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Abstract

The goal of this thesis is to build a computational system that is able to identify
object categories within images. To this end, this thesis proposes a computational
model of “recognition-through-decomposition-and-fusion” based on the psychophysi-
cal theories of information dissociation and integration in human visual perception.
At the lowest level, contour and texture processes are defined and measured. In the
mid-level, a novel coupled Conditional Random Field model is proposed to model and
decompose the contour and texture processes in natural images. Various matching
schemes are introduced to match the decomposed contour and texture channels in a
dissociative manner. As a counterpart to the integrative process in the human visual
system, adaptive combination is applied to fuse the perception in the decomposed
contour and texture channels.

The proposed coupled Conditional Random Field model is shown to be an im-
portant extension of popular single-layer Random Field models for modeling image
processes, by dedicating a separate layer of random field grid to each individual im-
age process and capturing the distinct properties of multiple visual processes. The
decomposition enables the system to fully leverage each decomposed visual stimulus
to its full potential in discriminating different object classes. Adaptive combination
of multiple visual cues well mirrors the fact that different visual cues play differ-
ent roles in distinguishing various object classes. Experimental results demonstrate
that the proposed computational model of “recognition-through-decomposition-and-
fusion” achieves better performance than most of the state-of-the-art methods in rec-
ognizing the objects in Caltech-101, especially when only a limited number of training
samples are available, which conforms with the capability of learning to recognize a
class of objects from a few sample images in the human visual system.

Thesis Supervisor: W. Eric L. Grimson
Title: Bernard Gordon Professor of Medical Engineering
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Chapter 1

Introduction

The goal of this thesis is to build a computational system that is able to identify

object categories within images. The physical visual world is a rich and complex

source of information. Natural images of objects generally contain a great amount of

rich visual information about the objects of interest and their backgrounds. Yet, in

spite of the complexities of many visual tasks, the human visual system can effort-

lessly and efficiently perceive and form meaningful interpretations of image contents.

For decades, computer vision researchers have pursued computational models that

emulate the performance of the human visual system. This thesis proposes a compu-

tational model based on the associationism theories of information dissociation and

integration in human visual perception. Specifically, a computational model of visual

information decomposition is developed to simulate the dissociative nature of human

perception; a system built on visual information decomposition and adaptive fusion

is introduced as a counterpart to the integration process in the human visual system;

and the various properties of the proposed computational system are studied.
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1.1 Dissociation and Integration Nature of Human

Perception

It has been shown in cognitive science and psychophysical science that a visual

scene is analyzed at an early stage by specialized populations of receptors that respond

selectively to different properties such as orientation, color, spatial frequency, and

that map these properties into different areas of the brain [116]. Moreover, visual

form recognition requires the analysis of both local object features and global shape

contours [59]. These findings demonstrated that visual stimuli are first processed

in a dissociative manner and then integrated in later processing stages in human

perception.

For example, a case study with a patient, who had very grave difficulty in recogniz-

ing common objects although he could recognize their texture, provided evidence of a

dissociation between texture processing and shape integration [1]. Another case study

revealed that a patient was impaired at recognizing objects on the basis of texture

information, whereas shape recognition on the basis of contours was comparatively

preserved [6]. The results suggest that contour-based and texture-based processing

are separable operations in object perception. Furthermore, both psychophysical [26]

and physiological studies [36] suggest that features such as texture are extracted and

analyzed in separate channels, whereas shape contours are perceived in a specialized

region, and these separate channels are later combined into a common representation

of the visual scene. Evidence of this theory was also found in a patient who was

observed to be able to distinguish local features of complex patterns but was unable

to integrate them into a whole configuration [93]. Thus, an anatomy-based integrated

system of visual information processing is proposed by Essen et al. where ordinary

visual tasks involve the coordinated use of multiple types of information, the different

types of information are represented explicitly in separated processing streams, and

multi-channel information converges at the highest level of processing [35].

As an emulation of human perception, it is desirable to design object recognition

systems such that multiple visual cues such as contour and texture in images are de-
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composed into explicitly different channels, perceptual potential of each decomposed

visual stimuli is fully leveraged, and, in the highest level, the decomposed visual infor-

mation is selectively combined for recognizing different classes of objects. This aspect

of visual information fusion in object recognition has been relatively lacking in many

popular approaches. For example, many of the approaches based on local appearance

features mix all pixels in a local region and describe the region as an integral entity,

essentially giving uniform or fixed weights to all the information contained in the

region. However, based on dissociation and integration models of human perception,

it is more sensible to assume that various visual cues should play different roles in

discriminating different class pairs. Figure 1.1 gives a schematic illustration of this

postulation. For instance, to classify beaver versus emu, the shape information may

be more important since both classes have similar texture and color; while for laptop

versus gerenuk, all visual cues such as shape, texture and color could be important

for discriminating the two classes.

Figure 1-1: A schematic illustration of the concept that various visual cues should
play different roles and have different weights in discriminating different class pairs.
Three types of visual cue are used: shape contours, texture and color. The line width
depicts the relative weights of a visual cue in distinguishing a pair of object classes.
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1.2 Computational Model of Visual Information

Decomposition and Fusion

In this thesis, the proposed computational system of visual information decompo-

sition and fusion has four key components, as shown in Figure 1-2. For each input

image, the proposed system has the following processing streams:

1. Low-level image measurements: Filter banks are used to focus attention on

a set of pixels of interest such as edge points, and to give compact measurements

for pixels of interest.

2. Mid-level modeling: A novel coupled Conditional Random Field is proposed

to model the interactive processes of various visual cues. The coupled Con-

ditional Random Field is shown to be superior to a single-layer Conditional

Random Field for the task of contour and texture decomposition.

3. High-level matching of individual visual cues: Various matching schemes,

such as appearance matching, color matching, and shape matching, can be

employed to match each individual cue. The decomposition of contour and

texture naturally enables methods of matching different visual stimuli separately

to fully leverage each perceptual cue.

4. High-level adaptive combination of multiple visual cues: As one im-

plementation, a principled method of adaptively combining the decomposed

contour and texture channels is incorporated to integrate various visual cues

into a complex whole. Different visual cues play different roles in discriminat-

ing different classes in the integrated system.

The above scheme is referred as “recognition-through-decomposition-and-fusion”

in this thesis. The key concept of this computational model is to achieve better

recognition performance by decomposing and recombining multiple disparate visual

cues in object images.
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Figure 1-2: System overview of “recognition-through-decomposition-and-fusion”.
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1.3 Thesis Outline and Results Preview

In this thesis, Chapter 2 reviews previous and current state-of-the-art object recog-

nition systems. Chapter 3 introduces the low level image measurements used in the

model. Chapter 4 develops the mathematical forms of the coupled Conditional Ran-

dom Field and its learning and inference for contour and texture decomposition. The

learned coupled Conditional Random Field model is shown to be able to achieve good

decomposition of contour and texture in natural images. Some results are shown Fig-

ure 1-3. With the decomposed visual information, suitable matching schemes are

introduced in Chapter 5 for each visual cue to address their different characteristics.

Chapter 6 employs the kernel alignment theory to adaptively combine multiple vi-

sual cues, and the effectiveness of “recognition-through-decomposition-and-fusion” is

demonstrated with recognition experiments on the challenging dataset of Caltech-101.

Figure 1-4 shows the recognition performance of the proposed scheme on Caltech-

101, as compared with some of the state-of-the-art methods in which visual infor-

mation is treated in an integral manner without visual decomposition. Compared

with one of those top methods [51], the proposed scheme in this thesis achieves

recognition improvement of about {7.24%, 5.75%, 4.31%, 2.02%, 1.98%, 2.24%,}

for {5,10,15,20,25,30} training samples per class respectively. These comparison ex-

periments demonstrate the effectiveness of the proposed visual decomposition and

recombination scheme for object recognition. The performance improvements are

more significant when only a few training samples, e.g., 5, 10 or 15, are available

for each class. This suggests that when there are not enough training samples, it is

more important to decompose various visual cues, leverage each of them to their full

potential and recombine them for a better understanding of image contents. This

conforms with the capability of learning to recognize a class of objects from a few

sample images in the human visual system.
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Images

Decomposed contour by coupled Conditional Random Field

Decomposed texture by coupled Conditional Random Field

Images

Decomposed contour by coupled Conditional Random Field

Decomposed texture by coupled Conditional Random Field

Figure 1-3: Contour and texture decomposition examples. The first and fourth rows
are object images. Their corresponding contours, decomposed by the proposed cou-
pled Conditional Random Field, are shown in the second and fifth rows. Decomposed
textures are show in the third and sixth rows.
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Figure 1-4: Comparison of the proposed scheme to state-of-the-art methods where
multiple visual cues were not decomposed and adaptively combined. Dataset used is
Caltech-101.
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1.4 Contributions

The main contribution of this thesis can be summarized as follows:

1. A computational model is developed based on the associationism theories of

information dissociation and integration in human visual perception.

2. A novel coupled Conditional Random Field model is proposed as an image

model of interactive contour and texture processes. Model learning and infer-

ence are formulated. A set of training images and test images is created to

evaluate the proposed model. The learned model is demonstrated to be able to

capture many distinct characteristics of contour and texture channels, where a

single-layer Conditional Random Field model has to make compromises. Empir-

ical evaluation shows the superiority of the coupled Conditional Random Field

model.

3. The coupled Conditional Random Field model is an important extension for

modeling image processes. It is expected to be a fundamental and general

model of images. Additional perceptual properties such as regions and class-

specific shapes can be incorporated in this framework. The proposed model is

potentially extendable to versatile applications such as image statistics, image

rendering and computer graphics.

4. In Chapter 5, various matching methods are studied for the decomposed contour

and texture channels. It is shown that recognition based on the decomposed

contour alone achieves relatively comparable performance to many previous best

results. This demonstrates that salient contours play the most important role

and are the dominant visual information in recognizing objects in Caltech-101.

5. Chapter 6 shows that adaptive selection of discriminative visual cues for differ-

ent classes helps to improve object recognition performance. This corroborates

the validity of dissociation and integration nature of human visual perception,

which inspires the proposed model in the first place. Especially when there are
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only a limited number of training samples, it is more important to decompose

visual stimuli, fully leverage them and adaptively recombine them.

6. Various aspects of recognizing objects in Caltech-101 are studied. It is observed

that combining multiple scales helps to boost recognition performance, which in-

dicates that a certain degree of inter-class scale variability exists in Caltech-101.

Weak geometric matching and strong geometric matching are shown to be com-

plementary. When combining contour, texture and color, contour is observed to

be the most prominent visual cue for recognizing objects in Caltech-101; texture

and color information play comparable roles, with texture information slightly

more important.
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Chapter 2

Object Recognition Review

Object recognition has been an active research area of computer vision for more

than forty years. Over the decades, this research frontier has been rapidly advancing

with persevering efforts of diligent researchers in related scientific and engineering

fields. Advancements in many aspects, such as more in-depth understanding of the

human visual system, more sophisticated mathematical tools, more and more chal-

lenging data collections, and better computational power, have brought object recog-

nition to where it is today. This chapter summarizes many of the popular object

recognition methods and systems from the early years to the current state of the art.

It is by no means an attempt for a complete review of all historical and contemporary

efforts on the subject of object recognition. The review in this chapter aims at ren-

dering a general picture of the evolution of object recognition, and helps the readers

to put the work in this thesis into the context of object recognition research.

2.1 Early Years

The early years of computational object recognition started with model-based ob-

ject recognition, where the knowledge of an object was provided by an explicit model

of its shape and appearance. Model-based object recognition systems can be roughly

divided into two categories based on the representation that was used: object-centered

representation and view-centered representation. The object-centered representation

affixes a single coordinate system to the object and uses this coordinate system to lo-
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cate and match various constituent parts. The view-centered representation describes

objects using a set of 2D characteristic views or aspects, with each characteristic view

describing how the object appears from a single viewpoint.

Many of the early approaches used edges or boundaries as features, and applied

geometric, relational and/or topological constraints for recognizing objects in scenes.

These methods achieved their strength in insensitiveness to illumination changes and

capability of recovering 2D and 3D poses.

2.1.1 Object-centered Model-based Recognition

Blocks World(1963, 1975) Early approaches to object recognition made strong

simplifying assumption about the real visual world. The ‘Blocks World’ model by

Roberts [95], as shown in Figure 2-1, assumed that objects of interest such as blocks,

wedges, and prisms were made of combinations of polyhedra and appeared in a uni-

form background. Edges and lines were detected as features. Recognition was done

with matching the polygon structures to the models by topological constraints.

ACRONYM(1981) Brooks [20] built a rule-based system named ACRONYM to

interpret 2D images based on 3D models. Three-dimensional geometric objects were

modeled as generalized cones and their spatial relationships. The system was based

on the prediction-hypothesis-verification paradigm. Initially, edges were combined

into features such as ribbons and ellipses. The interpreter then looked for matches

between the model as a set of generalized cones and the observed features based on

prediction of the ways the generalized cones could appear in the image. Interpretation

proceeded by combining local matches of shapes into more global matches, requiring

consistency among matches. An example of the generalized cones representation of a

Boeing-747 is shown in Figure 2-2.

Local Feature Focus Method(1982) Bolles and Cain [12] developed a system

for object recognition called the local-feature-focus method. A list of distinct local

features was first specified with feature types, their positions and orientations rela-

tive to the center of the object. Each feature was augmented to a feature-centered

subgraph where a sufficient set of nearby secondary features were included. Object
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recognition and localization were done with matching clusters of consistent secondary

features and focus features, hypothesizing the location and orientation of potential

occurrences of an object in an image, and verifying potential detections by checking

the boundaries of the hypothesized objects. Figure 2-3 shows an example of detecting

hinge objects in an image.

Interpretation Tree(1987) The interpretation tree [52] approach identified and

located objects in a scene by matching positions and normals of surfaces to those in 3D

models. The objects were modeled as polyhedra and sets of planar faces. The method

proceeded by examining all hypotheses about correspondences between sensed data

and object surfaces. Heuristics and decoupled and coupled constraints were applied

to significantly prune the interpretation tree to achieve an efficient solution. Figure

2-4 shows the recognition and detection results by the interpretation tree approach

in a scene with overlapping objects.

Figure 2-1: Example scene from the ‘Blocks World’ by Roberts [95]. Objects are
made of polyhedra in a uniform background.

Figure 2-2: Example from the ACRONYM system by Brooks [20]. Objects are mod-
eled by generalized cones and their spatial relationships.
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Figure 2-3: Example of object recognition and localization with the local feature focus
method [12].

Figure 2-4: Example from Localizing Overlapping Parts by Searching the Interpreta-

tion Tree by Grimson and Lozano-Perez [52]. Figures show located objects superim-
posed on images.

2.1.2 View-centered Model-based Recognition

SCERPO(1987) In the SCERPO (Spatial Correspondence, Evidential Reasoning,

and Perceptual Organization) system developed by Lowe [75], the goal was to rec-

ognize and locate rigid 3D objects in a single gray-scale image. First, a process of

perceptual organization was used to form groupings in the image. Pairs of straight

lines were combined into perceptual structures, that is, instances of collinearity, prox-

imity, and parallelism. Then these primitive structures were combined into larger,

more complex structures such as trapezoid shapes. These structural patterns were

used to limit the search space during model matching. Unknown viewpoint and model

parameters were solved. Finally, hypotheses were verified by spatial correspondences

of the back-projection of 3D models and observed image edges. An example of object

detection in a cluttered scene is shown in Figure 2-5.
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Geometric Hashing(1988) Geometric hashing was proposed by Lamdan and Wolf-

son [68] as a general method for model-based object recognition, especially the recog-

nition of 3D objects in occluded scenes from 2D gray scale images. The underlying

idea of geometric hashing was to extract geometric features from a set of model ob-

ject images and the model information was encoded and stored in an indexing data

structure such as a hash table. During the recognition phase, a set of features was

extracted from the scene and the method accessed the previously constructed hash

table for matching the scene features to model features. Figure 2-6 shows that the

Geometric Hashing approach correctly recognizes the crane and the car in a scene

although the objects occlude each other.

Recognizing Solid Objects by Alignment(1990) Huttenlocher and Ullman [61]

presented a model-based method for recognizing solid objects with unknown 3D po-

sition and orientation from a single 2D image. In the first stage, possible alignments

were computed to generate transformations from the model to the image. Local fea-

tures derived from corners and inflection points were used for the computation of

possible alignments. In the second stage, each of these hypothesized matches was

verified by comparing the complete edge contours of the aligned objects with the

observed image edges. In Figure 2-7, 3D object models are matched to the scene by

the alignment method.

Figure 2-5: The SCERPO system by Lowe [75]. Straight line segments are grouped
by perceptual organization. Model primitives are matched to the grouped structures
in images. The model is projected onto the image for verification.
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Figure 2-6: Example of Geometric Hashing by Lamdan and Wolfson [68]. A gray
scale image of a crane and car is observed. Features such as points and lines are
extracted. Combinations of features are matched to model features in a hash table.
Transformed model edges and scene features are matched for verification.

Figure 2-7: Example of Recognizing Solid Objects by Alignment with an Image by
Huttenlocher and Ullman [61]. Three solid 3D objects are matched to images. Cor-
ners and inflection points in extracted edge segments are used to compute possible
alignments. Alignments are verified by matching edge contours.

2.2 Global Appearance Methods

During late 1980’s and early 1990’s, the object recognition field has seen a gradual

transition from 3D model based representation to 2D multi-view based representation

of objects. Much psychological research work [21, 22, 34] has provided support for

using a set of 2D views to describe and recognize 3D objects. The early methods

in this direction represented objects by storing their global appearance information.

Viewpoint and lighting invariance were achieved by capturing many images from

various viewpoints and under various illumination. Object recognition in a new image

was carried out by finding the most similar image in the stored database.
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Linear Combination of Views(1991, 1995) Ullman and Basri [109] followed the

theory that visual object recognition requires the matching of an image with a set of

models stored in memory. They represented a 3D object with the linear combination

of 2D images of the object. Vetter and Poggio [112] proposed a method to generate

virtual new views given one view of an object by exploiting prior knowledge. An

example-based approach was used as an alternative to 3D model-based approach.

