep anything that could identify your team or one of its members
out of the design document. For the section on division of work, invent cool codenames for
different team members.

Only one copy of the design document need be submitted on Gradescope. Please add all
teammates to the submission.

Apart from submitting your design document on Gradescope, you should also push it to your
Git repo so that the MITPOSSE Deputies can access it. If you prepare your document using a
language like LaTeX or markdown, please also push your document source to your Git repo,
as that will make it easier for the MITPOSSE Deputies to give you inline feedback comments
directly on the MIT GitHub pull request.

Handout 17 — Project 4: Leiserchess 13

MITPOSSE review

Unlike in previous projects, your MITPOSSE Deputy will not review your beta code and writeup.
They will only review your design document. Please meet with your MITPOSSE Deputy by
Friday, November 19.

5.3 Beta

Your beta bot should be serial code. Parallelization is not necessary and won’t be evaluated at
this time. Your beta code should reflect MITPOSSE comments on your design document. In your
beta submission, include both your code, which will be made public to the class as with past
project betas, and a beta group write-up.

Beta write-up

Submit on Gradescope your group’s write-up for your beta release. The beta write-up is due on
Thursday, November 25, one day after your beta code submission. You do not need to push the
write-up to GitHub, as the MITPOSSE Deputies will only be reviewing your design document,
not your beta code or write-up.

At this point, you should have a strong understanding of the game engine’s structure and per-
formance characteristics. You should also have made some progress with optimizations, and you
should have a plan for what optimizations you are going to implement in your final submission.
There are many potential changes you could make, but you should focus on the areas that will
give you the best return on time spent. Feel free to copy text and figures from the design doc-
ument you submitted previously and to build upon that text to describe any new performance
bottlenecks you discovered as well as your updated design plan.

Checklist for beta write-up

To summarize, your beta write-up should contain the following:

1. Executive summary (overview).

2. Identification of performance bottlenecks.

3. Discussion of performance optimizations attempted and their impact (supported by perfor-
mance measurements).

4. A report on team dynamics, including how work was divided and whether/how this dif-
fered from your design document. Your updated work breakdown should convince the
course staff that your group members are performing equal work and that everyone is
doing work worthy of a final project for 6.172.

Handout 17 — Project 4: Leiserchess 14

5. How you responded to MITPOSSE comments in your beta source code.

6. A retrospective discussion of how your beta work has gone (good and bad), including a
summary of performance progress.

7. Plans for parallelization and an updated list of optimizations you expect to make (and how
you prioritize them), supported by profiling data. You should also estimate the impact of
parallelization and each optimization.

Similarly to the previous projects, as part of your write-up, you must submit a log indicating
how you spent your time on the project. You may choose to use a spreadsheet to keep your log,
a web site such as https://clockify.me, or any other method that produces an easy-to-interpret
log.

5.4 Final

The final deliverables for this project consist of a final presentation, a final code submission, and
a final write-up, which are detailed below.

Final presentation

We expect each group to deliver a 10-minute presentation on Tuesday, December 7, one day
before the final code and report submission is due. Suggested topics to cover in your presentation
include:

1. Your overall optimization strategies.

2. How you implemented or approached your plan.

3. What kind of performance bottlenecks you observed and solved.

4. Brief overview of the performance results.

5. Analysis, if there is any.

6. Brief description of the work breakdown.

7. Other thoughts, such as strategies that you tried but didn’t work. Feel free to share some
war stories with us!

Please create your presentation using Google Slides by Monday, December 6. As the deadline
approaches, we will post a link to a Google form where you can submit your slides.

The presentations will run for the entire day, and each team will be assigned a 10-minute slot.
All group members must contribute approximately equally to both the preparation of the pre-
sentation and the presentation itself. We will provide more information about the presentation
format after the beta deadline.

https://clockify.me

Handout 17 — Project 4: Leiserchess 15

Final code submission

Please turn in your code by the final turn-in deadline at 5:00 p.m. on Wednesday, December 8.
We will grade your program by extensive autotesting on parallel servers, including on machines
that contain more cores than the ones you have access to.

Final report

Submit a final group write-up on Gradescope. Your report should build on the beta group
write-up and additionally discuss the work you performed since the beta release. Include the
same information mentioned in the beta write-up guide above (with the exception of future
plans for the final and the MITPOSSE meeting comments). Also, provide an updated project
log documenting how you spent your time on the final part of the project. Feel free to reuse
(copy-paste) material from your beta write-up where applicable.

