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Abstract
Acoustic characteristics of speech signals differ with gender due
to physiological differences of the glottis and the vocal tract.
Previous research [1] showed that adding the voice-source re-
lated measures H∗

1 −H∗
2 and H∗

1 −A∗
3 improved gender classi-

fication accuracy compared to using only the fundamental fre-
quency (F0) and formant frequencies. H∗

i refers to the i–th
source spectral harmonic magnitude, and A∗

i refers to the mag-
nitude of the source spectrum at the i–th formant. In this pa-
per, three other voice source related measures: CPP, HNR and
H∗

2 −H∗
4 are used in gender classification of children’s voices.

CPP refers to the Cepstral Peak Prominence [2], HNR refers to
the harmonic-to-noise ratio [3], and H∗

2 −H∗
4 refers to the dif-

ference between the 2nd and the 4th source spectral harmonic
magnitudes. Results show that using these three features im-
proves gender classification accuracy compared with [1].

Index Terms: gender classification, gender identification, voice
source

1. Introduction
Previous studies on automatic gender classification from speech
signals of adult speakers achieved high accuracy by using only
features related to the fundamental frequency (F0) and the first
four formant frequencies [4]. This is mainly due to the well-
known physiological differences between adult male and fe-
male speakers. However, automatic gender classification from
speech signals for children and adolescents remains a challenge
because F0 and formant frequencies are not easily distinguish-
able between boys and girls.

Existing studies of children’s voices have mainly focused
on the formant properties. In [5], the voices of children be-
tween the ages of 5 and 11 years old were studied. By using
target words, which represented non-diphthong vowels in Aus-
tralian English, the study was able to show that the value of
the first three formant frequencies for girls were higher than
those for boys, while boys have higher formant amplitudes than
girls. In [6], F0, formant frequencies and measures relating
to the spectral envelope were studied as a function of age for
speakers between ages 5 and 50. That study showed that the
F0 value dropped between ages 12 and 15 for males, and for-
mant frequencies decreased between ages 10 and 15. With in-
creasing age, male speakers also showed a faster decrease in
formant frequencies than female speakers, and the formant fre-
quencies after the decrease were lower for male than for female
speakers. In [7], speech from children of ages 4, 8, 12 and
16 were studied; each age group consisted of 10 boys and 10
girls. An analysis of seven non-diphthong vowels of Ameri-
can English showed that the formant frequencies differentiated
gender before 12 years of age, while formant frequencies along

with F0 differentiated gender after 12 years of age. These stud-
ies suggest the usefulness of pitch as a distinguishing feature
diminishes as the differences between F0 for the two genders
decrease.

Although vocal-tract related features, including formant
frequencies and their amplitudes, have been studied to differ-
entiate gender, the role of voice-source related measures in gen-
der classification have not be systematically investigated. The
effects of age, sex and vowel dependencies on some measures
related to the voice source were analyzed in [8]. The measures
were analyzed from the speech data of speakers between the
ages of 8 and 39, and included: F0, H∗

1 − H∗
2 , the difference

between the first two source spectral harmonic magnitudes (re-
lated to the open quotient [9]), and H∗

1 − A∗
3, the difference

between the first source spectral harmonic magnitude and the
magnitude of the source spectrum at the frequency location of
the third formant (related to spectral tilt [9]). The asterisk in-
dicates a correction for the influence of vocal tract resonances
using the formula given in [10]. Results showed that H∗

1 − A∗
3

continuously decreases between ages 8 and 39 by about 10 dB
for males and decreases slightly by about 4 dB for females. It
also suggested that H∗

1 −H∗
2 drops about 5 dB at around age 15

for males but remains relatively unchanged for females. These
differences motivated the study in [1] where acoustic measures
from both the voice source and the vocal tract were used for
automatic gender classification for speakers aged 8 to 39. It
was found that the addition of two measures, H∗

1 − H∗
2 and

H∗
1 − A∗

3, yielded the most consistent classification accuracy
improvement when compared to the baseline (F0 and formant
frequencies). The results suggested that voice source measures
could contain discriminative information for gender classifica-
tion.

In [11], two sentences by ten female and six male talkers
were analyzed and results showed that, on average, females are
more breathy than males among English speakers. CPP is de-
fined in [2] as “a measure of the amplitude of the cepstral peak
corresponding to the fundamental period, normalized for over-
all signal amplitude”. A signal with well defined periodic struc-
ture is expected to show a very prominent cepstral peak. Hence,
CPP has been used to differentiate between breathy signals and
nonbreathy signals. In [2], the effectiveness of several acoustic
measures in predicting breathiness was evaluated. Perceptual
tests were conducted to obtain breathiness ratings from a sus-
tained vowel and a 12-word sentence spoken by 20 speakers
with voice pathologies and 5 speakers with no voice patholo-
gies. Results showed that CPP is highly correlated with breath-
iness ratings.