Linear combination of views were used to synthesize new views. Examples of linear

combination representation of objects are shown in Figure 2-8.

Color Histogram Matching(1991, 1995) Swain and Ballard [106] demonstrated

that color histograms of multicolored objects provide a robust and efficient cue for

indexing into a large database of object models. Object recognition was done by using

histogram intersection, which matches the model and image color histograms. Color

indexing was shown to be invariant to translation and rotation, and was insensitive

to deformations and occlusions. Fun and Finlayson [45] extended color indexing to

deal with changing lighting conditions by using ratios of color RGB triples. Three

dimensional color histograms of images of a cereal box are shown in Figure 2-9.

Eigenspace Representation(1991, 1995) Turk and Pentland [108] presented an

approach to the detection and identification of human faces by using a compact set of

characteristic faces in the eigenspace, projecting face images onto the eigenspace, and

checking if the images are sufficiently close to the “face space”. Murase and Nayar [87]

extended the eigenspace method to recognize 3D objects. Images of objects captured

over a wide range of viewpoints were represented in a 3D eigenspace. A novel view of

an object was projected onto the eigenspace, and projection coefficients determined

the identity and pose of the object. The ‘eigenface’ for face images and 3D eigenspace

of a 3D object are shown in Figure 2-10.

Local Appearance Histogram(1996) Schiele and Crowley [100] presented a tech-

nique where appearances of objects were represented by the joint statistics of outputs

of local filters such as Gaussian derivatives or Gabor filters, as in Figure 2-11. Proba-

bilistic recognition based on the holistic representation without correspondences was

developed.
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(a) (b)

Figure 2-8: (a) Three model pictures of a pyramid in [109]. The new images of
the pyramid can be generated by linear combinations of the three models. (b) The
linear object class model in [112]. New views of faces can be synthesized by linearly
combining prototype face images.

Figure 2-9: Three dimensional color histograms of images of a cereal box (with the
black background subtracted) [106]. Color histograms are shown to be invariant to
translation and rotation.

(a)

(b)
Figure 2-10: (a) Seven eigenfaces used in [108]. (b) Three dimensional manifold
defined by the three most prominent dimensions of the eigenspace is used to determine
the identity and pose of an object [87].
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Figure 2-11: Two dimensional histograms of two objects [100]. Histograms are the
joint statistics of local appearance filter outputs.

2.3 Local Appearance Methods

The appeal of global appearance methods lies in its simplicity and computational

efficiency. However, global appearance methods are sensitive to background clutter

and occlusion. Another drawback is the large amount of training data usually required

by many global appearance methods. In the late 1990’s, the field of object recognition

was gradually shifted to utilize local appearance information to recognize objects.

Methods using local regions for object recognition made their debut in the seminal

work of Schmid and Mohr [101]. The general idea of using local regions for object

recognition is to represent objects by the appearance of a set of, often hundreds of,

local regions or patches extracted from the object images. Recognition typically pro-

ceeds by matching the local regions in new images to the local regions of model objects

in the database. In many implementations, geometric modeling can be incorporated

to achieve additional discriminative power.

Schmid and Mohr(1997) Schmid and Mohr [101] proposed using a collection of au-

tomatically detected local regions to represent objects. Interest points were extracted

using a Harris corner detector [53]. Each local region around an interest point was

described by a vector of rotationally invariant gray-scale measures, as illustrated in

Figure 2-12. Object image retrieval was carried out with a voting algorithm and

semilocal constraints.
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Scale Invariant Feature Transform(1999) Another influential paper is the ob-

ject recognition from local scale-invariant features by Lowe [77]. The idea was to

represent objects by a set of circular regions detected by a scale-invariant Difference

of Gaussian operator. Each local region was described with a SIFT (Scale Invariant

Feature Transform) descriptor. During recognition, extracted SIFT descriptors from

a novel image were matched by a nearest neighbor scheme to the SIFT descriptors of

model objects. A Hough-base scheme was used to help a geometric verification pro-

cess to determine the affine pose transformation of the objects. Examples of object

recognition and localization are shown in Figure 2-13.

Figure 2-12: In the image retrieval application in [101], corner features are detected.
A vector describing local characteristics is formed for each region around a corner
point. The collection of vectors is used for matching.

Figure 2-13: An example of object recognition from local scale-invariant features [77].
Model images of planar box faces are matched in a cluttered scene containing occluded
objects. The SIFT approach successfully discovers these objects.
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Since the inception of the idea of recognition with local regions, local appearance

based methods have received immense attention in the field of object recognition, and

have acted as the fundamental building blocks of many state-of-the-art approaches.

Many of these approaches can be roughly categorized into two types: methods with

explicit geometric modeling, and methods without geometric modeling.

2.3.1 Geometry-based Methods

Constellation Model(2000, 2003) The constellation model developed by Burl,

Weber, Welling and Perona [24, 114, 115] extended the idea of “pictorial structure”

by Fischler and Elschlager [40] by building a face model with manually labeled land-

mark points [24] or automatically detected interest points [114, 115]. The model was

completed with the learned appearance of landmark regions and the joint distribution

of their relative locations. Fergus et al. [38] further improved the constellation model

to incorporate appearance variability and scale-invariance. A Bayesian extension to

tackle the problem with a limited number of training images was proposed by Fei-Fei

et al. [37]. Figure 2-14 illustrates the learned constellation model for faces in [38].

Sparse, Part-Based Representation(2004) Agarwal et al. [2] studied car classi-

fication by learning a sparse, part-based representation. A vocabulary of parts was

automatically constructed from a training set, as shown in Figure 2-15. The object

model was formed by the learned parts and their spatial relations. The recogni-

tion proceeded with a sliding window searching exhaustively in a query image. Each

window was classified with a sparse-network-of-winnows classifier [97] to detect cars.

Implicit Shape Model(2004) Leibe et al. [71] devised an approach to simultane-

ously segmenting and recognizing objects in images. Strong supervision was used in

the learning stage with each training image manually segmented. First, a codebook

of local appearance was learned from automatically detected interest points. Then

an implicit shape model was built by capturing the locations of parts relative to the

object center. During recognition, extracted image patches in test images were first

matched to codebook entries, and these matches voted for the position of the ob-

ject center in the test images. Refined hypotheses were used for segmentation. This
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recognition and localization procedure is illustrated in Figure 2-16.

Low Distortion Correspondences(2005) Berg et al. [9] formulated object recog-

nition as a problem of deformable shape matching. The method computed correspon-

dences between randomly sampled feature points based on the similarity of geometric

blur descriptors [10] as well as the geometric distortion. Given the correspondences,

a regularized thin plate spline transformation [13] was estimated to compute a dense

correspondence between the test image and the model image, which was in turn used

in a nearest neighbor framework for recognition. An example is shown in Figure 2-17.

Potemkin model(2007) Chiu et al. [28] proposed a Potemkin model for describing

3D objects. A Potemkin model represents a 3D object with a collection of nearly

planar parts, with a skeleton defined by the arrangement of the part centroids, as

illustrated in Figure 2-18. Arbitrary virtual views can be generated from a set of

observed views of a 3D object, with the knowledge learned from some simple objects.

This augmented set of views can then be fed into any view-dependent 2D part-based

recognition system for object recognition and localization.

Figure 2-14: The constellation model of faces learned by [38]. Appearance of parts
and examples of detections are shown in the second and third columns respectively.

Figure 2-15: A sample car image used in the vocabulary construction in [2]. Some
examples of learned parts such as wheels, hood, windows, and trunk, are also shown.
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Figure 2-16: The recognition and localization procedure of [71]. Image patches are
extracted around interest points. Matching patches cast votes for the object center.
Refined hypotheses are used for segmentation.

Figure 2-17: An example of low distortion correspondences [9]. Feature points in the
left-most image are matched to a model image (left center). The entire set of matched
features are shown in the right center image. Correspondences after the thin plate
spline transform are shown in the right-most image.

Figure 2-18: A schematic illustration of learning the Potemkin model of a chair [28].
In each view, parts are locally planar. The centroids of parts are estimated, which
are used for estimating the skeleton locations.
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2.3.2 Geometry-free Methods

Bag of Keypoints(2004) The bag-of-keypoints approach by Csurka et al. [31], as

illustrated in Figure 2-19, regarded the orderless collection of local patches as the

representation of objects. The method was based on vector quantization of SIFT

descriptors of affine invariant feature points. Each image was represented by a his-

togram of the number of occurrences of each quantized visual word. An SVM was

trained and used for detecting the presence of objects in images.

Natural Language Models(2005, 2006) In [62], Sivic et al. introduced natural

language models such as probabilistic Latent Semantic Analysis (pLSA) [55] into

the bag-of-words representation of object classes. In its original applications, pLSA

represented textual documents with a structure of words-topics-documents, with the

capability of unsupervisedly discovering the hidden variable of topics. Sivic et al.

successfully translated pLSA into the domain of visual object recognition by treating

quantized appearance descriptors as words, object classes as topics, and images as

documents. Visual words and topics in a face image are shown in Figure 2-20. A

non-parametric version of natural language models, Hierarchical Dirichlet Processes,

was applied by Sudderth et al. [105] and Wang et al. [113].

Random Subwindows(2005) Maree et al. [79] represented images with a set of

randomly extracted subwindows at random locations and scales. Then subwindows

were normalized in size and described by a feature vector of 768 numerical values

in the HSV color space. Ensembles of extremely randomized decision trees were

employed for recognizing objects. Figure 2-21 gives a schematic illustration of object

representation and recognition based on random subwindows.

Pyramid Matching Kernel(2005) In [48], Grauman and Darrell designed a new

fast kernel function which maps unordered feature sets using multi-resolution his-

tograms. The approach didn’t rely on quantization of local patches into visual words.

Instead, the algorithm operated directly on the high dimensional feature space which

was discretized in multiple resolutions. Histograms of features were formed in this

multi-resolutions space. Object recognition was done by matching with weighted his-
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togram intersection. Figure 2-22 demonstrates this matching scheme for two panda

images. Lazebnik later extended pyramid matching to incorporate rough geometric

correspondences in the work of spatial pyramid matching [70].

Figure 2-19: Bag-of-features model [31]. Affine invariant features are detected from
the motorbike image. Spatial relations of features are discarded. The image is repre-
sented and classified with a global histogram of feature occurrence.

Figure 2-20: An example of a face image as a mixture of visual topics [62]. The face
topic is shown in yellow, and background topics are shown in blue and cyan.

Figure 2-21: Random multi-scale subwindows [79] are extracted from three classes of
objects. An ensemble of extremely randomized decision trees is learned and used for
classification.
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optimal partial 
matching

Figure 2-22: The pyramid matching kernel [48] intersects histogram pyramids formed
over local features, approximating the optimal correspondences between features of
the two images.

2.4 Summary

Generally speaking, most of the early work on object recognition focused on sim-

plified scenes such as a composition of 3D objects in a uniform background. Methods

based on representations of 3D models and multiple 2D views were shown to achieve

good performance, mainly in applications where a single or several specific object

instances were to be detected and recognized in a scene. The field of object recogni-

tion then gradually progressed into studying the more general problem of categorical

recognition of object classes. Early work of categorical recognition targeted for dis-

tinguishing a limited set of object classes such as digits, cars, and faces. Recent

developments in object categorization started to tackle the categorical recognition

problem on much larger scales, e.g., the 101 classes of natural ojbects in the dataset

of Caltech-101 [37], where many appearance-based and geometry-based methods are

demonstrated to steadily improve the state-of-the-art recognition performance.

This thesis works on the problem of object categorization in natural images. Many

components in the proposed “recognition-through-decomposition-and-fusion” model,

especially the components for matching objects by appearance, color, and shape in

decomposed visual channels, are built upon the success of many prior art. The inte-

gration of multiple matching schemes is naturally enabled by the perceptual decom-

position and recombination framework proposed in this thesis, and is demonstrated

to be effective in building a better object categorization system.
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Chapter 3

Low-level Image Measurements

The goal of this thesis is to develop a generic object categorization system that will

automatically decompose the rich visual information in natural images, fully leverage

each individual decomposed channel with suitable matching schemes, and adaptively

combine the decomposed information to achieve maximal discriminability. The lowest

level of this system determines how visual information contained in images should be

measured and represented. This chapter first introduces a representation of contour

and texture processes, which will act as a compact summary of salient visual infor-

mation in images and will form the basis of visual information decomposition. Image

features for the contour and texture processes, such as measurements of contourness

and textureness, are then described.

3.1 Contour Process and Texture Process

This section gives formal definitions of contour process and texture process to

represent and decompose visual information in images. We assume that images are

defined over a finite lattice P = {p1, p2 ... pN} where p = (i, j) denotes image sites

or pixels on the lattice. It is further assumed that, with certain operators, a set of

pixels of interest can be extracted, denoted as POI = {p1, p2 ... pM} ⊆ P . For each

pixel p ∈ POI in the set of pixels of interest, a label cp, that indicates whether the

pixel is a contour pixel or not, can be assigned. Each label cp is modeled as a discrete
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random variable taking a value in {1, -1}, with 1 signaling that the pixel p is a contour

pixel and −1 for non-contour. The set of labeled variables for all pixels of interest,

C = {cp : p ∈ POI}, is called the contour label process, or contour process for short.

A texture process can be defined in the same way. For each pixel p ∈ POI, a label tp

is assigned to indicate whether pixel p is a texture pixel or not. Each label tp is also

a discrete random variable taking a value in {1,−1}, with 1 for texture and −1 for

non-texture, and the set of labeled variables T = {tp : p ∈ POI} is called the texture

process. Figure 3-1 illustrates the definition of the contour and texture processes.

The importance of using two individual processes instead of one single process to

represent contour and texture will be demonstrated in Chapter 4. Given an image I,

the optimal labelings (C,T ) of pixels in POI, which maximizes the posteriori prob-

ability P (C,T |I), can be estimated with probabilistic inferences. The set of optimal

labelings for pixels of interest given an image I naturally defines a decomposition of

visual information in the POI, with pixels with cp = 1 in the contour channel and

pixels with tp = 1 in the texture channel. Once we have learned the decomposition,

we can use the decomposed visual cues as a complementary basis for classification of

objects, including learning which cues are more salient for distinguishing classes.

tp=-1

tp=1

(a) Contour process (b) Texture process

Figure 3-1: Illustration of definition of the contour and texture processes.

There are at least two alternative ways to define pixels of interest POI for these
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image processes. One way is to label every pixel in an image to be either contour or

texture, ı.e. POI = P . A second way is to first extract salient visual cues from an

image and then focus on labeling the extracted salient pixels. In the latter case, edge

pixels can be extracted first as visually salient information and the contour process and

the texture process are defined only on the extracted edge pixels. Edges often receive

special attention in early stages of computer vision, because sharp changes in image

properties usually reflect important cues for perception. Focusing on edge pixels will

also significantly reduce the amount of data to be processed, while preserving most

of the relevant information. This thesis uses edges as the pixels of interest POI for

decomposition.

Some flexibility also lies in how contour pixels are defined. One possibility is

that only occluding contours are regarded as contour pixels. An alternative definition

regards both occluding and internal contours as contour pixels. In the latter definition,

depending on the scale, some internal edge pixels may be considered as texture flow

or an internal contour. For instance, at a large scale, zebra stripes or soccer-ball

patches have a repeating pattern and appear to be texture; at a smaller scale, edge

pixels from stripes or patches are well-aligned and appear to be internal contours.

This thesis adopts the latter definition.

3.2 Measuring Contourness and Textureness

To instantiate the posteriori probability P (C,T |I) for contour and texture de-

composition, observed image features need to be defined. The image features used in

this thesis are measurements of contourness and textureness of edge pixels in POI.

3.2.1 Contourness Measurement and Edge Extraction

One choice of how to measure contourness of edge pixels is to adopt the widely

used gradient magnitude. Gradient magnitude is typically computed from outputs

of some linear differential filters which approximate continuous gradient operators

in the discrete space of 2D lattices of images. As shown by Perona and Malik [91],

these linear filters often only perform well on simple edges such as step edges or
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steep ramps. However, it is well known that the projection of depth or orientation

discontinuities in a physical scene results in image intensity edges which are not only

step edges but are more typically a combination of steps, ramps, peaks and roofs [58].

Gradient magnitude measurement with linear filters ignores the composite nature of

these edges, and in many cases results in systematic errors in detection, localization

and magnitude computation [42, 86, 91]. As an improvement, many researchers, e.g.,

Morrone and Owens [86], Perona and Malik [91], and Freeman and Adelson [42], have

shown that the measurement and detection of edge points based on local energy are

adequate to deal with most of the composite edges in images.

Local energy is usually computed with a quadrature filter bank. Two functions

are said to be in quadrature when they are each other’s Hilbert transform. The

reasons for using quadrature filters are two-fold. First, the filter bank for computing

orientation energy is typically designed to stem from two base filters: an even filter

and an odd filter, and the entire filter bank is composed of a number of rotated

versions of the base even/odd pair. One property of tne Hilbert transform is that the

Hilbert transform of an even function is an odd function and the Hilbert transform of

an odd function is an even function. Hence a quadrature pair, created with an even

or odd function, and its Hilbert transform are a handy way to generate a pair of base

even and odd filters for the computation of orientation energy. Figure 3-2 shows 2D

plots of one implementation of a base quadrature filter pair. The even filter in Figure

3-2(a) typically has extrema at even signal structures, such as delta peaks, roofs or

lines. And the odd filter in Figure 3-2(b) generally assumes extrema at odd signal

structures, such as step edge features.
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(a) Base filter - even (b) Base filter - odd

Figure 3-2: Quadrature pair used as base filters.
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The second reason is that mathematically the filter outputs of a quadrature pair

effectively define an analytical signal, with one output as the real part and the other

output as the imaginary part of the corresponding analytic signal. The magnitude

of the corresponding analytical signal is equivalent to the amplitude envelope of the

original underlying signal, and the square of the magnitude corresponds to the local

energy of the amplitude envelope [86]. Morrone and Owens [86] and Perona and

Malik [91] showed that this local energy generally assumes maxima at many composite

features such as even features, odd features and features in between. Hence the local

energy derived from the outputs of a quadrature filter pair can be used as a strong cue

and appropriate measurement of composite edge features, e.g., step edges, peaks and

roofs. In [42, 80], this local energy is termed “orientation energy” and is computed

as the sum of squares of a quadrature filter’s responses:

OEθ = (I ∗ f e
θ )2 + (I ∗ f o

θ )2 (3.1)

where OEθ is the orientation energy along direction θ, f e
0 and f o

0 are the base quadra-

ture pair and f e
θ is the rotated version of f e

0 in the direction of θ. Similarly for f o
θ . I

is the image.