6 Evaluation

The performance of your code will be measured as follows. We will play everyone’s bots, in
addition to a few staff versions which include the starter code, in a tournament. The number of
games in the tournament will be huge — large enough to minimize the effect of randomness.
Using the outcomes of these matches, we compute the Elo rating for each team with sufficient
accuracy to determine a final performance grade.

Your performance grade will be roughly based on the Elo difference between your team and staff
bots, including the starter bot. Notably, it will not be based on the Elo difference between your
team and any other student team. Thus, although your bot will play all the other teams, you will
not compete with other teams for your grade, resolving the paradox mentioned in Section 2.

Please make sure that your program neither crashes nor produces illegal moves! A crash or
illegal move attempt will count as a loss.

For the beta, we will evaluate bots on a serial server. For the final submission, we will evaluate
them on a serial server and on multiple parallel servers, including servers with many more cores
than you will have access to for development. Consequently, it behooves you to use Cilkscale and
other means to gauge the scalability of your bot. If you don’t manage to get a working parallel
bot for the final, your grade for parallel performance and scalability will be based on comparing
your serial bot to the parallel reference bots.

Grade breakdown

Grading for Project 4 will be based on the following point distribution.

Handout 17 — Project 4: Leiserchess 16

Design Beta Final

Design document 15% — —
Serial performance — 25% 10%
Parallel performance and scalability — — 30%
Write-up — 10% 5%
Final presentation — — 5%

Total 15% 35% 50%

The point distribution serves as a guideline, not an exact formula.

7 Words of wisdom

This section contains advice to help you produce the best bot you possibly can. Read it now, but
set a repeating reminder to read it every few days. An item may not sink in until sometime later,
at which point you may find that it is exactly the advice you need.

Testing your bot

• If you have made only performance improvements but no behavioral changes, you can test
for correctness by comparing your bot to a previous stable version. If the bots search to the
same depth (not with time control), then the two bots should make the same moves from
the same starting board position. Since this comparison relies on deterministic behavior of
the bots, it won’t generally work when you parallelize your bot unless you implement a
strategy for turning off nondeterminism.

• FEN strings can facilitate debugging. If your bot exhibits a bug deep in a search, instrument
your program to record the FEN string for board positions so that you can figure out what
the board position was right before the bug appears. Then, rather than having to run the
entire search again to elicit the bug, you may be able to run it just from that board position.
To identify games where the bot crashes, as well as move lists for those games, you can
look at the autotester output (.pgn file).

• You might be tempted to evaluate your bot’s performance by running the UCI command
go depth and looking at the Nodes Per Second (NPS) metric. NPS is generally not a good
performance indicator, as it may vary at different points in the game depending on the
complexity of the search tree. It’s better to run many games with the autotester and see
whether there’s a statistically significant difference in Elo rating.

• Don’t rely just on tools to find bugs. Watching games on the scrimmage server can al-
low you to spot egregious game-play errors which may signal the presence of a bug. For
example, you may find yourself asking, why is my bot committing suicide in this position?

Handout 17 — Project 4: Leiserchess 17

Tools and resources

The code base contains tools to assist you in performance engineering the player code, and there
are many online resources to explain things you may see in the code and give you ideas for
improvements.

• The autotester framework allows you to evaluate multiple versions of your player to de-
termine whether modifications you have made indeed help the player to perform better.
Use the Elo software to compare game outcomes. The top-level README.md file provides
instructions on how to run the autotester and the Elo software.

• Use the profiling tools you’ve learned in this class to identify performance bottlenecks.
Profiling should reveal substantial low-hanging fruit.

• The autotuner can be an invaluable resource for optimizing parameters for your bot. It
can help with determining weights for heuristics as well as finding optimal sizes for tables.
Useful parameters to tune can be found in the options.h file.

• Run your code on the scrimmage server often. You can sometimes find issues with your
bot that don’t arise when comparing with earlier versions of your own code.

• Use Cilksan to check for race conditions in your parallel code. Program crashes count as
losses when we evaluate your program.

• The chess-programming wiki (https://www.chessprogramming.org) provides invaluable in-
formation. Although Leiserchess differs from chess in some ways, many concepts for build-
ing quality chess engines should apply to Leiserchess as well.