Harmonic-to-noise ratio (HNR) is a measure of harmonic
energy normalized by the spectral noise level [3]. In [3], the
sensitivity of HNR to jitter was tested with synthetic vowel-like
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signals. Results indicated the strong negative relation between
HNR and jitter. Since HNR indicates the noise level and [11]
showed that listeners were more likely to rate a signal as being
breathy if random noise was added to the signal along with an
increase in H1, HNR could be an indicator of breathiness.

In this paper, additional measures relating to the voice
source, such as CPP, HNR and H∗

2 − H∗
4 , are extracted and

used in conjunction with F0 and formant values for automatic
gender classification. Results are compared with those in [1]
as well as with Mel-frequency cepstral coefficient (MFCC) fea-
tures.

2. Data
Speech data are from the CID database [12] produced by five
age groups: ages 8–9, 10–11, 12–13, 14–15 and 16–17. Each
recording was of the form: “I say uh, bVt again”, where the
vowel ‘V’ was /ih/, /eh/, /ae/ or /uw/. The vowel /iy/ in ‘bead’
was also used. Each speaker had, on average, 20 utterances of
this form with different vowels. Table 1 shows the distribution
of the utterances in terms of gender and age groups. The total
number of male/female speakers is 174/140, and the total num-
ber of utterances is 3418. The steady state part of each vowel
was extracted manually for analysis.

Table 1: Distribution of utterances in terms of gender and age.

Age group No. of males/females No. of utterances

8–9 48/36 810

10–11 48/33 807

12–13 38/34 708

14–15 22/21 413

16–17 18/16 680

3. Methods
The vocal tract parameters used in this study were the first
three formant frequencies (F1, F2 and F3) and the formant
bandwidths (B1, B2). Also used were measures related to the
voice source: F0, CPP (related to breathiness [2]), HNR (the
harmonic-to-noise ratio [3]) , H∗

1−H∗
2 , H∗

1−A∗
3, and H∗

2−H∗
4

(the difference between the second and fourth source spectral
harmonic magnitudes; related to mid-frequency tilt [13]). Ad-
ditional measures used are amplitudes of first three formant fre-
quencies (A1, A2 and A3).

HNR was calculated in the frequency band of 0-3500 Hz.
The formant frequencies were estimated using the “Snack
Sound Toolkit” software [14] using the following settings: win-
dow length 25 ms, window shift 1 ms and pre-emphasis factor
of 0.96. F0 values were estimated using the STRAIGHT algo-
rithm [15]. The harmonic magnitudes, H∗

1 , H∗
2 and H∗

4 , were
calculated from the speech spectrum using the F0 values ob-
tained from STRAIGHT, and were corrected for the effects of
the first two formant frequencies using the formula in [10]. Sim-
ilarly, A∗

3 were calculated from the speech spectrum using the
formant frequencies obtained from Snack and were also cor-
rected for the effects of the first two formants. A∗

3 was addi-
tionally corrected for the effects of F3. All the measures were
calculated using the “VoiceSauce” software [16].

For each classification experiment, 70% of the utterances
were selected randomly for training and the remaining 30% of
utterances were used for testing. Utterances from a particular

speaker were used either for training or testing. Five experi-
ments were conducted for each combination of acoustic mea-
sures and average accuracies were recorded. Note that for each
utterance acoustic measures were calculated frame by frame and
then averaged over the utterance.

In this paper, classification was done using an SVM classi-
fier with a Radial Basis Function kernel. The LIBSVM toolkit
[17] was used for training and testing. The results of the SVM
classifier were compared with traditional MFCC features, using
the first 12 MFCCs extracted from the vowel segment in each
utterance. Due to the small number of vowels, training was im-
plemented using 2 GMMs, each with 6 mixtures.

4. Analysis
F0 and formant frequency values, averaged across all subjects
for each age group, are provided in Table 2, and the means and
standard deviations of F0 for each group are shown in Figure 1.
Results are similar to [6, 8]. It is observed that F0 for male
and female speakers is not distinguishable for the age groups
8–9 and 10–11. The F0 difference between male and female
speakers becomes significant beginning from age 12, partly due
to the drop in F0 for male speakers between age 12 and 15 [6].