The quadrature filter bank used in this thesis are the even and odd pairs as in

[78, 80]. That is, the base symmetric filter is the second derivative of an elongated

Gaussian, with σ = 1.5 in the x direction and 3σ in the y direction, and the base odd-

symmetric filter is its Hilbert transform. Their 2D plots are shown in Figure 3-2. The

entire filter bank consists of 8 rotated versions of the base even/odd pair, as in Figure

3-3. This filter bank is fixed in terms of spatial scale. It could be easily extended to

be scale invariant, by using a series of multiple scales and the selection scheme as in

[111], or by using the detected spatial scales of features as in [76]. However, in many

object recognition datasets such as Caltech-101 [37], objects are mostly imaged under

canonical poses and don’t have large scale variations. In these cases, the filter bank

can be fixed in spatial scale.

For color images, color channels are added in addition to brightness for computing
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Figure 3-3: Quadrature filter bank.

orientation energy. Color information helps to disambiguate contours where grayval-

ues are similar but colors are different. RGB images are first converted to CIELAB

space. For each of the L∗, a∗ and b∗ channels, orientation energy is computed as

in Equation 3.1. One way to integrate these orientation energy into the low-level

measurements is to use the orientation energy of the L∗, a∗ and b∗ channels sepa-

rately. As an alternative, in practice, adding the orientation energies of the three

channels is observed to be able to effectively capture most of the salient contours.

Moreover, adding the three channels gives an integrated orientation energy represen-

tation, which reduces the complexity of the proposed coupled Conditional Random

Field model in Chapter 4. In this thesis, orientation energies of the L∗, a∗ and b∗

channels are added together as the final orientation energy. For gray-scale images,

only the original brightness is used.

For each pixel p, the largest of the 8 energy terms of OEθ’s is kept as the orientation

energy of pixel p, and the orientation of pixel p is determined by the corresponding θ.

As an example, the computed orientation energies for a laptop image is shown in

Figure 3-4.

Postprocessing for Computing Orientation Energy

Due to large illumination variations in natural images, many contours of com-

mensurate visual saliency always have quite different orientation energies within one

image. Reducing their discrepancies is helpful to facilitate subsequent stages such as

edge extraction and computation of contour probability based on orientation energy.
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(a) Object image (b) Computed orientation energy

Figure 3-4: An example of computed orientation energy.

One possible way is to use the local contrast normalization procedure proposed by

Freeman et al. [41]. In this thesis a power-law on the orientation energy is used:

rOEθ =

{

∑

c

[

(I ∗ f e
θ )2 + (I ∗ f o

θ )2
]

}α

(3.2)

where rOEθ is the rectified orientation energy in direction θ. α is 0.5 in this thesis.

c stands for the channels used for computing orientation energy. For color images,

c = {L∗, a∗, b∗}; for gray-scale images, c is a singleton channel of original grayvalue.

Edge Points Extraction

As discussed in Section 3.1, the pixels of interest POI used in this thesis are

edge pixels of images. To robustly extract edge pixels in images, a Canny’s hysteresis

thresholding [25] is applied to the orientation energy image to extract edge points, as

in [42]. Both the lower and higher thresholds of the hysteresis thresholding are set

to be relatively small in order to minimize misses at true edges with low contrast.

Further rectification will be postponed until inferences on the coupled Conditional

Random Field in Chapter 4. Figure 3-5 shows an example of the extracted edges of

a laptop image.
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(a) Object image (b) Extracted edges

Figure 3-5: An example of edge extraction.

3.2.2 Textureness Measurement

Texture is often referred as a perceptually coherent and distinctive physical com-

position or structure of certain basic elements, especially with respect to the size,

shape, and arrangment of its parts. As an important aspect of human perception,

texture has been studied for decades. Properties such as coarseness, anisotropy, ho-

mogeneity and entropy have been examined as perceptual measurements for texture.

In [63], Julesz proposed the concept of texton, which is an atomic element for texture

perception. Since the seminal work of Julesz [63] and Leung and Malik [72], texton

has become the standard tool for texture analysis. This thesis uses a textureness

measurement derived from distributions of textons, which was first proposed by Mar-

tin et al. and named as “texture gradient” in [80]. Martin et al. originally developed

the concept of texture gradient to learn isolated mapping functions to compute prob-

abilities of boundaries. In this thesis, texture gradient is computed for measuring

textureness of points, which will be used together with contourness measurements in

the coupled Conditional Random Field model in Chapter 4 to decompose contour

and texture im images.

The concept of texture gradient is a measurement of how different the distribution

of texture on one side of a pixel is relative to that of the other side of the pixel. When
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the appearance of the texture on one side of a pixel is perceptually different than

the texture’s appearance on the other side, the texture gradient will be large and the

pixel has a large probability to lie on some perceptually salient contour delineated

by different textures. The texture gradient is a complementary measurement to, and

in some cases better measurement than, the contourness measurement of orientation

energy.

To compare the texture appearance of the two ‘sides’ of a pixel, the local orienta-

tion of the pixel should be first known. In this thesis, the local orientation of a pixel

is straightforwardly set as the pixel’s orientation computed by orientation energy in

Section 3.2.1. The next step to compute texture gradient is to define the distribution

of textures on both sides, which are described as histograms of textons. To this end,

texture features, which are extracted by a filter bank, are first computed for pixels of

interest. The filter bank used in this thesis consists of the 8 rotated quadrature pairs

used in measuring orientation energy in Section 3.2.1, plus 3 Gaussians and 3 center-

surround filters of Difference of Gaussians at 3 different scales of σ = {1.5, 2, 3}.

Figure 3-6 shows these filters in the filter bank. A 22-dimensional vector is formed

as the extracted feature for each pixel of interest by concatenating the filter bank’s

responses at the pixel. With the extracted texture features, vocabularies of textons

can be built. There are two alternative ways to build textons - globally or locally. A

global texton vocabulary can be built by clustering all texture features from a set of

training images and this global texton vocabulary is used for all images. Local texton
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Figure 3-6: Texton filter bank.
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vocabularies are image-specific, which means the texture features from one image can

be clustered and form a texton vocabulary for this image only. For one specific image,

both the global texton vocabulary and the local texton vocabulary of this image can

be used to measure the texture gradient. In [80] and also in our experiments, the two

approaches achieve practically the same measurements of textureness. This thesis

uses local texton vocabularies for computing texture gradient. Texture features from

images are clustered into 50 textons for each of the images.

With the local orientation of a pixel and the texton vocabulary defined, texture

gradient can now be introduced. Similar to [78], for each edge pixel, a 20-pixel wide

circular region around the pixel is extracted and cut in three parts: a 10-pixel wide

center strip D0 along the orientation of the edge pixel of interest, and D+ and D−

which are the pixels to the left and right of D0 respectively, as illustrated by Figure 3-7.

Next, D0 is first merged with D− and D0

⋃

D− is compared with D+. A χ2-distance

is computed between the histograms of textons in D+ and D0

⋃

D−. Similarly a χ2-

distance is computed between the histograms of textons in D− and D0

⋃

D+. The

larger of the two distances is kept as the texture gradient for the edge pixel. Figure

3-8 shows a laptop image and its corresponding texture gradient. Texture gradient is

used as the textureness measurement in the proposed coupled Conditional Random

Field. The smaller the texture gradient, the greater the textureness. In this thesis, we

only model textures on edge pixels. Homogeneous regions will be added in separate

color channels.
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D0
D+

D-

Figure 3-7: Illustration of computation of texture gradient.

(a) Object image (b) Texture gradient

Figure 3-8: An example of computed texture gradient.
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3.3 Summary

As the lowest level of the proposed computational model, the contour process

and texture process in images are introduced in this chapter. Typically, contour and

texture processes are defined on a set of pixels of interest such as edge points, in order

to focus attention on salient structures and improve computational efficiency while

preserving most of the relevant information. To extract edge points, orientation

energy computed by a quadrature filter bank is used. The computed orientation

energy also determines the orientation of edge points and acts as the contourness

measurement of extracted edge points. Textureness of edge points are measured by

texture gradient.

As can be seen in the computed orientation energy in Figure 3-4, and the texture

gradient in Figure 3-8, some pixels from the keyboard texture of the laptop have large

orientation energy and some texture gradients on object boundaries are small. Sim-

ple thresholding on the contourness and textureness measurements will not separate

contour and texture pixels. Moreover, in many natural images, contour and texture

pixels are often close to and intertwined with each other, which makes decomposi-

tion of contour and texture even harder. In the next chapter, a coupled Conditional

Random Field model is introduced to model and decompose the contour and texture

processes.
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Chapter 4

Learning Coupled Conditional

Random Field for Image

Decomposition

4.1 Motivation

Understanding low-level visual cues such as contour and texture in natural im-

ages is of great importance. Behavioral and physiological evidence suggests that

human observers perceive the visual information of contour and texture in function-

ally separable dimensions and recombine them in an integrative stage to recognize

objects [1, 6, 26, 36, 59, 116]. It is desirable to design object categorization systems

to simulate this perceptual behavior of human observers. Decomposition of different

visual stimuli would form better low-level and mid-level image models, and enable

better high-level modeling which can fully leverage decomposed perceptual cues.

Generally speaking, contours are more salient in high contrast regions of bright-

ness, colors and/or texture and typically form continuous curves along occluding

boundaries and internal patterns; textures are perceived as certain compositions of

elements, with perceptually notable consistency of appearance and/or geometric lay-

out. While these observations are true in general, in most natural images, the percep-
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tion of contours and textures is more complicated. Point-wise measurements are not

always readily distinct enough for discriminating contours and textures, for instance,

some contours might have low contrast whereas elements of textures could have quite

high local contrast. What makes the problem even harder is that contours and tex-

tures are often intertwined together in images. Some contours might be adjacent to or

even buried in textures. Apparently a simple thresholding (regular or hysteresis) or

function mapping scheme won’t suffice. For example, the widely adopted Canny edge

detector uses hysteresis thresholding and non-maxima suppression to extract salient

edge points. However, it won’t discriminate edge points from contour and texture

processes which have different characteristics, and won’t work well to decompose the

two processes where they mingle. This leads to an important observation about the

perception of contour and texture processes: contour and texture are not independent

of each other in images, and a model of contour and texture decomposition will have

to address this dependency.

In this thesis, a coupled Conditional Random Field model is proposed for modeling

contour and texture processes in images. The following sections first give a general

description of the importance of the coupled Conditional Random Field model, then

introduce the mathematical form of the proposed model and its learning and infer-

ence components. The model is trained with a set of labeled images. Analysis of

the learned model shows that the proposed coupled Conditional Random Field is

able to capture many distinct characteristics of contour and texture channels, where

a single-layer Conditional Random Field model has to make unacceptable compro-

mises. Evaluation on another set of images shows that, for contour and texture

decomposition, the proposed coupled Conditional Random Field model outperforms

a single-layer Conditional Random Field.
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4.2 Importance of Learning Coupled Conditional

Random Field Model

Decomposition of contour and texture processes entails a labeling of edge points.

Markovian models are widely adopted for a variety of labeling tasks. Just to name

a few, Geman and Graffigne [47] used a Markov Random Field model for texture

segmentation; Freeman et al. [41] developed Markov Network models for super-

resolution, shading and reflectance estimation and motion estimation; He et al. [54]

and Kumar and Hebert [66] used Conditional Random Field for image site labeling.

Compared with generative models such as Markov Random Field models, a Condi-

tional Random Field [67] focuses resources on modeling posterior distributions as a

Gibbs field. Without the strong assumption of conditional independence of obser-

vations, Conditional Random Field allows arbitrary dependent structures between

observations. Considering the complex interactive nature of contour and texture pro-

cesses, a Conditional Random Field model for the joint posterior of contours and

textures given an image is suitable.

A popular way of labeling image processes is to use a single layer of a random field

grid. Such a model for labeling edge process, with one node for each edge point, is

shown in Figure 4-1. Each node ei in Figure 4-1 represents an edge point. Each edge

point ei is assigned a label of +1 or -1, where +1 means the edge point is a contour

point whereas -1 signals a texture point. The underlying idea is that labels for each

edge point are influenced by nearby labels as well as local measurements, and thus

local context helps propagate labels throughout a region.

However, this single-layer random field is limited in modeling power. The two

processes, contour and texture, could have disparate characteristics and dynamics in

their respective inter-point interactions. One distinction lies in the angular alignment

of points. In the contour process, compatible contour points are mostly aligned in

local neighborhoods. For the texture process, edge points are seldomly well-aligned

and often random (recall that locally well-aligned patterns such as zebra stripes are

defined as internal contours, part of the contour process.) Hence, it is logical to
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Figure 4-1: A simple single-layer Conditional Random Field model for both contour
and texture processes.

postulate that contour points are compatible only when they are locally continuous

and aligned, while the compatibility of texture points could allow a random layout.

This means the compatibility functions of the two processes will exhibit disparate

dependencies on an angular alignment parameter. Other different dynamics may also

exist in the measurements of coarseness, anisotropy, homogeneity and entropy.

Under these situations, using single-layer random field models inevitably has to

introduce a trade-off between distinct dynamics of different processes. To accommo-

date different characteristics of interactions, the compatibility function in a one-layer

model will be forced to compromise between the two otherwise distinct compatibility

functions of different processes. A better model is to explicitly capture different dy-

namics of processes, with more than one layer of random field grids. In the proposed

model, one grid layer is used for a contour process and a separate grid is used for a

texture process. The dependency between the two processes is modeled with coupling

links between the layers. To reduce the complexity, each node in one layer is only

coupled with the same node in the other layer. This leads to the proposed coupled

Conditional Random Field (cCRF) model, shown in Figure 4-2. A formal definition
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of the coupled Conditional Random Field is given in Table 4.1. The importance of

using coupled rather than single layer Conditional Random Fields to address different

image processes will become more evident in the experimental results (Section 4.5.2).

C2

C3

C1

C4

C5

T2

T3

T1

T4

T5

I

Contour process

Texture process

Image 

measurements

Figure 4-2: Coupled Conditional Random Field for modeling contour and texture
processes.

Coupled Conditional Random Field for contour and texture processes of an image:
P (C, T |I, Θ), where C represents the contour process, T represents the texture
process and I is an image. Θ is the set of parameters of coupled Conditional Random
Field. The coupled Conditional Random Field is only defined on extracted edge pixels.

Table 4.1: Definition of the coupled Conditional Random Field for contour and texture
processes of an image.
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4.3 Parametrization of Coupled Conditional Ran-

dom Field

The proposed functional forms of the coupled Conditional Random Field model in

Figure 4-2 are shown in Table 4.2. The pixels of interest, which are edge pixels in this

thesis, are indexed by the variable i. ci represents the labeling variable in the contour

layer, or equivalently, the contour process. ti represents the labeling variable in the

texture layer. Five image measurements are used in the current work. Contourness

cmi and textureness tmi are used for local evidence functions, which have a form of

logistic regression. This discriminative form of local evidence was originally proposed

in Discriminative Random Field [66]. Unlike the log-linear compatibility in [66], the

proposed coupled Conditional Random Field uses a form of logistic regression for

compatibility functions. The corresponding measurements used are: (1) δθij, angular

difference between the orientation of i and the line joining i with a neighboring pixel

j, where the orientation of i is given by the low-level measurement as described in

Section 3.2.1; (2) δcmij = |cmi − cmj|, absolute contourness difference between i

and j; (3) δtmij = |tmi − tmj|, absolute textureness difference between i and j. The

compatibility functions of the two processes will have potentially different parameters,

capturing the distinct interaction dynamics of the two processes stated in Section 4.2.

For instance, Ψc(ci, cj) could be large (which means ci and cj are compatible) when

δθij is small (i.e. pixel i and j are aligned) and small when δθij is large (edges not

aligned), while for Ψt(ti, tj) of the texture process, its value won’t change a lot when

δθij changes. This essentially captures the distinct dynamics of how contour and

texture processes respond to edge alignment.

In both processes, the compatibility between a negative labeling and a neighboring

negative labeling, e.g., for the labeling pair (ci, cj)=(−1,−1), is fixed to 0.5. The

reason is that in the proposed coupled Conditional Random Field the interactive

dynamics of negative-to-negative labelings in one layer are already represented in

the positive-to-positive compatibility in the opposite layer, and are coupled into the

current layer through the coupling links. On one hand, fixing negative-to-negative
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• Variables for pixel i
ci: labeling variable in the contour layer:

ci = 1: contour pixel; ci = −1: non-contour pixel.
ti: labeling variable in the texture layer:

ti = 1: texture pixel; ti = −1: non-texture pixel.
cmi: contourness measurement.
tmi: textureness measurement.
δθij: angle between orientation of i and the line joining

i and a neighboring pixel j.
δcmij: absolute difference between the contourness of i and j.
δtmij: absolute difference between the textureness of i and j.