Individual work

To contribute to a team most effectively, you must make the most of your individual time. Here
are some things you can do to make yourself an effective teammate and individual contributor:

• Come to meetings prepared. Be on time. Do your homework. Ask for help if you need it.
Get enough sleep.

• If one of your teammates is having trouble meeting their obligations, don’t complain or put
them down. Ask if there is something you can do to help them get on track. Don’t expect
everyone to have the same talents as you. You will be more successful as a team if everyone
helps everyone else contribute to their fullest, even though one person’s fullest may not be
the same as another person’s fullest.

• Budget time to become comfortable with how a game engine works. Without this back-
ground, it will be difficult for you to think of substantial optimizations or troubleshoot.

https://www.chessprogramming.org

Handout 17 — Project 4: Leiserchess 18

• Study how the code is organized. Although it’s probably a waste of time to read through
every line of code before beginning, try to understand the big-picture components of the
code and how they interact.

• Keep an open mind. When looking at preexisting code, it’s easy to be lured into following
the footsteps of the original authors. You should ask yourself whether the data structures
and algorithms chosen are appropriate. Is there a faster (or more parallelizable) method?
Is a given piece of functionality even needed, or would your bot be stronger without it?

• The size and complexity of the code base may feel daunting, and it is. But evidence from
prior semesters of 6.172 indicates that anyone who has made it this far through the semester
can master the project. Don’t panic, and just set about to do the common-sense things you
need to do. As the ancient philosopher Lao Tzu said, “A journey of 1000 miles begins with
a single step.” Forget about the grade, and focus on learning and having fun while doing
the project.

Development strategies

The Leiserchess engine comprises a significant amount of code. You will need to decide how to
use your team’s limited time to achieve the best results. Here are some suggestions:

• When evaluating whether a modification helps, it’s tempting to play just a dozen or so
games between the version without the modification and the version with the modification
and go with whichever version wins more. For many program improvements, you’ll need
to run 1000 or more games to see a significant separation, not just a dozen or even 100.
Many program changes net only a couple of percentage points advantage in win rate, yet
many such changes can substantially improve your bot. The Elo software provides error
bars that you can use to gauge whether you have performed enough tests to separate two
versions statistically.

• Autotest with many versions, not just two. You can mine more information with the same
number of games by running tournaments with more players, because the performance of
bots tends to be transitive — A beats B and B beats C usually implies that A beats C —
even though transitivity sometimes doesn’t hold. By playing A, B, and C, you tend to gain
information about A versus C even when neither is playing the other.

• Use fixed-depth autotesting, rather than timed games, to compare bots with functional
differences that shouldn’t affect performance, such as when tuning evaluation function
weights. Typically, if you can show a statistically significant Elo separation with 5-ply
searches, you will see the separation in deeper searches and timed searches. Fixed-depth
testing gives you the advantage of repeatability, and you don’t need a quiesced server for
careful time measurements, allowing you to run the tests on any machine, including your
laptop.

Handout 17 — Project 4: Leiserchess 19

• Make incremental changes as much as possible, and make each change a separate commit.
Try to avoid large changes that preclude you from compiling or running your code for
extended periods of time. If you must make a large change, figure out how all teammates
can contribute to ensuring that the code won’t stay broken for long.

• The ramifications of changing the board representation can be extensive, affecting wide
swaths of the code base. Plan to make representation changes as early as possible because
they will take you time to implement, but not too early because you will need time to gain
a full understanding of the codebase before dealing with extensive changes to it.

• Plan several alpha (internal) releases of your bot before each of the beta and final releases.
It’s easier for a team to work on separate components as increments off a stable alpha
rather than trying to work on a component using a teammate’s component that is under
development. Make each alpha a real release, with full testing and documentation, as if
it was your beta or final version. When the beta or final deadline approaches, you’ll have
little to do but submit the latest alpha. Alpha releases can help you catch release problems
well before you’re under the pressure of the beta and final deadlines.

• Plan at least two alpha releases at a time, rather than just the next one. At the project
start and after each alpha release, make a list of possible improvements, and assign each
proposed change to one of the upcoming alpha releases. Try to make the alpha releases
as incremental as possible, and have many of them. Plan a learning curve for your team,
assigning small modifications of a software component to early alpha releases and more
involved modifications to later releases. You would be wise to make at least one alpha
release during the design phase of the project.

• Use Git branches off a stable alpha to organize concurrent work among team members. It’s
difficult for everyone to be using each other’s experimental code when developing their
own. Better is to do independent development off the same stable base and then meet to
merge all the changes into a new stable version.