Table 2: Mean and standard deviation (in parentheses) of fun-
damental frequency and formant frequency values for male and
female speakers for each age group (in Hz)

Age Gender F0 F1 F2 F3

group

8–9 female 267(40) 609(257) 2154(618) 3196(419)

male 257(41) 578(236) 2109(620) 3170(428)

10–11 female 255(43) 629(242) 2242(532) 3170(411)

male 253(41) 578(226) 2145(575) 3143(417)

12–13 female 239(33) 590(223) 2233(493) 3198(339)

male 212(47) 546(207) 2093(469) 3053(383)

14–15 female 227(27) 594(198) 2113(409) 3002(334)

male 150(45) 527(191) 2013(396) 2883(339)

16–17 female 223(25) 581(199) 2112(446) 3007(299)

male 128(31) 490(193) 1952(361) 2804(347)
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Figure 1: F0 averaged across all subjects is shown for each age

group

Values of CPP, HNR and H∗
2−H∗

4 , averaged across all sub-
jects for each age group, are provided in Table 3. The means and
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standard deviations of CPP are shown in Figure 2. It can be seen
from the figure that the difference in CPP between male and fe-
male speakers is not significant for age group 8–9, which is rel-
atively of the same scale as the difference in F0. For age groups
10–11 and 12–13, however, the difference between male and fe-
male speakers in CPP increases, which is relatively larger than
the difference in F0. With increasing age, HNR and H∗

2 −H∗
4

begin to differentiate male and female speakers from age 12 and
14, respectively; but the differences are overshadowed by the
large standard deviations. This suggests that, the involvement
of voice source measures, such as CPP, could improve gender
classification accuracy for pre-adolescents, whereas F0 values
do not help differentiate between male and female children’s
speech.

Table 3: Mean and standard deviation (in parentheses) of CPP,
HNR and H∗

2 − H∗
4 values for male and female speakers for

each age group (in dB)
Age Gender CPP HNR H∗

2 −H∗
4

group

8–9 female 22.42(3.00) 31.30(8.71) 2.61(7.80)

male 22.59(3.04) 31.24(8.04) 3.09(7.52)

10–11 female 22.62(2.51) 31.25(7.84) 3.18(7.18)

male 23.25(2.75) 30.14(7.39) 3.32(7.05)

12–13 female 22.97(2.28) 30.79(7.10) 2.96(6.59)

male 23.88(2.93) 28.46(7.35) 3.90(6.47)

14–15 female 23.75(1.84) 31.57(7.47) 3.07(5.09)

male 24.27(3.38) 25.06(8.05) 6.22(7.03)

16–17 female 23.21(2.25) 32.68(8.49) 2.41(5.49)

male 24.68(2.40) 25.32(8.86) 6.21(5.86)
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Figure 2: Cepstral Peak Prominence value averaged across all

subjects is shown for each age group

5. Classification results
In this section, M0 is used to denote a feature set representing
formant information (F1, F2, F3, B1 and B2) and F0, as in [1],
and it is used as the baseline feature set. M1 is used to denote
the feature set M0 with H∗

1 −H∗
2 and H∗

1 −A∗
3 from [1] which

gave the best performance in that study. M2 denotes the feature
set M0 with CPP. M3 denotes the feature set M0 with CPP
and HNR. M4 denotes the feature set M0 with CPP, HNR and
H∗

2 −H∗
4 . Table 4 summarizes these sets.

Table 4: Measure sets (M0-M4) used in the gender classification
tests.

Set M0 H∗
1 −H∗

2 H∗
1 −A∗

3 CPP HNR H∗
2 −H∗

4

M0 �
M1 � � �
M2 � �
M3 � � �
M4 � � � �

5.1. Results using additional voice-source related measures
for each age group

Figure 3 compares gender classification accuracies from differ-
ent measure sets. It can be seen from the figure that the classi-
fication accuracies of M4 are higher than the baseline and M1.
Table 5 shows classification accuracies for each age group com-
pared with the results for M0, M1 and also for the MFCC/GMM
method.
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Figure 3: Gender classification accuracy for each age group us-

ing the measures sets M0, M1, M2, M3, M4.