• Evidence function Φc(ci|I)

Φc(ci|I) = 1

1 + e−ci(α0 + α1cmi + α2tmi)

• Compatibility function Ψc(ci, cj|I)

Ψc(ci, cj|I) =

{

0.5, if (ci, cj) = (−1,−1)
A, otherwise

where A = 1

1 + e−cicj(τ0 + τ1δθij + τ2δcmij + τ3δtmij)

• Evidence function Φt(ti|I)

Φt(ti|I) = 1

1 + e−ti(β0 + β1cmi + β2tmi)

• Compatibility function Ψt(ti, tj|I)

Ψt(ti, tj|I) =

{

0.5, if (ti, tj) = (−1,−1)
A, otherwise

where A = 1

1 + e−titj(γ0 + γ1δθij + γ2δcmij + γ3δtmij)

• Compatibility function Ψct(ci, ti|I)

Ψct(ci, ti|I) =

{

0 if ci = ti
1 if ci 6= ti

i.e., contour and texture processes are mutually exclusive.

Table 4.2: Evidence and compatibility functions of the proposed coupled Conditional
Random Field. See text for details.
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compatibility removes modeling redundancy. On the other hand, this property is the

clear distinction of the coupled Conditional Random Field compared with a single-

layer Conditional Random Field: each layer of random field grid only focuses on

representing the interactive dynamics within one type of process, without modeling

the negative-to-negative compatibility which will have to introduce compromises to

model both types of interactive dynamics. The negative-to-negative compatibility is

empirically set to 0.5 in this thesis. In principle, this compatibility can be learned

with a training set. The compatibility matrix Ψct(ci, ti|I) for the coupling links is

fixed to make the two processes mutually exclusive. Note, however, this could be

extended to allow non-mutually-exclusive labeling.

For clarity, the graphical model in Figure 4-2 shows a coupled Conditional Random

Field with a 4-neighborhood system for each of the contour and texture processes.

In practice, models defined on higher order neighborhood systems, capturing more

information from neighboring pixels, are used.

4.4 Learning and Inference of Coupled Conditional

Random Field

4.4.1 Model Learning with Maximum Pseudolikelihood

Assume only up to pairwise clique potentials are nonzero. With the functional

forms in Table 4.2, the posterior of the coupled Conditional Random Field is given

by the following factorized form:

P (C, T |I, Θ) =
1

Z

{

∏

i

Φc(ci|I)Φt(ti|I)Ψct(ci, ti|I)

}

·







∏

(i,j)∈Cedge

Ψc(ci, cj|I)







·







∏

(i,j)∈Tedge

Ψt(ti, tj|I)







(4.1)
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where i, j are indexes of edge pixels, Cedge indicates the set of inter-node links in

the contour layer and Tedge for the texture layer. Z is the normalization constant

(partition function). Θ is the set of parameters of the coupled Conditional Random

Field.

The log-likelihood function is written as:

L(Θ) = log
M
∏

m=1

P (Cm, Tm|Im, Θ) (4.2)

where M is the number of training images, and m=1...M is the index of training

samples. Im represents mth training image. Cm and Tm are the contour and texture

processes of Im respectively.

In principle, parameters can be learned with a maximum-likelihood approach, i.e.,

Θ∗
ML = argmaxΘL(Θ) = argmaxΘ log

M
∏

m=1

P (Cm, Tm|Im, Θ) (4.3)

Maximum-likelihood learning is complicated by the partition function Z. A full

Maximum-likelihood learning process involves the estimation of feature expectations

under model distribution, which incurs a summation over the entire set of possible

labeling. Also the evaluation of Z is typically NP-hard. Exact maximum-likelihood

in this case is intractable, thus the model learning has to resort to approximation

techniques. There are many ways to approximate the exact maximum-likelihood

learning. For homogeneous random fields such as the coupled Conditional Random

Field proposed in this thesis, Besag [11] has devised an ingenious alternative to the

full maximum-likelihood, named “maximum pseudolikelihood”.

The maximum pseudolikelihood approach simplifies model learning by approxi-

mating the true likelihood with a factorization of the local conditional likelihoods

[11], i.e.
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Θ∗
ML ≃ argmaxΘ log

M
∏

m=1

∏

i

P (cm
i , tmi |C

m
Ni

, Tm
Ni

, Im, Θ) (4.4)

where i is the index of edge pixels and Ni represents the neighborhood of i. cm
i and

tmi are the contour and texture labels for pixel i. Cm
Ni

is the contour labeling of edge

pixels in the neighborhood of i for the mth training sample; similarly for Tm
Ni

.

Each of the local conditional likelihoods has the following form:

P (ci, ti|CNi
, TNi

, I, Θ) =
P (ci, ti, CNi

, TNi
|I, Θ)

Zi

(4.5)

Zi =
∑

ci∈{+1,−1},ti∈{+1,−1}

P (ci, ti, CNi
, TNi

|I, Θ) (4.6)

where each P (ci, ti, CNi
, TNi

|I, Θ) has the same form as in Equation 4.1 with only

terms for ci, ti and their immediate neighbors.

There is still a partition function for each of the local conditional likelihoods.

However, now each of these partition functions only sums over 4 possible combinations

of labels, i.e. the range of labeling (ci, ti), making the computation tractable and

potentially fit for parallel processing.

The choice of pseudo-likelihood approximation is due to the consideration of sim-

plicity on one hand. Another nice property of pseudo-likelihood is its consistency of

estimates in the large lattice limit [47], that is to say, for the “large graph” limit,

the estimate by maximum pseudo-likelihood converges to the true parameters with

probability one as the number of nodes on the lattice goes to infinity. Geman and

Graffigne prove this consistency property based on learning from one large texture

image. This property can be readily extended to multiple training images where the

number of training edge points is sufficiently large.
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4.4.2 Derivation of Maximum Pseudolikelihood Learning of

Coupled Conditional Random Field

The learning by maximum pseudolikelihood (Equation 4.4) is a highly non-linear

optimization procedure. Many non-linear optimization methods can be employed to

estimate the optimal parameters. A typical practice is to use gradient-based algo-

rithms, such as Gradient Ascent, which involves computation of the log-pseudolikelihood

function’s partial derivatives to the set of parameters. The following section gives the

mathematical derivation of these derivatives.

Each of the local conditional probabilities in Equation 4.5 expands in the following

form:

P (cm
i , tmi |C

m
Ni

, Tm
Ni

, Im, Θ) = [ Φc(c
m
i |I

m)Φt(t
m
i |I

m)Ψct(c
m
i , tmi |I

m)

∏

(i,j)∈Cedge
Ψc(c

m
i , cm

j |I
m)

∏

(i,j)∈Tedge
Ψt(t

m
i , tmj |I

m) ] /Zi

(4.7)

Zi =
∑

ci∈{+1,−1},ti∈{+1,−1} Φc(ci|I
m)Φt(ti|I

m)Ψct(ci, ti|I
m) ·

∏

(i,j)∈Cedge
Ψc(ci, c

m
j |I

m)
∏

(i,j)∈Tedge
Ψt(ti, t

m
j |I

m)

(4.8)
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Take the parameter α0 in Φc(ci|I) as an example. For each image site i,

∂ log P (cm
i , tmi |C

m
Ni

, Tm
Ni

, Im, Θ)

∂α0

= ∂ log



Φc(c
m
i |I

m)Φt(t
m
i |I

m)Ψct(c
m
i , tmi |I

m)
∏

(i,j)∈Cedge

Ψc(c
m
i , cm

j |I
m)·

∏

(i,j)∈Tedge

Ψt(t
m
i , tmj |I

m)



 /∂α0 −

∂ log





∑

ci,ti

Φc(ci|I
m)Φt(ti|I

m)Ψct(ci, ti|I
m)

∏

(i,j)∈Cedge

Ψc(ci, c
m
j |I

m)·

∏

(i,j)∈Tedge

Ψt(ti, t
m
j |I

m)



 /∂α0

=
∂ log Φc(c

m
i |I

m)

∂α0

−




∑

ci,ti

∂Φc(ci|I
m)

∂α0

Φt(ti|I
m)Ψct(ci, ti|I

m)
∏

(i,j)∈Cedge

Ψc(ci, c
m
j |I

m)
∏

(i,j)∈Tedge

Ψt(ti, t
m
j |I

m)





/





∑

ci,ti

Φc(ci|I
m)Φt(ti|I

m)Ψct(ci, ti|I
m)

∏

(i,j)∈Cedge

Ψc(ci, c
m
j |I

m)
∏

(i,j)∈Tedge

Ψt(ti, t
m
j |I

m)





=
∂ log Φc(c

m
i |I

m)

∂α0

−
[

∑

ci,ti

∂ log Φc(ci|I
m)

∂α0

Φc(ci|I
m)Φt(ti|I

m)Ψct(ci, ti|I
m)·

∏

(i,j)∈Cedge

Ψc(ci, c
m
j |I

m)
∏

(i,j)∈Tedge

Ψt(ti, t
m
j |I

m)





/





∑

ci,ti

Φc(ci|I
m)Φt(ti|I

m)Ψct(ci, ti|I
m)

∏

(i,j)∈Cedge

Ψc(ci, c
m
j |I

m)
∏

(i,j)∈Tedge

Ψt(ti, t
m
j |I

m)





=
∂ log Φc(c

m
i |I

m)

∂α0

−
∑

ci∈{+1,−1},ti∈{+1,−1}

∂ log Φc(ci|I
m)

∂α0

P (ci, ti|C
m
Ni

, Tm
Ni

, Im, Θ)

(4.9)
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The log Φc(ci|I) terms in Equation 4.9 is:

log Φc(ci|I) = log
1

1 + e−ci(α0 + α1cmi + α2tmi)

So:

∂ log Φc(ci|I)

∂α0

= −
∂ log[1 + e−ci(α0 + α1cmi + α2tmi)]

∂α0

= −
−cie

−ci(α0 + α1cmi + α2tmi)

1 + e−ci(α0 + α1cmi + α2tmi)

= ci[1 −
1

1 + e−ci(α0 + α1cmi + α2tmi)
]

= ci[1 − Φc(ci|I)] (4.10)

Putting Equation 4.9 and 4.10 into the log-pseudolikelihood function’s partial

derivative with respect to α0:

∂ log
∏M

m=1

∏

i P (cm
i , tmi |C

m
Ni

, Tm
Ni

, Im, Θ)

∂α0

=

∑M

m=1

∑

i ∂ log P (cm
i , tmi |C

m
Ni

, Tm
Ni

, Im, Θ)

∂α0

=
M

∑

m=1

∑

i







∂ log Φc(c
m
i |I

m)

∂α0

−
∑

(ci,ti)

∂ log Φc(ci|I)

∂α0

P (ci, ti|C
m
Ni

, Tm
Ni

, Im, Θ)







=
M

∑

m=1

∑

i







cm
i [1 − Φc(c

m
i |I

m)] −
∑

(ci,ti)

ci [1 − Φc(ci|I
m)] P (ci, ti|C

m
Ni

, Tm
Ni

, Im, Θ)







(4.11)

The first item in Equation 4.11 is the empirical expectation of the term (ci [1 − Φc(ci|I)])

(which is often referred as “the feature term” in learning a Markov Random Field)

in the training set, and the second item in Equation 4.11 is the expectation of the

feature under the model distribution given as the factorization form of Equation 4.4
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and 4.5. When the non-linear optimization converges, that is, the partial derivative

in Equation 4.11 is equal to zero, the feature (ci [1 − Φc(ci|I)])’s empirical expecta-

tion is equal to the model expectation on the training set. Model learning behaves

in the way of changing the model’s parameter to maximally align the parameter’s

corresponding feature to the empirical mean that is observed in the training set.

Similarly for derivatives with respect to α1 and α2,

∂ log Φc(ci|I)

∂α1

= cicmi[1 − Φc(ci|I)]

∂ log Φc(ci|I)

∂α2

= citmi[1 − Φc(ci|I)]

And,

∂ log
∏M

m=1

∏

i P (cm
i , tmi |C

m
Ni

, Tm
Ni

, Im, Θ)

∂α1

=
M

∑

m=1

∑

i







cm
i cmm

i [1 − Φc(c
m
i |I

m)] −
∑

(ci,ti)

cicm
m
i [1 − Φc(ci|I

m)] P (ci, ti|C
m
Ni

, Tm
Ni

, Im, Θ)







∂ log
∏M

m=1

∏

i P (cm
i , tmi |C

m
Ni

, Tm
Ni

, Im, Θ)

∂α2

=
M

∑

m=1

∑

i







cm
i tmm

i [1 − Φc(c
m
i |I

m)] −
∑

(ci,ti)

citm
m
i [1 − Φc(ci|I

m)] P (ci, ti|C
m
Ni

, Tm
Ni

, Im, Θ)







The log-pseudolikelihood function’s derivatives with respect to other parameters

can be derived in the same manner, considering compatibility functions and evidence

functions of the coupled Conditional Random Field model all have the form of logistic

regression.
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4.4.3 Model Learning with Tempered Maximum Pseudolike-

lihood

The proposed coupled Conditional Random Field is a complex image model. In

practice, the learning of the complex coupled Conditional Random Field model is

prone to over-fitting. To avoid over-fitting, a tempered maximum pseudolikelihood is

used for learning the parameters of the coupled Conditional Random Field. Tempered

maximum likelihood technique was first proposed by Hofmann [55] in tempered EM

while learning the parameters of the probabilistic Latent Semantic Analysis model to

improve generalization capability.

In each step, instead of maximizing the original pseudolikelihood (4.4), the tem-

pered maximum pseudolikelihood maximizes a modified pseudolikelihood as follows:

Θ∗
MLβ

≃ argmaxΘ log
M
∏

m=1

∏

i

P β(cm
i , tmi |C

m
Ni

, Tm
Ni

, Im, Θ) (4.12)

The tempered pseudolikelihood is equivalent to discounting the corresponding

free energy by a multiplicative constant β. When β is small, or equivalently, when

the temperature is high, the parameter learning is encouraged to move around the

feasible space more freely. This is observed to have the effect of discounting each

conditional probability in Equation (4.12) to make each of them contribute more

evenly to the joint distribution. Unlike the ‘inverse annealing’ and cross-validation

procedure in [55], the tempered maximum pseudolikelihood used for learning the

coupled Conditional Random Field proceeds in the following manner, simply similar

to deterministic annealing [96]:

1. Initialize β with a small constant and perform maximum pseudolikelihood to

estimate parameters.

2. Using previous steps as initialization, increase β with a small step and perform

maximum pseudolikelihood.

3. Run step 2 until β reaches 1.
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4.4.4 Parameter Initialization

To initialize the parameters for the non-linear optimization of maximum log-

pseudolikelihood, each of the evidence and compatibility functions in Table 4.2 is

first trained separately with standard maximum likelihood estimation methods for

learning logistic regression [83], assuming points are independent. More specifi-

cally, for example, the parameters α0, α1, and α2 of the contour evidence function

Φc(ci|I) = 1

1 + e−ci(α0+α1cmi+α2tmi)
can be learned individually by maximizing its like-

lihood on a set of training data, without considering the effect of other functions in

Table 4.2. Then the learned parameters are used as a starting point for the non-linear

optimization on the joint pseudolikelihood.

4.4.5 Model Inference

With the learned model, generating the most plausible labeling of contour and

texture processes for test images, given their image measurements, can be solved with

probabilistic inference. There are some alternative probabilistic inference criteria that

can be used: Maximum Posterior Marginal (MPM) [54, 66], Minimum Mean Squared

Error(MMSE) [41], and Maximum a Posteriori (MAP) [41] inference. In [54] and [66],

MPM is argued to be more stable than a MAP solution. In our experiments, MPM

inference and MAP inference are observed to perform very similarly to each other,

with negligible differences. Maximum a Posteriori (MAP) inference is chosen for the

experiments in this thesis.

The labeling problem in this thesis is defined on a loopy graph. For probabilistic

inference on a loopy graph, exact inference can occur only in special cases, e.g., Min-

cut algorithm on a binary Ising-model random field. In general cases such as the one

in this thesis, exact inference is intractable, hence approximate inference techniques

have to be used instead. Many alternatives of approximate inference methods, such

as Belief Propagation [41, 90], Gibbs sampling [46], and Graph Cut [19, 50], exist. In

the experiments in this thesis, approximate Maximum a Posteriori (MAP) inference

is carried out using loopy Belief Propagation.
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4.5 Model Learning and Evaluation

In the following sections, the proposed Conditional Random Field model is trained

with a set of labeled images. The parameters of the evidence and compatibility

functions of contour and texture processes as in Table 4.2 are learned by maximizing

the pseudo-likelihood on the set of training images. The learned parameters are

shown to capture the distinct properties of contour and texture processes. Numerical

evaluation of the learned models is carried out on a set of test images. In the current

implementation, the neighborhood is set to 11× 11 for both the contour and texture

processes.

4.5.1 Model Learning and Analysis

The coupled Conditional Random Field is trained on a set of ground truth data,

which are manually labeled. A Matlab-based labeling tool was designed to label edge

points in images as either contour or texture points. Fourteen images were labeled as

a training set, which is shown in Figure 4-3. These images are rich in both contour

and texture, making them suitable for learning the interactions within and between

the two processes. For each of the images, edge points are first extracted. With the

labeling tool, most of the edge points are labeled as either contour or texture. In

Figure 4-3, labeled contour edge points are shown in red, and labeled texture edge

points are shown in green. Unlabeled edge points are shown in black.