• Don’t lose sight of the big picture. Once you find one performance bottleneck, it’s easy to
get sucked into optimizing it to death. Recognize when you’ve made sufficient progress
and move on to the next one.

• The static evaluator in the code base uses well-tested heuristics. Although better heuristics
certainly exist, there is plenty of low-hanging fruit from simply optimizing the program
before you bother coming up with your own. Keep in mind that there is a trade-off between
an accurate static evaluator and a fast one. A program with a less-accurate evaluator can
be stronger than a program with a more accurate one if it is faster and can therefore search
deeper in the tree in a given amount of time.

• Explore ways to enable your computing resources to do useful work even while no team
member is actively writing code, for example, by batching a bunch of tests to run overnight
(for some students, during the day!). Write scripts and tools to automate manual processes.

Handout 17 — Project 4: Leiserchess 20

Team dynamics

A four-person team can do much more work than a two-person team, but the overhead of co-
ordination goes up substantially, since there are six pairs instead of just one. Many teams with
individually brilliant members fail because they could not adopt effective procedures for working
together. Here are some ideas for avoiding common pitfalls:

• Assign roles to the team members. Most organizations are more successful with a CEO,
even if the CEO rotates. The primary job of the CEO is to convene meetings and decide
when a discussion has gone on long enough and a decision must be made. Assign czars
to manage various aspects of the project, such as someone to assemble the deliverables, a
scribe for meeting notes, etc.

• Agree on ground rules, and update the team contract as you discover more issues. (Share
updated contracts with the course staff.)

• Keep a project notebook, possibly as a shared Google doc. Record decisions and action
items from meetings. Put the next meeting’s agenda in the project notebook, and encourage
team members to contribute to it before the meeting. Discuss and update the agenda at the
beginning of meetings. Set up a Slack channel, but don’t let that substitute for a well-
organized project notebook.

• Pair program, and exploit all six possible pairings for a team of four. Divide the project
into six parts, not four, and assign pairs of teammates to work on each of the six parts. That
way, every teammate becomes familiar with with every other teammate and masters about
half the code. Even if one teammate can’t make it to a planning meeting, every piece of
code has at least one expert present, enabling the team to move on.

• Teams can lose valuable time trying to isolate old bugs that were only discovered after
many commits had been made, sometimes rendering the recent work useless. To minimize
the risk of “breaking the build,” agree and adhere to a sensible policy for testing code
before it is committed to a shared version. Write infrastructure tools and scripts to assist
with your methodology.

8 Rules and fine print

• You must write your own code. You may not borrow other teams’ code (e.g., from the
published betas) for any significant functionality in your submission, but you may take
inspiration from others and borrow minor code snippets from Piazza posts. Reference
materials, borrowed snippets, and inspirations should be cited in your final report.

• If you develop a useful tool or script, please share it on Piazza. You may borrow tools of
any complexity to develop your bot, as long as they don’t write your code for you.

Handout 17 — Project 4: Leiserchess 21

• You need not use the Cilk extensions for parallelization, although you are encouraged to.
You may use TBB, Pthreads, OpenMP, or any other concurrency platform. Please let course
staff know if you intend to use another platform.

• As a reminder, your bot’s performance will be graded relative to the staff bots, not relative
to your classmates. You will receive course-contribution credit for sharing any insights or
tips with your classmates on Piazza.

When in doubt, don’t hesitate to ask the course staff for clarification.

9 Exhibition tournament

Just for fun, following your final submission, we will hold a live exhibition tournament at 2:30
p.m. on Friday, December 10, with prizes for the winners. It really is for fun. Your bot’s perfor-
mance in the tournament will not affect your grade.

In two-person games with perfect information, like chess or Leiserchess, a weaker player can
sometimes beat a stronger competitor. Moreover, tournaments generally involve too few games
to properly evaluate the relative strengths of players. Thus, although stronger programs are more
likely to win, any program has a chance of being crowned #1 in the Leiserchess 2021 Exhibition
Tournament. Come and see how you and your peers do against each other!

(Speed Is Fun!)

Enjoy the Class!

SPEED
LIMIT∞

PER ORDER OF 6.172

	Due dates
	Introduction
	Getting started
	Background: alpha-beta search
	Deliverables
	Preliminaries
	Design
	Beta
	Final

	Evaluation
	Words of wisdom
	Rules and fine print
	Exhibition tournament