Table 5: Gender classification accuracy for the different mea-
surement sets (M0-M4) on each age group (in %). Boldface
represents the highest accuracy for each age group

Age M0 M1 M2 M3 M4 MFCC/

group GMM

8–9 59.54 57.87 60.43 59.35 60.93 59.30

10–11 64.27 66.82 67.17 69.21 69.66 60.62

12–13 61.45 65.73 66.56 69.02 69.81 68.08

14–15 85.23 86.43 87.10 88.71 87.78 82.30

16–17 92.80 94.26 94.37 94.38 94.66 90.79

It can be seen that the addition of voice source measures
CPP, HNR, and H∗

2 − H∗
4 constantly improved classification

accuracies, compared to M0 and M1, for all age groups. An
average of 3.2% improvement was achieved by adding measure
CPP to the baseline set M0 (the M2 set). With the exception of
age group 8–9, classification accuracies were further improved
by adding the HNR. The change in classification accuracies by
adding measure H∗

2 −H∗
4 was not significant (the M4 set). The

performance of voice source measures set M4 is about 4.4%
higher than the result for M0 and about 3% higher than the result
for M1. A large improvement of about 8% is obtained on age
group 12-13 when comparing M4 with M0.
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Table 6: Gender classification accuracy for M4 set on each age
group, distinguishing between males and females (in %).

Age group 8-9 10-11 12-13 14-15 16-17

M 56.66 69.37 67.47 87.30 93.38

F 65.32 69.88 72.13 88.19 95.95

Table 6 shows the classification accuracies of M4 set for
males and females respectively. Interestingly, the accuracy is
higher for females than that of males for all age groups. Similar
results were reported in [1].

5.2. Discussion

The results in Table 5 show that using CPP and HNR is useful in
improving gender classification accuracy for children’s speech.
This suggests that the voice source measures CPP and HNR
contain characteristics which are unique for young male and fe-
male speakers. Since CPP is highly correlated with breathiness
[2], the results confirm that, in general, females are breathier
than males [11]. Interestingly, HNR is higher for females than
males for all age groups. The difference in HNR between fe-
males and males increases with increasing age. This is inconsis-
tent with the expectation that females should have lower HNR
values than males, since in general females are more breathy
than males [11]. This result requires further exploration on
what signal property contributed to the high HNR of females.
As stated in [3]: “All kinds of signal properties may result in
a noise-like appearance of the spectrum, such as a perturbation
of the excitation signal (jitter and shimmer), rapid directional
changes in fundamental frequency, formant transitions, and so
forth.” A possible explanation for these results could be the in-
teraction effects of the noise level perception. A recent study
[18] showed that listener’s perception of noise levels in voice
depends on the shape of the harmonic spectrum; but the interac-
tion effects of voice quality perception are not well understood.

The measure H∗
2−H∗

4 also assisted in improving the classi-
fication accuracies, with the exception of age group 14–15, sug-
gesting that the mid-frequency tilt also differentiates between
the male and female speech spectra.

A large improvement of about 8% is obtained for the age
group 12-13 when comparing M4 with M0. This could be at-
tributed to the fact that puberty of males and females begins at
around 11 [6]. Adding other measures, such as formant ampli-
tudes, didn’t improve the classification accuracy significantly.

For age group 8–9, the classification accuracy for all mea-
sure sets are below 61%. The improvement by adding features
CPP, HNR and H∗

2 −H∗
4 is not significant.

Considering the performance of all age groups, the addi-
tion of measures CPP, HNR and H∗

2 −H∗
4 improved classifica-

tion accuracy by 4.4% compared with the baseline feature set.
When compared with M1, the feature set M4 provides about
3% improvement (on average) for all age groups. While the
performances of feature set M4 are similar to the MFCC/GMM
results for age groups 8–9 and 12–13, the classification accu-
racies for M4 is about 9%, 5% and 4% higher for age groups
10–11, 14–15 and 16–17, respectively.

6. Summary and conclusions
In this paper, we applied measures related to the voice source
in gender classification using children’s voices and compared
the results with those in [1]. The experiments were done using

the CID database which consisted of 3418 utterances spoken
by 174 male and 140 female speakers. Measures related to the
voice source measures and vocal tract were extracted from 5
target vowels and applied in gender classification tests.

The feature set consisting of F0, the first three formant fre-
quencies (F1, F2 and F3) and the first two bandwidths (B1

and B2) were used as baseline feature set (M0). Features were
added to the baseline set to test their effect on gender classi-
fication. Results show that adding the three measures CPP,
HNR and H∗

2 −H∗
4 yielded best overall performance, suggest-

ing that measures related to breathiness and mid-frequency tilt
carry discriminative information for automatic gender classifi-
cation. The accuracy improvements of adding voice source fea-
tures were highest for age group 12–13. This could be attributed
to the fact that puberty occurs at around age 11. After age 13,
the accuracy improvements of adding voice source features de-
creased as the role of F0 became more prominent.

Future work will focus on applying voice source measures
to continuous speech.
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