To make clear the advantage of the proposed coupled Conditional Random Field

vs. the single-layer Conditional Random Field, the single-layer Conditional Random

Field in Figure 4-1 is also trained for comparison purposes. The parametrization

of the single-layer Conditional Random Field is shown in Table 4.3. The evidence

and compatibility functions have the same logistic regression forms as in the coupled

Conditional Random Field, for a fair comparison. A noticeable difference is that,

for the single-layer Conditional Random Field, the different interaction dynamics of

contour process and texture process are represented within one compatibility function

Ψe(ei, ej|I), which, as will be shown later, leads to a forced trade-off between different
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Figure 4-3: Training set for learning coupled Conditional Random Field and single-
layer Conditional Random Field. Edge points are first extacted, then a majority of
the extracted edge points are labeled as either contour or texture. Contour edges are
shown in red color, while texture as yellow. White edges are left unlabeled.
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• Variables for a pixel i
ei: labeling variable edge pixel ei:
ei = 1: contour pixel; ei = −1: non-contour pixel, i.e., texture pixel.

cmi: contourness measure.
tmi: textureness measure.
δθij: angle between orientation of i and the line joining i and
a neighboring pixel j.
δcmij: absolute difference between the contourness of i and j.
δtmij: absolute difference between the textureness of i and j.

• Evidence function of Φe(ei|I)

Φe(ei|I) = 1

1 + e−ei(λ0 + λ1cmi + λ2tmi)

• Compatibility function of Ψe(ei, ej|I)

Ψe(ei, ej|I) = 1

1 + e−eiej(η0 + η1δθij + η2δcmij + η3δtmij)

Table 4.3: Evidence and compatibility functions of a single-layer Conditional Random
Field model of contour and texture processes. See text for detailed explanation.

a. Model-δθ: compatibility only depends on angular difference:

Ψe(ei, ej|I) = 1

1 + e−eiej(η0 + η1δθij)

b. Model-δcm: compatibility only depends on contourness difference:

Ψe(ei, ej|I) = 1

1 + e−eiej(η0 + η2δcmij)

c. Model-δtm: compatibility only depends on textureness difference:

Ψe(ei, ej|I) = 1

1 + e−eiej(η0 + η3δtmij)

d. Model-all: compatibility depends on all measurements:

Ψe(ei, ej|I) = 1

1 + e−eiej(η0 + η1δθij + η2δcmij + η3δtmij)

Table 4.4: Different compatibility functions of a single-layer Conditional Random
Field.
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dynamics and worse decomposition results. The same set of training samples is used

for training the single-layer Conditional Random Field model.

In the full models in Tables 4.2 and 4.3, the compability functions depend on

three image measurements - (1) δθij, angular difference between the orientation of

edge pixel i and the line joining i and j; (2) δcmij = |cmi − cmj|, absolute contour-

ness difference between pixels i and j; (3) δtmij = |tmi − tmj|, absolute textureness

difference between pixel i and j. Compatibility functions in different models (cou-

pled Conditional Random Field and single-layer Conditional Random Field) could

have quite distinct dependencies on the three measurements, as discussed in Sec-

tion 4.2. To better evaluate these different dependencies in different models, each

model is also trained with the compatibility function dependent on only one of the

three measurements. That is to say, for instance, the single Conditional Random

Field model is trained with different implementation of compatibility function as

shown in Table 4.4. The evidence function remains the same for all instances, i.e.

Φe(ei|I) = 1

1 + e−ei(λ0 + λ1cmi + λ2tmi)
. Similarly, the coupled Conditional Ran-

dom Field model is also trained with different compatibility functions, each of which

depends on a different set of image measurement(s). For simplicity, the four cases in

Table 4.4 are referred to as Model-δθ, Model-δcm, Model-δtm and Model-all respec-

tively.

The learned parameters are listed in Table 4.5. There are several noticeable facts

in the learned parameter of different models:

1. For Model-δθ where compatibility functions only depend on the angular differ-

ence δθij:

for the coupled Conditional Random Field, the learned parameters of the com-

patibility functions for contour process and texture process are different, with

τ0=5.4240 and τ1=−5.3993 for contour and γ0=6.7777 and γ1=−3.7558 for tex-

ture, which captures the disparate interaction dynamics within the two processes

respectively;

whereas the single-layer Conditional Random Field, with learned compatibility
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Model-δθ
coupled CRF single-layer CRF

Φc

α0 α1 α2 Φe

λ0 λ1 λ2

-7.4036 2.7973 7.1600 -4.8556 2.9285 6.1034

Φt

β0 β1 β2

7.4036 -2.7973 -7.1600

Ψc

τ0 τ1 Ψe

η0 η1

5.4240 -5.3993 0.7571 -0.5324

Ψt

γ0 γ1

6.7777 -3.7558

(a) Learned parameters of Model-δθ for both cCRF and single-layer CRF.

Model-δcm
coupled CRF single-layer CRF

Φc

α0 α1 α2 Φe

λ0 λ1 λ2

-4.4558 1.9039 7.5505 -5.4363 1.5867 7.5817

Φt

β0 β1 β2

4.4558 -1.9039 -7.5505

Ψc

τ0 τ2 Ψe

η0 η2

1.4656 -13.3836 2.1681 -12.7884

Ψt

γ0 γ2

2.9286 -12.8005

(b) Learned parameters of Model-δcm for both cCRF and single-layer CRF.

Model-δtm
coupled CRF single-layer CRF

Φc

α0 α1 α2 Φe

λ0 λ1 λ2

-6.3037 3.6045 5.5762 -4.9371 4.1724 4.1971

Φt

β0 β1 β2

6.3037 -3.6045 -5.5762

Ψc

τ0 τ3 Ψe

η0 η3

4.1161 -8.9647 1.5933 -4.3612

Ψt

γ0 γ3

4.7566 -8.1626

(c) Learned parameters of Model-δtm for both cCRF and single-layer CRF.

Model-all

coupled CRF single-layer CRF

Φc

α0 α1 α2 Φe

λ0 λ1 λ2

-2.9588 2.7014 5.5123 -4.1046 2.4582 5.1092

Φt

β0 β1 β2

2.9588 -2.7014 -5.5123

Ψc

τ0 τ1 τ2 τ3 Ψe

η0 η1 η2 η3

2.7942 -2.3865 -8.8175 -3.1492 2.7313 -1.3540 -8.8621 -1.9071

Ψt

γ0 γ1 γ2 γ3

3.7624 -0.9594 -8.6021 -2.1545

(d) Learned parameters of Model-all for both cCRF and single-layer CRF.

Table 4.5: Learned parameters for different models of coupled Conditional Random
Field and single-layer Conditional Random Field.
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parameters of η0=0.7571 and η1=−0.5324, makes a forced compromise while

using only one function to account for both dynamics in the two otherwise

distinct processes.

2. For Model-δcm and Model-δtm:

for the coupled Conditional Random Field, the learned parameters of contour

and texture processes are slightly different; while for the single-layer Conditional

Random Field, the learned parameters are again compromises to those in the

coupled Conditional Random Field.

3. For Model-all where compatibility functions depend on all three measurements:

for the coupled Conditional Random Field, for contour compatibility, the learned

parameter for dependency on angular difference δθij, which is τ1=−2.3727, is

quite different from the corresponding parameter for texture which is γ1=−0.9708.

Other learned parameters of the compatibility functions are comparable for both

processes; while for the single-layer Conditional Random Field, the learned pa-

rameters are an apparent compromise, with η1=−1.3580, which lies between τ1

and γ1.

To visualize the above differences, the learned compatibility functions of Model-δθ,

Model-δcm and Model-δtm are drawn in Figure 4-4. Figure 4-4(a) clearly shows that

Ψc(ci, cj) (red curve) and Ψt(ti, tj) (green curve) are distinct. Roughly speaking, for

small angular differences, e.g., less than 0.5 radian (28.6 degree), Ψc(ci, cj) gives high

compatibility of more than 0.9; whereas for large angular differences, e.g., larger than

1 radian (57.3 degree), the compatibility is smaller than 0.5. This means the contour

compatibility function Ψc(ci, cj) encourages local alignment of edge points, which is

consistent with intuition. On the contrary, the compatibility function Ψt(ti, tj) of

texture process remains large for nearly all angular differences (0∼ π
2
). As a compar-

ison, the compatibility function Ψe(ei, ej) (blue curve) of the single-layer Conditional

Random Field is forced to account for two different interaction dynamics hence lies

between the two different compatibility functions.
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Figure 4-4: Comparisons of different models (better view in color).
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Figure 4-4(b) shows that the dependencies of Ψc(ci, cj) and Ψt(ti, tj) on δcm are

comparable for contour and texture processes. Figure 4-4(c) reveals the same observa-

tion for the dependencies of Ψc(ci, cj) and Ψt(ti, tj) on δtm. Again, the compatibility

functions of the single-layer Conditional Random Field are compromises of the two

processes.

Figure 4-4(d), which plots the learned evidence function Φc of the coupled Condi-

tional Random Field and Φe of the single-layer Conditional Random Field (whose pa-

rameters are shown in Table 4.5(d)), shows another important difference between the

coupled Conditional Random Field and the single-layer Conditional Random Field.

In the 3D plots in Figure 4-4(d), the evidence function Φc of the coupled Conditional

Random Field lies above Φe of the single-layer Conditional Random Field. This in-

dicates that the single-layer Conditional Random Field is stricter in assigning local

evidence of contourness, i.e., only edge points with strong contourness and weak tex-

tureness measurements are given larger local evidence of being contour, whereas the

coupled Conditional Random Field relaxes this compared with the single-layer Condi-

tional Random Field, allowing a much wider range of measurements to be considered

as possible contour. This is also intuitively correct, since the single-layer Conditional

Random Field has no other strong cues of detecting contour while the coupled Con-

ditional Random Field is able to rectify contour with local angular alignment in the

compatibility function.

An example is shown in Figure 4-5. A small patch from the cougar face image in

Figure 4-5(a) is expanded to see the behavior of contour and texture compatibility

functions in the coupled Conditional Random Field as compared with a single-layer

Conditional Random Field. The contour compatibility in cCRF of the highlighted

small patch in Figure 4-5(b) is shown in Figure 4-5(c). The compatibility values

shown in Figure 4-5(c) are the contour compatibilities of nearby edge points to the

center edge point (marked with a red dot in Figure 4-5(b)). It can seen from Figure

4-5(c) that, in the contour channel, only edge points that are well aligned with the

center point have high compatibilities with the center point. Other points off the local

contour have low compatibilities. For the compatibility in texture channel as in Figure
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Figure 4-5: Comparisons of compatibility functions of different models.
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4-5(d), since the texture channel allows random layout, all points in Figure 4-5(d) have

quite good compatibilities because those points all come from similar texture regions.

On the contrary, if all compatibilities are modeled in a single-layer CRF, since the

compatibility function has to represent both characteristics, the compatibility values

in Figure 4-5(e) are apparent trade-off between Figure 4-5(c) and (d).

4.5.2 Model Evaluation

In order to quantitatively evaluate the proposed coupled Conditional Random

Field model and compare it with the single-layer Conditional Random Field, 17 dif-

ferent images are used as a test set. Similar to the training set, the images in this

test set are also rich in both contour and texture, suitable for evaluating contour and

texture interaction. Edges are extracted and labeled using the labeling tool. Then,

probabilistic inference by loopy Belief Propagation is applied to find a Maximum-a-

Posteriori (MAP) estimate of contour and texture labeling. The decomposed contour

and texture are compared with the ground truth labels. Both full models in Table

4.2 and 4.3 (coupled Conditional Random Field and single-layer Conditional Random

Field respectively) are tested and compared.

The performance of different models is evaluated with precision-recall rates and

corresponding F-measure [94]. To see how different models perform on different vi-

sual cues, for each model, precision-recall and F-measure are evaluated on three set-

tings: ‘contour process only’, which measures the models’ performance on contour

detection; ‘texture process only’, which measures the models’ performance on texture

detection; and ‘both contour-texture processes’, which measures the models’ per-

formance on both contour detection and texture detection, i.e., the performance of

contour-texture decomposition. Precision of contour detection is the probability that

a model-generated contour edge pixel is a true contour pixel, measuring how much

noise is in the output of the model; recall is the probability that a true contour edge

pixel is decomposed as contour by the model, measuring how much ground truth is de-

tected. F-measure is the harmonic mean of precision and recall, giving a one-number

summary of performance. Similarly for the texture channel. More specifically:
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Precision of contour process:

Precisioncontour =
Pc

Mc

where Mc is the total number of detected contour points by the model, and Pc is the

number of detected contour points that are labeled as contour.

Precision of texture process:

Precisiontexture =
Pt

Mt

where Mt is the total number of detected texture points by the model, and Pt is the

number of detected texture points that are labeled as texture.

Recall of contour process:

Recallcontour =
Rc

Nc

where Nc is the total number of labeled contour points in an image, and Rc is the

number of labeled contour points that are correctly identified by the model.

Recall of texture process:

Recalltexture =
Rt

Nt

where Nt is the total number of labeled texture points in an image, and Rc is the

number of labeled texture points that are correctly identified by the model.

In each case, the final precision ‘Precisionavg’ and recall ‘Recallavg’ of a model is

determined by the average of per-image precision and recall rates on the entire test

set. For each case, the F-measure is:

F =
2 · Precisionavg · Recallavg

Precisionavg + Recallavg

For contour-texture decomposition, the precision-recall is the overall precision-

recall considering both processes. Since each image is only partially labeled, the

denominators have to be the same for both precision and recall, which is the number of
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labeled points. This leads both precision and recall to the same number. According to

the definition of F-measure, in this case, F-measure of contour-texture decomposition

is the same as precision and recall.

The results of the above evaluation are shown in Table 4.6. For contour detection

as shown in Table 4.6(a), the coupled Conditional Random Field gives a prominent

improvement on contour recall, with 25.6% improvement compared with the single-

layer Conditional Random Field. In one number, the coupled Conditional Random

Field outperforms the single-layer Conditional Random Field in terms of F-measure

by a difference of 0.1113. For texture detection as shown in Table 4.6(b), the coupled

Conditional Random Field also exceeds the performance of the single-layer Condi-

tional Random Field with an F-measure of 0.8986. Over all, as in Table 4.6(c), the

coupled Conditional Random Field, with 87.53% decomposition precision, is much

better than the decomposition by the single-layer Conditional Random Field.

Recallcontour Precisioncontour Fcontour

coupled CRF 83.93% 80.97% 0.8243
single-layer CRF 58.33% 91.69% 0.7130

(a) Performance of models on contour process

Recalltexture Precisiontexture Fcontour

coupled CRF 89.65% 90.07% 0.8986
single-layer CRF 97.67% 80.42% 0.8821

(b) Performance of models on texture process

Recalldecomp = Precisiondecomp = Fdecomp

coupled CRF 87.53%
single-layer CRF 83.20%

(c) Performance of models on contour texture decomposition

Table 4.6: Performance evaluation of different models.

Figure 4-6 compares side-by-side the precision and recall rates of the two mod-

els for each of the test images. Figure 4-6(a) shows the per-image recall-rates and

precision-rates for contour detection. Cyan bars are rates for the coupled Conditional

Random Field model, with magenta bars for the single-layer Conditional Random
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Field. It is clear in the graph that recall-rates of the coupled Conditional Random

Field consistently outperform those of the single-layer Conditional Random Field.

Figure 4-6(b) and 4-6(c) show the per-image recall-rates and precision-rates for tex-

ture detection and overall contour-texture decomposition respectively. In each case,

the coupled Conditional Random Field either outperforms or is comparable to the

single-layer Conditional Random Field.

For visual comparison, the decomposition results by the two models on the test

images are shown in Figure 4-7, which clearly shows that the coupled Conditional Ran-

dom Field, with the capability of accounting for different dynamics in different lay-

ers, has much better decomposition, especially in the contour channels. Whereas the

single-layer Conditional Random Field misses many contour edges and over-estimates

texture process, especially for contour points where there exist many nearby texture

points. This clearly shows the importance of the proposed coupled Conditional Ran-

dom Field model.

Figure 4-8 gives some examples of typical images where the proposed method’s

performance degrades. For instance, the spines of the hedgehog in Figure 4-8 have

very high contrast, thus the local evidence of contour dominates the coupled Condi-

tional Random Field inference and these pixels are grouped as contours. The contour

of the cougar in Figure 4-8 has low contrast against the background thus a major part

of the contour is missed. To recover these kinds of contours and textures correctly,

we speculate that other image properties, such as regions and class shape models,

should be incorporated into the framework.

4.6 Summary

In this chapter, a novel coupled Conditional Random Field is proposed to model

and decompose the contour and texture processes in natural images. The coupled

Conditional Random Field model uses separate layers of random field grids to repre-

sent different processes. This structure allows each layer to focus on the interactive

dynamics of each individual process. The interaction between different processes is
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modeled by the coupling links between different layers. The forms of the evidence

and compatibility functions in the coupled Conditional Random Field are discrimi-

native logistic regression functions. Learning and inference methods for the coupled

Conditional Random Field are developed.

The importance of the proposed coupled Conditional Random Field is first shown

with the analysis of the learned model parameters. As compared with a single-layer

Conditional Random Field, the coupled Conditional Random Field is able to capture

the distinct interactive dynamics of different processes. On the contrary, without

separate layers for each individual process, the single-layer Conditional Random Field

is forced to introduce unacceptable compromises using a single compatibility function

to model the disparate dynamics of different processes. An empirical evaluation is

also carried out on a set of labeled test images. The F-measure based on the precision-

recall rates shows that the proposed coupled Conditional Random Field outperforms

the single-layer Conditional Random Field in contour and texture decomposition.

In the proposed computational model of object recognition, the contour and tex-

ture channels decomposed by the coupled Conditional Random Field model are first

matched separately and then combined for the purpose of object recognition. In the

next chapter, suitable appearance and geometric features are introduced for matching

each individual channel across different objects. Adaptive combination of multiple

visual cues will be developed in Chapter 6.
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(b) Per-image recall of texture detection Per-image precision of texture detection
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Figure 4-6: Comparisons of per-image precision and recall rates of coupled Condi-
tional Random Field and single-layer Conditional Random Field.
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Figure 4-7 (a)
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Image and edge labeling

Contour and texture decomposition by coupled CRF

Contour and texture decomposition by single-layer CRF

Figure 4-7 (b)
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Image and edge labeling

Contour and texture decomposition by coupled CRF

Contour and texture decomposition by single-layer CRF

Figure 4-7 (c)
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Image and edge labeling

Contour and texture decomposition by coupled CRF

Contour and texture decomposition by single-layer CRF

Figure 4-7 (d)
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Figure 4-7 (e)
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Image and edge labeling

Contour and texture decomposition by coupled CRF
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Figure 4-7 (f)
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Image and edge labeling

Contour and texture decomposition by coupled CRF
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Figure 4-7 (g)
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Image and edge labeling

Contour and texture decomposition by coupled CRF
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Figure 4-7 (h)

99



Image and edge labeling

Contour and texture decomposition by coupled CRF

Contour and texture decomposition by single-layer CRF

Figure 4-7 (i)

Figure 4-7: Comparison of contour and texture decomposition by the coupled Con-
ditional Random Field and the single-layer Conditional Random Field models.
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Figure 4-8: Some examples where coupled Conditional Random Field’s decomposition
performance degrades.
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Chapter 5

Matching Decomposed Visual Cues

With the coupled Conditional Random Field model in Chapter 4, visual informa-

tion such as contour and texture in images are decomposed into different channels.

Each of the decomposed visual information captures a distinct perceptual aspect of

objects. Thus, with the decomposition, we are able to investigate different visual

stimuli separately to fully leverage each perceptual cue. This chapter introduces the

features and the matching schemes for the decomposed contour and texture channels,

and empirically evaluates the effects that various parameters of the matching schemes

exhibit on the performance of object recognition.

5.1 Choices of Matching Schemes

In Chapter 3, low-level measurements are introduced for the purpose of measur-

ing contourness and textureness, and modeling and decomposing contour and texture

in images with the proposed coupled Conditional Random Field. For the task of

object recognition, the appearance and geometry features in these decomposed vi-

sual channels can be used to match different objects. In general, there are three

levels of features and matching schemes for representing and recognizing visual re-

semblance: global feature matching, semi-local feature matching and local feature

matching. Global features, such as color histogram [45, 104, 106] and eigenspace rep-

resentation [29, 84], generally compress all the visual information in an image into
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a holistic representation derived in a global statistical manner. For example, Figure

5-1(a) shows the RGB-histogram feature for a face image, where RGB values of all

pixels in the image are aggregately counted into histogram bins. Semi-local features

are typically defined as certain geometric configurations of local regions that are stable

within multiple object instances of the same class, and in some cases, across a range

of views of the objects. Figure 5-1(b) illustrates that some facial regions such as eyes,

nose and eyebrows have a unique appearance and geometric composition and form a

semi-local feature that is characteristic to the class of face objects. Local appearance

features describe what relatively small regions or patches in an object image look like

and represent the object with the collection of appearance descriptors of these local

regions. Figure 5-1(c) draws a set of local features derived from a detector based

on extrema of Different-of-Gaussians operators proposed by Lindeberg [74] and Lowe

[77].

Recent advances have demonstrated the effectiveness of local appearance features

compared with global features and semi-local features, in application fields such as

image indexing and retrieval [101], wide-baseline stereo [99], video matching and

search [103], object identification and categorization [38, 77]. Using local appearance

features has many important advantages:

- Robustness to clutter and occlusion: Since local appearance features are

typically small in spatial support, a significant portion of local features will

remain within or around the object to be described, without including much

of the background into descriptors. So even when an object is presented in a

non-uniform or changing background, local appearance features can still remain

largely unaffected and hence make matching across different images more robust.

- Expressiveness: Local features not only capture the local geometric configu-

ration of salient shape elements such as points, lines and curves, but also repre-

sents the appearance of local regions. These rich high-dimensional descriptors

provide strong cues for analyzing image content.

- Compactness: The number of extracted local features in general is much
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(a) Global color histogram feature. RGB-values of pixels in the face image are
formed into three histograms, one for each of the RGB color channels.

(b) Semi-local feature. The facial region marked by yellow circles forms a stable
geometric configuration, or, a semi-local feature.
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(c) Local features detected by a Different-of-Gaussians operator. Red circles are
detected local features. Radiuses of circles represent detected scale. Blue arrows

indicate detected feature orientation.

Figure 5-1: Examples of global features, semi-local features and local features of
images.
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smaller than the number of pixels in the original images. Image representation

based on the collection of local features is typically compact while being ex-

pressive. Thus the processing time and storage requirements are significantly

reduced with most of the visual information preserved.

Complementary to appearance matching, shape matching based on the geometry

of objects has been extensively studied and shown to achieve good recognition per-

formance in many applications too. Roughly speaking, there are two categories of

shape matching: exact shape matching such as matching based on Hausdorff Distance

[60, 98], Chamfer matching [15, 107], shape context [7] and deformable models [29],

and weak geometric matching such as constellation model [38], implicit shape model

[71], spatial pyramid matching [70] and boosted part-based model [5]. Exact shape

matching is effective when objects are imaged with a clean uniform background, or

objects can be segmented out from background, or clean exemplar objects can be

obtained beforehand. With background clutter and no clean exemplar object, the

performance of exact shape matching significantly degrades. Weak geometric match-

ing can tolerate occlusion and background clutter to a greater extent than exact shape

matching. Many weak geometric matching schemes depend on local features to detect

salient object ‘parts’ and add additional layers of geometric representation on top of

local appearance features to improve expressiveness and discriminability.

In this thesis, the visual content decomposition by the coupled Conditional Ran-

dom Field enables many of the above matching schemes to be used in a collective and

complementary way to fully utilize different characteristics of multiple visual stimuli.

That is, we are able to use local appearance features to describe object images, and

apply weak geometric matching to recognize the different visual content contained in

contour and texture channels. In the meantime, even with background clutter and

no clean exemplar object, since the salient contour structures in images are decom-

posed into a separate, clean and sparse channel, the decomposition scheme enables

us to employ exact shape matching on the decomposed contours. This is shown to

be complementary to weak geometric matching with local appearance features. An-

other merit of this ‘recognition-through-decomposition-and-fusion’ scheme, besides
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empowering multiple complementary matching schemes to maximally leverage each

individual channel, is its capability to selectively combine various matching schemes

to adapt to different characteristics of different classes of objects to further improve

recognition performance, which will be discussed in Chapter 6.

5.2 Local Features

As basic building blocks of the visual matching schemes, local appearance features

are used for describing the appearance of each of the contour and texture channels.

With contour and texture decomposition, the information in the original images is

represented in a cleaner and clearer way. The contour channel captures salient curvi-

linear structures in the images, such as occluding boundaries of foreground objects

and structured objects in the background. The texture channel encapsulates the

non-structured yet oftentimes perceptually coherent collection of elements in many

images, most of which come from characteristic texture of foreground objects such as

keyboard patterns of laptops and background such as grassland. Thus the decompo-

sition of visual information empowers more sensible feature extraction and matching,

with different visual channels emphasizing different characteristics of an object of

interest.

5.2.1 Feature Point Extraction

Before determining how to describe appearances, we need to determine what fea-

ture extraction scheme should be used, i.e., how to determine the spatial location

and scale of feature points, which is the typically termed as ‘feature detector’.

Invariant Features

Over the last decade, since the seminal work of Schmid and Mohr [101] and Lowe

[77] of applying multi-scale corner and blob detectors in object recognition, there has

been a flurry of research and applications in invariant feature detectors. Invariant

feature detectors [64, 74, 77, 81] process images to obtain a set of scale- or affine-
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invariant regions, which are theoretically repeatable over images taken under different

imaging conditions which bring geometric distortion to the images. These scale- or

affine- invariant features are expected to normalize extracted patches by reversing

corresponding geometric distortion, leading to visually comparable normalized feature

regions.

One noticeable fact about invariant feature detectors is that most of these scale- or

affine- invariant feature detectors were first derived for the task of matching the same

objects or scenes under different viewing conditions, which is an ‘object identification’

problem. That is, the observed objects or scenes remain the same in different images

hence the shape and appearance of the objects or scenes of interest remain largely

unchanged up to a view-induced geometric distortion. By uncovering the underlying

geometric distortion, invariant feature detectors are expected to extract the same

salient points across different images of the same objects or scenes.

Due to the success of invariant features in ‘object identification’, researchers have

been extending the application of invariant features to the problem of object cat-

egorization, (i.e., to recognize different object instances of one class versus object

instances of other classes,) with the expectation that salient invariant features would

capture most of the representative and discriminative visual information contained in

objects, and in the meantime be highly repeatable within different instances of the

same object class. While the applications of invariant feature detectors have shown

to be useful in many object categorization schemes [2, 38, 62, 113], there has been

some doubt about the effectiveness of invariant features in object categorization. One

critique is that, since object categorization deals with different object instances, in-

variant features are not truly invariant in different object instances of the same class,

considering the large appearance variation of objects within the same class. Hence

invariant feature detectors mainly act as a means to reduce the amount of informa-

tion to be processed while keeping most of the salient information in the extracted

representation. Another critique is invariant feature detectors often result in a very

sparse set of features, especially when object images are relatively small. This prac-

tice of ‘thresholding’ information too early and too aggressively is suspected to be
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less effective at representing and recognizing object images.

Densely Sampled Features

Due to the aforementioned shortcomings of invariant feature detectors, many ap-

proaches of object categorization have reverted to dense sampling of features on object

images and have shown the effectiveness of this feature extraction method in object

categorization [9, 70]. Dense sampling in the spatial and/or the scale space can

achieve the same effect of reducing computational time while retaining most of the

salient information in images. And dense sampling often extracts more features than

invariant feature detectors and lets machine learning techniques in subsequent stages

to utilize the features in a selective way. This avoids the problem of ‘pre-mature’

compression of information as in invariant feature detectors.

Given the above consideration, this thesis uses dense sampling to extract features.

5.2.2 Local Appearance Descriptor

As shown by the empirical evaluations by Mikolajczyk and Schmid [82], the SIFT

(Scale Invariant Feature Transform) descriptor [77] is the most robust and discrim-

inative feature in the task of visual matching, among many other alternatives. The

descriptor used in this thesis is derived from this popular SIFT descriptor.

Original SIFT Descriptor

In its original form, the SIFT descriptor takes each local region, finds gradients of

image grayvalues and then normalizes for orientation by finding the dominant gradient

orientation and rotating the region to be aligned along the dominant orientation.

Then 8-bin histograms of gradient orientation are formed in each cell of a 4 × 4

spatial grid on the local region. In forming the histograms, each pixel’s gradient

orientation is weighted by its gradient magnitude. To put more weights on pixels

near the center of the local region, each pixel is also weighted using a Gaussian

function based on the pixel’s distance to the center. Robustness is also achieved by
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(a) Object image (b) An extracted region

(c) Image gradient of the region (d) SIFT descriptor

Figure 5-2: A schematic illustration of definition of the SIFT descriptor. See text for
details.

soft-assigning pixel gradient to orientation bins based on the distances to sub-region

boundaries and the distances to orientation bin centers. A 128 dimensional feature

vector is formed by concatenating the 8-bin weighted gradient orientation histograms

from all 16 cells. This 128 dimensional feature vector acts as a rich and expressive

descriptor of the local region. Figure 5-2 gives an illustration of this process for a

32-dimensional SIFT descriptor. For the image of a laptop in Figure 5-2(a), a local

region is extracted as indicated by the green square in Figure 5-2(b). Figure 5-2(c)

is a schematic illustration of gradient magnitude and direction within the extracted

region. The SIFT descriptor in Figure 5-2(d) is defined on a 2 × 2 spatial grid on

the region, with each cell covering the spatially corresponding pixels in Figure 5-2(c).

Each cell of the 2 × 2 spatial grid computes a weighted histogram of the gradient
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within the corresponding 4 × 4 sub-squares in Figure 5-2(c). Concatenating the 8-bin

histograms in the 4 cells in Figure 5-2(d) gives a 32-dimensional SIFT descriptor of

the extracted region.

Lowe [77] and Mikolajczyk and Schmid [82] also show that the SIFT descriptor

is robust to slight local deformation. For example, in Figure 5-2(d), if pixels in

each of the 2 × 2 spatial cells move around to a small extent due to a slight affine

transformation, as long as most of the pixels remain in the same cell before and after

the small geometric transformation, the histogram in each cell by and large remains

unchanged hence the overall descriptor remains stable.

SIFT Descriptor in Decomposed Contour and Texture Channels

While the original SIFT descriptor has been shown to be effective in many cir-

cumstances, many applications of the SIFT descriptor, such as many bag-of-feature

approaches for image matching and retrieval, use the SIFT descriptor on local patches

of the original image, which mix all pixels in a local patch and describe the patch as

an integral entity. This practice essentially gives uniform weights to all the informa-

tion contained in a patch. As stated in Section 1.1, in object recognition, it is more

sensible that different visual cues should play different roles in discriminating various

object classes. This characteristic can be represented and achieved with the contour

and texture decomposition.

We use a SIFT-like descriptor on each of the decomposed contour and texture

channels. In this descriptor, each image patch is divided into 3 × 3 cells, on each of

which an 8-bin histogram of edge orientation is computed. Then the 9 histograms are

concatenated into a 72-dimensional vector. The two SIFT vectors from the contour

and texture channels form the descriptor for the patch. Figure 5-3 gives a schematic

illustration of this process for 32-dimensional SIFT descriptors on the decomposed

channels. First, the original laptop image in Figure 5-3(a) is decomposed by the

proposed coupled Conditional Random Field model, resulting in two separate visual

channels of contour and texture as in Figure 5-3(b) and (c) respectively. For some

sampling point as indicated by the red dot in Figure 5-3(b) and (c), a local region
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Figure 5-3: A schematic illustration of the SIFT descriptors on decomposed channels
of contour and texture. See text for details.
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(green square) is defined. Take the contour channel as an example. As illustrated

by Figure 5-3(d), only edges belonging to the contour channel are considered in the

edge orientation of the contour channel. And the SIFT descriptor in the contour

channel only aggregates the weighted edge orientation for contour edges, to form the

histograms in Figure 5-3(f). The concatenation of the histograms in Figure 5-3(f)

forms the SIFT descriptor for the patch in the contour channel. Similarly for the

SIFT descriptor in the texture channel, as illustrated in Figure 5-3(e) and (g).

There are two differences between the SIFT descriptor defined above and the

original SIFT descriptor. The first difference to the original SIFT descriptor is that

edge orientation in the descriptors is weighted by the edge pixels’ probabilities of

being contour or texture depending which channel is being described, whereas in the

original SIFT, orientation is weighted by gradient magnitude. On one hand, using

probabilities of being contour or texture approximately has the same effect as using

gradient magnitude, i.e., giving less weights to less confident points. On the other

hand, by local belief propagation in the proposed coupled Conditional Random Field

model, probabilities of edge pixels with weak evidence of contour or texture can be

boosted while probabilities of false contour and texture pixels can be suppressed.

Hence it is reasonable to expect the final probabilities from the MAP inference of

coupled Conditional Random Field give better estimates of confidence in computing

edge orientation histograms.

The second difference to the original SIFT descriptor lies in the normalization of

dominant orientation. The original SIFT descriptor achieves rotational invariance by

the aforementioned dominant orientation normalization. However, for the purpose

of generic object categorization, the patch-wise rotational normalization is a dubi-

ous practice for many rigid or slightly non-rigid objects where only a single global

rotational transformation exists. First, this kind of patch-wise rotational normal-

ization is expected to reduce the discriminability of the descriptor since one degree

of freedom is eliminated. Moreover, dominant orientations typically are inconsistent

across different patches, as can be seen from the blue arrows in Figure 5-1(c). In

the descriptor in this thesis, the dominant orientation normalization is removed. One
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reason is that, for many applications the observed objects are imaged under their

corresponding ‘canonical poses’ [23, 89]. Most of these canonical poses only involve

very slight rotational variation. Another reason is, for objects under non-canonical

poses, it could be more reasonable to first infer the global rotation of the objects

and then use the global transformation to normalize the pose of the observed objects.

After global rotational normalization, local patch-wise rotational normalization is no

longer needed.

An additional merit of using the modified SIFT above is that the descriptors are

computed on decomposed edge maps of the contour and texture channels, which are

much sparser than the original image. Computing SIFT on edge maps doesn’t lose

much information compared with computing SIFT on the original grayscale image,

since large gradients dominate the original SIFT and edge maps are close approxima-

tion of large gradients. Without losing much of the discriminability of SIFT, we gain

speed improvement due to the sparsity in computation of SIFT on the edge maps.

The soft-assignment of histograms to subregions and orientation bins, and Gaus-

sian weighting based on pixel distances to the center pixel, as in the original SIFT, are

kept because these techniques allow better robustness against small local geometric

changes.

Although the descriptor definition is the same for the two channels, because the

contents are different for the decomposed channels, the underlying structures cap-

tured by the descriptors stress different aspects of the object under analysis and have

different semantic meanings in contour and texture channels. As illustrated by Figure

5-3(b) and (c), the contour channel has a sparse representation of prominent object

contours, thus the descriptors in the contour channel emphasize more on local shape

information, such as characteristic layouts of local elementary geometric components

of lines, curves and corners etc., of the object. And the texture channel typically

separates out characteristic elements such as fur, feather, keyboard patterns, leaves

and grassland, which are also perceptually salient for related object classes and/or

background. So the descriptors in the texture channel mainly focus on these impor-

tant textural information contained in objects and backgrounds, without negatively
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impacting the contour information in the other channel.

Build Visual Vocabularies

To match different images based on the SIFT descriptors, this thesis employs a

vocabulary-based matching approach which will be discussed in Section 5.3.1. Here

the definition and derivation of a visual vocabulary are introduced. As commonly

termed in the field of object recognition, ‘visual words’ represent quantized local

appearance descriptors. A ‘visual vocabulary’ is a collection of visual words which

are quantized from local appearance descriptors of a set of training images. Using

a quantized visual vocabulary usually helps to efficiently establish correspondences

of local image patches in object identification and categorization. All local patches

with the same visual word label are considered as matched patches. It is observed in

practice that the ‘granularity’ of a visual vocabulary has some impact on the capability

of generalization: a coarse quantization of descriptors tend to tolerate well intra-class

variations, while a fine quantization of descriptors tend to capture more detailed

differences in appearance of local patches and give more discriminative capability.

In this thesis, visual vocabularies are built from a small set of training samples

of a dataset. For each of the contour and texture channels, a visual vocabulary is

learned by clustering SIFT descriptors in the corresponding channel from the set of

training samples. Clustering is carried out with a K-means algorithm.

5.2.3 Color Feature

In many classes of objects, color is also a significant visual cue for recognition. To

extract color-based features, a HSV (Hue-Saturation-Value) representation of color

is used. The HSV representation describes perceptual color relationships more accu-

rately than RGB, while remaining computationally simple. This color description is

more familiar for humans, in terms of the concepts of what kind of color it is, how

saturated the color is, and whether the color is bright or dark.

A color dictionary is built in the following way. For the HSV space, Hue is
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quantized into hc bins, Saturation are quantized into sc bins, and Value are quantized

into vc bins respectively. Thus hc × sc × vc color words are generated, which form a

color dictionary as illustrated by Figure 5-4(1).

The extraction of color features used in this thesis is illustrated in Figure 5-4(2)-

(6). For each extracted local patch, the RGB values of all pixels of the patch are

transformed into the HSV space as in Figure 5-4(2), (3) and (4). In Figure 5-4(5),

for the small local patch, average HSV values are computed respectively. By looking

at which bin each of the HSV values falls into, the corresponding color word can be

assigned to the local patch as in Figure 5-4(6).

RGB color space HSV color space

Average

(2) Extract a small local patch

(3)  Representation in RGB (4)  Representation in HSV

H: 0.2461

S: 0.4630

V: 0.5656

(5)  Average HSV

Discretization

(1)  Discetize HSV space into color visual words

Color words 1

200

Color 
Dictionary

Color word: 
#33

(6) Assign color word 
index to the patch

Figure 5-4: Illustration of the definition of color features. (1): The HSV color space
is discretized. Each quantized color is regarded as a color word. All color words form
the color dictionary. (2): For an image, a small local patch is extracted. (3) and (4):
The RGB colors in the local patch are transformed to HSV space. (5) Average Hue,
Saturation and Value are computed respectively on the local patch. (6) The color
dictionary is referenced to assign the corresponding color word index to the average
HSV of the patch.
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5.3 Matching Individual Decomposed Channels

5.3.1 Spatial Pyramid Matching of Local Features

With the above feature extraction, an object image can be represented by the col-

lection of local appearance features and color features, together with their correspond-

ing spatial locations. Different images can be matched based on this representation.

One method is to use the collection of features as a ‘bag-of-features’, i.e., regarding

the features as an orderless collection without considering the sequential or spatial

information, and matching the global statistics of the set of orderless features. When

the features used are invariant features, the ‘bag-of-features’ approach is an invariant

matching scheme in theory. Figure 5-5(a) shows a toy example of the bag-of-features

representation.

Another approach is to add order or spatial information in the matching scheme

to achieve rough geometric constraints, which typically provide additional discrimina-

tive cues during matching. Some methods [49] simply append corresponding spatial

locations to extracted features to get an augmented feature matching scheme. Lazeb-

nik [70] proposes a “global” representation based on aggregating statistics of local

features over fixed subregions and a kernel-based matching scheme that computes

a rough geometric correspondence. The method is based on the efficient pyramid

matching scheme proposed by Grauman and Darrell [48], with an extension of repeat-

edly subdividing an image and computing histograms of local features at increasingly

fine resolution, termed ‘spatial pyramid matching’. While these spatially-augmented

matching methods are non-invariant since absolute or relative spatial locations of fea-

tures are used in matching, they are shown in practice to achieve better recognition

performance in challenging data sets, especially when objects are imaged under their

canonical poses and fill a majority of the image areas. Figure 5-5(b) give a schematic

illustration of the spatial-pyramid representation.

As the toy example in Figure 5-5(b) shows, in spatial pyramid matching, an image

is subdivided into several levels of resolution. At each level l, the image is divided by

an nl × nl regular grid, where nl = 2l. Higher levels give more detailed subdivisions
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(a) Bag-of-features representation.

(b) Spatial-pyramid representation.

Figure 5-5: Illustration of bag-of-features and spatial-pyramid representation. (a) In
the bag-of-features representation, global statistics, such as occurrence frequencies,
are derived from the ensemble of features in the entire image. (b) In the spatial-
pyramid representation, an image is divided into three levels of resolution. For each
resolution, statistics such as occurrence frequencies in each spatial cell can be calcu-
lated. Statistics from all levels collectively form the representation. Different levels
of resolution can have different weights in the representation.
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of the image. At each level, feature statistics such as the number of occurrences

are calculated in each cell. When the image is matched against another image, the

feature statistics in a certain cell at one level are only matched to the same cell of

the other image. With this matching method, a higher level of resolution effectively

puts more spatial constraints in feature matching, since features are considered as

matched features only when they fall into the same small spatial cell. Typically,

higher levels of resolution have larger weights in matching, e.g., W2 > W1 > W0 in

Figure 5-5(b). With this weight setting, the matching scheme places more emphasis

on spatial correspondences, which is not addressed by the bag-of-features matching

scheme. This gives the spatial pyramid matching a property of achieving rough

geometric matching.

Considering its good performance and efficiency, ‘spatial pyramid matching’ is

used in this thesis to match the local appearance features and color features in both

contour and texture channels. More formally, spatial pyramid matching defines a

matching kernel in the following manner:

Let X and Y be two sets of quantized visual word indices for extracted features of

two images. For a given resolution l, a spatial histogram can be formed for each visual

word, as illustrated in Figure 5-5(b). Each of these histograms can be matched to

the histogram of the same visual word at the same resolution of another image, using

the measure of histogram intersection. And the matching score of this resolution l is

the sum of all histogram intersection scores for all visual words. Mathematically, the

matching score for resolution l is:

I l(H l
X , H l

Y ) =
N

∑

n=1

2l
∑

i=1

min(H l
Xn

(i), H l
Yn

(i))

where i is the index of histogram bin and l is the resolution level; n represents the

index of visual words, and N is the size of visual vocabulary; H l
Xn

and H l
Yn

denote the

spatial histograms of X and Y at the resolution l for nth visual word. For multiple

resolution l = 0, 1, ..., L − 1, the weight associated with level l is set to 1
2L−l , giving

larger weights for finer resolutions. The complete pyramid matching score is given by

a weighted aggregation of matching scores from all resolutions:
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kL(X,Y ) = IL +
L−1
∑

l=0

1

2L−l
(I l − I l+1)

=
1

2L
I0 +

L−1
∑

l=0

1

2L−l+1
I l. (5.1)

5.3.2 Shape Matching with Robust Oriented Chamfer Dis-

tance

In the spatial pyramid matching scheme above, the SIFT descriptors capture local

appearance and the matching pyramid applies rough geometric constraints to recog-

nition by matching position-word distributions at different resolutions. Neither of the

descriptors or the spatial pyramid matching scheme employs exact shape matching

for recognition. However, for many classes, shape correspondence is also a salient

visual cue for recognizing object instances. In this thesis, in addition to local appear-

ance and rough geometric matching, we also leverage shape matching in the contour

channel with robust chamfer matching. Usually chamfer matching performs poorly

in cluttered images. This shortcoming of chamfer matching is, to a large extent, mit-

igated by the fact that salient contours in an image are decomposed into a separate,

clean and sparse channel.

Chamfer matching works reasonably well for recognizing rigid or slightly de-

formable objects. In its original form, chamfer distance is a symmetrical similarity

measure defined as follows:

Given two point sets U = {ui}
n
i=1 and V = {vj}

m
j=1, the chamfer distance function

in one direction is the mean of the distances between each point ui ∈ U and its

corresponding closest point in V :

dchamfer(U ,V) =
1

n

∑

ui∈U

min
vj∈V

||ui − vj|| (5.2)

The chamfer distance in the other direction, dchamfer(V ,U) can be defined in a

similar way. The symmetric chamfer distance is computed by averaging dchamfer(U ,V)

and dchamfer(V ,U). The chamfer distance between two point sets can be efficiently
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computed using distance transforms [16].

Also, researchers have found that limiting contributions from outliers and adding

orientation in the matching procedure will greatly improve the performance. Similar

to the spirit of [102, 107], the robust oriented chamfer distance used in this thesis is

defined as follows:

d(X,Y ) =
1

Nx

∑

xi∈X

max
(

minyj∈Y ||xi − yj||, τ
)

+ λ
1

Nx

∑

xi∈X

(1 − e
−

δθ2
xiyj

2σ2
θ ) (5.3)

where xi and yj are positions of edge pixels in image X and Y respectively, Nx is the

number of edge pixels in image X, and δθxiyj
is the difference between the orientation

of pixel i and its closest match pixel j in image Y , where the orientation of pixels i

and j is defined by the direction with maximum orientation energy as described in

Section 3.2.1. The first term in Equation 5.3 is the truncated chamfer distance, and

the second term is a Gaussian penalty for orientation differences. τ is the threshold

for truncation, and λ is a relative weight for orientation match. To account for

misalignment, X is slightly translated and rotated and the best match to Y is kept.

To make a symmetrical distance, d(Y,X) is also computed in a similar way and the

average of d(X,Y ) and d(Y,X) is taken as the similarity between X and Y . This

process is schematically illustrated in Figure 5-6.

To compute kernel entries from pair-wise chamfer distances, another Gaussian

form is used

Krchamfer(X,Y ) = e
−

[(d(X,Y ) + d(Y,X))/2]2

2σ2
k (5.4)

where K(X,Y ) is the chamfer matching kernel entry.

In practice, it is observed that although the robust chamfer matching is somewhat

crude in matching shapes, adding this channel is complementary to the rough geo-

metric matching by spatial pyramid matching, and helps to achieve better recognition

performance. It is expected that better shape modeling and matching schemes can

be integrated in this framework and provide an extra performance boost.
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(a) Images to be matched

(b) Image Y is translated and rotated, and the best match to X is kept

X
Y

Figure 5-6: Illustration of computing the robust chamfer distance in one direction.
Two laptop images to be matched are shown in (a). Robust chamfer distance is
computed between the contour channels X and Y of the two images. To compute the
robust chamfer distance from Y to X, Y is transformed by a series of translation and
rotation, and the distances d(X,Y ) of these transformed images to X are computed
with Equation 5.3. The best match of these distances d(X,Y ) is kept as the robust
chamfer distance from Y to X.
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5.4 Experiments

The different matching schemes used in this thesis are evaluated on a widely used

dataset: Caltech-101 [37]. This dataset consists of images from 101 object categories,

and contains from 31 to 800 images per category. Most images are of medium res-

olution, around 300 × 300. Significant amounts of both inter-class variability and

intra-class variation exist in the object classes of Caltech-101. Although many as-

pects of object recognition such as clutter, pose, and scale changes are lacking in

this dataset, Caltech-101 is one of the most challenging datasets and the most widely

adopted testbed for multi-class object categorization algorithms. Evaluation on this

dataset helps to compare the relative performance of the proposed method to the

state of the art.

Using the test convention for Caltech-101, the evaluation runs with different num-

bers of training samples per class, and tests on up to 50 images per class. For each

experiment, the algorithm is evaluated with 10 runs with different randomly selected

training and test samples, and the average of per-class recognition rates is reported.

One caveat is that the class of Faces in Caltech-101 is much larger than other classes.

To avoid image size artifacts, in our experiments face images are scaled down to

around 300×300 while preserving aspect ratio.

Another parameter to be set is the maximum level of resolution L in the spatial

pyramid matching scheme. In their original work [70], Lazebnik et al. tested on L =

{0, 1, 2} and found L = 2 achieves better recognition results than coarser resolutions.

In the experiments in this thesis, for a fair comparison, L is also set to 2 as in

[70]. Note, however, Bosch et al. [18] reported that using L = 3 gives additional

performance improvements.

With the matching kernels in the decomposed channels, a one-versus-one multi-

class Support Vector Machine (SVM) [27] is trained and used for classification. For

each matching scheme, the parameters such as the image patch size and the vocab-

ulary size are observed to have different impact on the classification results. The

following sections empirically demonstrates the effects of these parameters.
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5.4.1 Spatial Pyramid Matching of Local Appearance Fea-

tures

Effect of Visual Vocabulary Size of SIFT Features

The first experiment is used to evaluate the effect that different visual vocabulary

sizes exhibit on recognition performance. A set of 505 training images is formed by

randomly selecting 5 images from each class of the Caltech-101. In this experiment,

SIFT patch size is fixed to 50 for both contour and texture channels. Visual vocab-

ularies are generated by clustering SIFT descriptors from the 505 training images.

Descriptors from each channel are clustered into 100, 200, 400 and 600 visual words

respectively. The classification performance of contour and texture channels for these

vocabulary sizes are shown in Table 5.1 for 30 training samples per class. Figure 5-7

draws the corresponding box-plots.

Overall, as seen from Table 5.1 and Figure 5-7, with respect to changes of visual

vocabulary size, recognition performance only fluctuates within a small range. Mid-

sized visual vocabulary gives slightly better improvement in recognition performance

compared with too coarse and too fine vocabularies, especially in the contour channel

as in Figure 5-7(a). The reason could be that, as stated in Section 5.2.2, too coarse

vocabularies over-stress tolerance of intra-class variations, and too fine vocabularies

are sensitive to intra-class variations and lose generalization capability.

Vocab. Size 100 200 400 600
Reco. rate
(contour)

59.27% (0.64) 61.37% (0.94) 62.63% (0.84) 61.16% (1.03)

Reco. rate
(texture)

36.96% (1.13) 37.68% (1.09) 37.30% (0.97) 37.53% (1.12)

Table 5.1: Comparison of average per-class recognition rates of appearance matching
on Caltech-101 in contour and texture channels respectively, with different visual
vocabulary sizes. Numbers in parenthesis are standard deviation.
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(a) Performance comparisons of different vocabulary sizes on appearance matching
in the contour channel.
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(b) Performance comparisons of different vocabulary sizes on appearance matching
in the texture channel.

Figure 5-7: Box plots of performance comparisons of different vocabulary sizes on ap-
pearance matching in contour and texture channels. In each case, the box draws the
first quartile, median and third quartile of recognition rates, the whiskers show the ex-
tent of the non-outlier recognition rates, and the outliers (if any) are marked with red
cross. Vocabulary size doesn’t have a great impact on the recognition performance,
although medium-sized vocabularies are slightly better.
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Effect of Size of Densely Sampled Features

This experiment evaluates the effect of local patch size of the densely sampled

features. To extract features, we use dense sampling on a regular grid with spacing

of 8 pixels. For each position on the grid, a patch of Sf × Sf pixels is extracted,

where Sf is the size of the extracted local patches. 72-dimensional SIFT descriptors

are computed as in Section 5.2.2. In this evaluation, the size of the visual vocabulary

is set to 400 for the contour channel, since this vocabulary size is slightly better than

other sizes as shown in Table 5.1. Similarly, a visual vocabulary of size 200 is used

for the texture channel.

The classification performance of contour and texture channels is evaluated sepa-

rately. The second row of Table 5.2 lists the average recognition rates on Caltech-101

on the contour channel alone with different patches sizes, for 30 training samples per

class. And the average recognition rates for the texture channel alone are listed in

the third row of Table 5.2. The corresponding box-plots are shown in Figure 5-8.

It is observed that when the patch size is too small or too large, the recogni-

tion performance decreases compared with those of medium-sized patches. For small

patches, the reason is postulated to be that small patches are not rich enough in

information, since only primitive elements such as a segment of line or curve exists in

small patches and these primitive elements or the collection of these primitive small

patches are not distinctive enough to differentiate various classes of objects, espe-

cially when the decomposed channels are sparser than the original images. That is

to say, small patches are not sufficient in capturing inter-class differences. On the

contrary, for large patches, the reason for the degraded performance could be that

large patches are not able to accommodate intra-class variations. It is more possible

for large patches to enclose appearance information in large image regions that are

specific to a particular object instance of a class but not repeatable within other ob-

ject instances of the same class. Thus to a great extent, using large patches loses the

generalization capability.

Table 5.3 lists the performance of some of the current best methods on the Caltech-
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Patch size Sf 15 25 50 75
Reco. rate
(contour)

54.54% (1.07) 62.06% (1.20) 62.63% (0.84) 57.98% (1.35)

Reco. rate
(texture)

28.65% (0.71) 31.41% (1.02) 37.68% (1.09) 30.88% (1.19)

Table 5.2: Average per-class recognition rates on Caltech-101 with SIFT descriptors in
contour and texture channels respectively. Different patch sizes are tested. Numbers
in parenthesis are standard deviation.

101 dataset. It is noticeable that for the ‘recognition-through-decomposition-and-

fusion’ scheme in this thesis, even with the sparse contour channel alone, the average

recognition rate for 30 training samples per class is already achieving relatively com-

parable performance to many previous best approaches on this dataset. Especially

when compared with the original spatial pyramid matching with descriptors on orig-

inal image patches [70], there is only a 1.97% decrease in performance when only the

contour channel is used. This suggests that salient contours play an important role

and are the dominant visual information in recognizing the objects in Caltech-101.

Training
sample

Contour only [51] [117] [70] [113] [88]

15 56.55%(0.46) 59% 59.05%(0.56) 56.4% 44% 51%
30 62.63%(0.84) 67.6%(1.4) 66.23%(0.48) 64.6%(0.8) 63 56%

Table 5.3: Comparison of average per-class recognition rates of appearance matching
on Caltech-101 of some current best methods. Numbers in parenthesis are standard
deviation.
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(a) Performance comparisons of different patch sizes on appearance matching in the
contour channel.
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(b) Performance comparisons of different patch sizes on appearance matching in the
texture channel.

Figure 5-8: Box plots of performance comparisons of different patch sizes on appear-
ance matching in contour and texture channels. In each case, the box draws the first
quartile, median and third quartile of recognition rates, the whiskers show the extent
of the non-outlier recognition rates, and the outliers (if any) are marked with red
cross. It is observed that medium-sized patches give better recognition performance.
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5.4.2 Spatial Pyramid Matching of Local Color Features

Effect of Color Quantization

In the color matching scheme used in this thesis, the Hue-Saturation-Value color

space is quantized into hc × sc × vc color words, with Hue discretized into hc bins,

Saturation into sc bins and Value into vc bins. The effects of the granularity of

HSV space quantization are tested on three settings: {hc=5, sc=5, vc=2}, {hc=5,

sc=5, vc=4} and {hc=10, sc=10, vc=2}, which give color vocabulary size of 50, 100

and 200 respectively. These quantizations are chosen arbitrarily, with different levels

of discretization of the HSV space. Finer or coarser quantizations are expected to

perform worse, for reasons similar to those described in Section 5.4.1. For 30 training

samples per class, the performance comparisons are shown in Table 5.4 and Figure 5-

9. Vocabulary size, or equivalently, the granularity of color space quantization, does

not have a significant impact on the recognition performance, with medium-sized

vocabulary marginally better.

Vocab. Size 50 100 200
Reco. rate
(contour)

23.23% (0.98) 23.82% (1.01) 22.69% (0.89)

Reco. rate
(texture)

23.26% (0.99) 23.95% (1.00) 22.36% (0.81)

Table 5.4: Comparison of average per-class recognition rates of color matching on
Caltech-101 in contour and texture channels respectively, with different visual vocab-
ulary sizes. Numbers in parenthesis are standard deviation.
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(a) Performance comparisons of different vocabulary sizes on color matching in the
contour channel.
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(b) Performance comparisons of different vocabulary sizes on color matching in the
texture channel.

Figure 5-9: Box plots of performance comparisons of different vocabulary sizes on
color matching in contour and texture channels. In each case, the box draws the first
quartile, median and third quartile of recognition rates, the whiskers show the extent
of the non-outlier recognition rates, and the outliers (if any) are marked with red
cross. Vocabulary size, or equivalently, the granularity of HSV quantization, doesn’t
have a great impact on the recognition performance.
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5.4.3 Robust Chamfer Matching on Contour Channels

In principle, the parameters of the robust chamfer matching can be learned by

cross-validation on the training data. In the current implementation in this thesis,

the robust chamfer matching on the contour channel is carried out with heuristically

set parameters as follows. The parameters of τ and λ in the robust chamfer matching

are both set to 40. τ = 40 simply means outliers that are 40 pixels away from their

closest matches are limited to a Euclidean distance of 40. Making λ = τ implies that

the contribution of a complete mis-match in orientation is commensurate to that of a

distance outlier. σθ in Equation 5.3 is set to 20 degrees, and σk in Equation 5.4 is 20.

A series of different numbers of training samples per class {1, 5, 10, 15, 20, 25, 30} is

used for evaluation. For comparison, spatial pyramid matching of SIFT features and

color features on the contour and texture channels are also evaluated for these training

sample numbers. Table 5.5 and Figure 5-10 give the comparisons of these matching

schemes introduced in this Chapter. It can be seen that, when individual visual cues

are used separately, the spatial pyramid matching with SIFT descriptors and the

robust chamfer matching on the contour channel have significantly better recognition

performance. And color matchings are the worst among the used matching schemes.

This corroborates that the observation that the shape contour, compared with texture

and color, is the most prominent visual information to distinguish object classes in

the dataet of Caltech-101.
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Training sample 1 5 10 15 20 25 30
Contour-Chamfer 18.64 41.39 49.56 53.30 55.60 57.46 58.91

Contour-SIFT 22.87 44.12 52.72 56.55 58.99 61.04 62.63
Texture-SIFT 8.92 20.80 27.42 31.41 34.06 36.16 37.68
Contour-Color 2.19 10.98 15.23 18.33 20.42 21.83 23.36
Texture-Color 2.48 11.28 16.05 19.03 20.95 22.65 23.95

Table 5.5: Comparison of average per-class recognition rates of different kernels.
Numbers are in percentile.
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Figure 5-10: Comparison of average per-class recognition rates of different kernels.
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5.5 Summary

In many psychophysical and physiological studies, contour and texture are shown

to be processed in a dissociative manner in human visual perception. Based on

this, in this chapter, suitable features and matching schemes are introduced for each

of the decomposed contour and texture channels. Feature points are extracted by

dense sampling on each channel. Appearance in the contour and texture channels

are captured with modified SIFT descriptors of the sampled feature points. Colors

of the sampled feature points are represented in a quantized HSV color space. Weak

geometric matching is incorporated with the spatial pyramid matching of the sampled

features. As a complementary scheme to the weak geometric matching, since salient

contours are decomposed into a sparse channel, a robust chamfer matching is used to

apply strong geometric matching in the contour channel.

Empirical evaluation of some parameters, such as the size of sampled patches

and the size of visual vocabularies, of various matching schemes is carried out. It is

shown that medium-sized patches perform better than smaller or larger patches. The

reason is conjectured to be that small patches are not sufficient in capturing inter-class

differences, and large patches are not able to accommodate intra-class variations. The

size of visual vocabulary is observed to have no significant impact on the recognition

performance, for both the appearance and color matching. It is expected that the

matching schemes would perform well in a large range of vocabulary sizes.

An interesting fact is noticed that, even with the decomposed contour channels

being much sparser than the original images, the spatial pyramid matching and the

robust chamfer matching on the contour channel are shown to achieve recognition per-

formance comparable to many state-of-the-art methods which operate on the original

images. This suggests that in many object classes the shape contour is the most

prominent visual information for object recognition.

In the next chapter, the various matching schemes on the decomposed contour

and texture channels introduced in this chapter will be adaptively combined, as a

counterpart to the integration process of human visual perception. The combination
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will be shown to be able to adapt to object class pairs, selecting better visual cues

for distinguishing each pair of classes and leading to improved object recognition

performance.
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Chapter 6

Adaptive Multiple Visual

Information Combination

As discussed in Chapter 1, natural images of objects generally contain a great

amount of rich visual information about the objects of interest and their backgrounds.

Human observers can effortlessly and efficiently disassociate visual information such as

salient contour, characteristic texture and prominent color distinctions, and recombine

this information in a joint effort to recognize different objects. As an emulation to

human perception, this thesis proposes the coupled Conditional Random Field model

in Chapter 4 to decompose contour and texture in natural images. In Chapter 5,

proper matching schemes are introduced to match various visual cues, i.e., contour,

texture and color, with each of the matching schemes addressing a different perceptual

aspect of object recognition. The developed decomposition and matching schemes

naturally enable methods of visual information fusion to fully leverage various visual

cues and integrate them into a complex whole. To this end, this chapter studies

a principled method of adaptively combining the decomposed contour and texture

channels, and demonstrates the effectiveness of the approach of “recognition-through-

decomposition-and-fusion” with recognition experiments on a challenging dataset.
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6.1 Types of Information Fusion Schemes

Traditionally, pattern recognition systems are designed to use one particular clas-

sification procedure to estimate the class of a given pattern. The last decade has

seen that combining multiple classifiers can be an efficient technique for improving

classification performance. If the combination can take advantage of the strength of

the constituent individual classifiers and avoid their respective weakness, the overall

classification accuracy is expected to be boosted. The proposed “recognition-through-

decomposition-and-fusion” scheme, with different classifiers for various decomposed

visual cues, falls well into the field of multiple classifier ensemble.

Generally speaking, information fusion can be implemented on several levels of a

classification ensemble:

1. Feature level: When there are multiple types of features in images, features

can be combined in an integrated feature representation. For example, face

and gait features can be normalized and directly concatenated into a synthetic

feature vector for human recognition [119]. In [39], features such as curves,

blobs and corners are extracted from images, and this heterogeneous feature

representation is fed into a star geometric model for object categorization.

2. Distance function level: At a higher level than the feature level, distance

functions can be learned to optimally fuse various sources of information. In

[43, 44], Frome et al. used the maximal-margin criterion to learn linearly com-

bined distance functions for shape features at two different scales and a color

feature. Zhang et al. [117] designed distance functions to combine geometric

blur features and texture features, and converted the distance matrix to a kernel

matrix and applied multiclass SVM for object recognition.

3. Kernel level: Multiple sources of information can also be integrated via ker-

nel combination. Diego et al. [32, 85] studied various non-linear weighting

schemes, such as using absolute values, squared quantity and MaxMin, to com-

bine multiple kernels. A boosting algorithm was proposed by Bennett et al.
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[8] to construct a heterogeneous kernel from a large library of kernel matrices.

Cristianini et al. [30] developed a kernel alignment theory to linearly combine

multiple kernels to best align with a pre-defined ideal kernel.

4. Classifier output level: Much work has been done in integrating the clas-

sification outputs from a set of classifiers. Popular ways to combine classifier

outputs include using max/min, median and majority vote rules [65], encoding

classifier outputs with error-correcting codes [33], and boosting [3].

While these combination schemes can all be explored for visual information com-

bination, kernel-level combination is of particular interest to the proposed framework

of combining multiple visual cues for object recognition. In this thesis, each of the

matching kernels is designed to leverage a different perceptual characteristic of object

recognition. By combining them at the kernel level, adaptive weights can be learned

for different kernels. These adaptive weights are good indicators of the relative impor-

tance and effectiveness of different visual cues for recognizing various object classes.

This well mirrors the concept of dissociation and integration of human perception

discussed in Section 1.1.

6.2 Adaptive Information Fusion by Kernel Align-

ment

On the kernel-level fusion, the kernel alignment theory proposed by Cristianini et

al. [30] provides a principled way of learning the optimally combined kernel. The

kernel alignment method first defines an alignment score, i.e., the goodness of a kernel

matrix with respect to another kernel matrix. More formally:

Let K1 and K2 denote two kernel matrices. The kernel alignment score is defined

based on the Frobenius inner product, which is the component-wise inner product of

two matrices regarding them as vectors, as follows:

A (K1, K2) =
〈K1, K2〉F

√

〈K1, K1〉F 〈K2, K2〉F
(6.1)
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where A (K1, K2) is the kernel alignment score between kernels K1 and K2, 〈Ka, Kb〉F =

trace
(

KT
a Kb

)

=
∑n

i,j=1 Ka(xi,xj)Kb(xi,xj) is the Frobenius inner product of kernel

matrices Ka and Kb, and Ka(xi,xj) and Kb(xi,xj) are the kernel matrix entries

corresponding to object instances of xi and xj respectively. The kernel alignment

score is simply the normalized distance when regarding the two kernels as vectors.

The alignment score is larger when corresponding entries of the two kernels are more

comparable, i.e., when the two kernels are more aligned.

Now consider the task of object classification. As a basic building block, let us

consider a two-class (binary) classification problem. Let D = {xn, ln : n = 1...N}

denote a labeled dataset, where xn represents nth data sample and ln ∈ {+1,−1} is

the corresponding class label, and N is the number of samples in the dataset. On

this labeled dataset, an ideal kernel can be defined in the following way:

Kideal (xi,xj) =







vs li = lj

vns li 6= lj
(6.2)

That is, when the two data samples xi,xj belong to the same class, the corresponding

entry in the ideal kernel takes a value of vs; otherwise, the entry takes a value of vns.

Typically vs is much larger than vns. In some embodiment of the ideal kernel such as

the one used in [73], these values can be defined as

Kideal (xi,xj) = li · lj =







+1 li = lj

−1 li 6= lj
(6.3)

Or the value of vs and vns can depend on the dynamic ranges of constituent

kernels. For example, vs can be 1 for diagonal entries and 0.2 for off-diagonal entries,

and vns can be 0.1, which are the values used in our implementation. These values

are comparable to the entries of the spatial pyramid matching kernels and the robust

chamfer matching kernel used in this thesis.

Now, denote Kcollection = {Km : m = 1...M} as the set of kernels derived from dif-

ferent visual matching schemes on the two-class dataset D, and Kcomb =
∑M

m=1 wmKm

as the linearly combined kernel with wm as the weight assigned to kernel Km. This set
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of linear weights w = {wm : m = 1..M} essentially captures the relative importance

of each individual visual cue for discriminating the positive and negative classes. Take

the examples in Section 1.1 for instance. To classify beaver versus emu, the matching

kernels derived from the decomposed contour channel could have larger weights since

the differences between these two classes mainly lie in contour and shape; and for

laptop versus inline skate, the weight of the matching kernel from the texture chan-

nel could be relatively larger to emphasize the difference in the keyboard texture of

laptops.

By changing these weights, the combined kernel can be tuned to approximate

an optimal discriminative kernel where intra-class entries are large and inter-class

entries are small. This is equivalent to moving data samples of the same class closer

to each other and in the meantime separating data samples from different classes

further away in an induced high-dimensional feature space. One choice of the optimal

discriminative kernel is the ideal kernel defined above. It is logical to expect that,

when the combined kernel is tuned to approximate the corresponding ideal kernel,

best separation and maximum discriminability can be reached. Hence, to achieve the

optimal combined kernel, one can use the kernel alignment theory to best align the

combined kernel Kcomb with the idea kernel Kideal. More specifically, this optimization

problem can be formulated as follows:

max
w

A (Kcomb, Kideal)

subject to Kcomb =
∑M

m=1 wmKm,

trace(Kcomb) = 1,

wm ≥ 0, m = 1...M. (6.4)

The above optimization problem maximizes the alignment score between the com-

bined kernel Kcomb and the ideal kernel Kideal, with respect to the combination

weights w. The first constraint requires Kcomb to be a linear combination of con-

stituent kernels. The second condition is a constraint on scale, without which infinite

solutions of w up to a scale factor will exist. The third constraint means no con-

stituent kernel has a negative weight.
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The optimization problem in Equation 6.4 belongs to convex optimization, and

Lanckriet et al. [69] show that it can be solved with semidefinite programming.

Semidefinite programming in many cases is not computationally efficient. Hoi et

al. [56] derived an equivalent algorithm by translating the optimization problem

in Equation 6.4 into a Quadratic Programming problem, which can be solved very

efficiently. The equivalent Quadratic Programming problem is formulated as follows:

min
w

wT V T V w

subject to vec(Kideal)
T V w = 1,

wm ≥ 0, m = 1...M. (6.5)

where V = [vec(K1) vec(K2) ... vec(KM)] and vec(K) is the column vectorization of

matrix K. Solving the optimization problem 6.5 gives the set of weights w that best

align the linearly combined kernel Kcomb with the corresponding ideal kernel on the

two-class dataset D.

For multi-class categorization, when multi-class categorization schemes are com-

posed of multiple binary sub-classifiers, the extension of adaptive kernel combination

to multi-class categorization is straightforward, that is, to simply learn adaptive com-

bination weights for each of the constituent binary sub-classifiers. There are two pop-

ular ways of using a set of binary classifiers for multi-class classification: one-versus-

one and one-versus-the-rest. For N classes, one-versus-one schemes construct one

binary sub-classifier for every pair of distinct classes. There are N(N−1)
2

sub-classifiers

all together. For a test data t, t is classified by each of the N(N−1)
2

sub-classifiers,

and one-versus-one schemes assign t to the class with the largest number of votes.

One-versus-the-rest schemes construct N binary sub-classifiers. The ith classifier is

trained to distinguish class i from all other N − 1 classes. A test data t is classified

with each of the N sub-classifiers, and t is assigned to the class with largest decision

value, which, for example, can be the distance to decision boundary. One-versus-one

multi-class categorization is used in this thesis where adaptive kernel combination

weights can be learned for each pair of classes in this scheme. This class-pair specific

adaptation is consistent with the concept illustrated by Figure 1.1.
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6.3 Experiments

The dataset of Caltech-101 [37] is used for evaluation of multiple visual information

fusion. As in Chapter 5, the evaluation runs with different numbers of training

samples per class, and tests on up to 50 images per class. For each experiment, the

algorithm is evaluated with 10 runs with different randomly selected training and test

samples, and the average of per-class recognition rates is reported.

The ideal kernel is defined with vs as 1 for diagonal entries and 0.2 for off-diagonal

entries, and vns as 0.1 in Equation 6.2. For each class pair, the optimal adaptive

combination weights w are learned with Equation 6.5, by aligning the combined

kernel with the ideal kernel. With the adaptively combined kernel, a one-versus-one

multi-class Support Vector Machine is trained and used for classification.

6.3.1 Combining Multiple Scales

The first experiment is carried out to combine multiple scales to evaluate the

scale factor in Caltech-101. While the feature extraction scheme in Section 5.2.1 is

not invariant to similarity or affine transformation, some level of scale adaptation

can be achieved at the stage of visual cue combination in the proposed framework.

As can be seen from Table 5.2 and Figure 5-8, the densely sampled features with

patch size of 25 and 50 have comparable recognition performance, especially for the

contour channel. This suggests that, while it is widely accepted that the Caltech-101

dataset does not have much scale variation, the Caltech-101 dataset still displays

some extent of scale changes. That is, objects of some classes are complex and fill

a large portion of their images, while objects of some classes are relatively small in

the field of view. In the first case, larger patches are expected to capture well the

distinct appearance of objects, and in the latter case, smaller patches are suitable to

describe the objects of interest. The following experiment demonstrates this level of

inter-class scale variability in recognizing objects in Caltech-101.

Denote the spatial pyramid matching kernels with SIFT patch size 25 and 50 as

KcSIFT25 and KcSIFT50 (contour channel) and KtSIFT25 and KtSIFT50 (texture chan-
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Kernel used KcSIFT25 KcSIFT50 KSIFT avg Kcomb

Reco. rate
(contour)

62.06% (1.20) 62.63% (0.84) 63.39% (0.64) 64.07% (0.92)

Reco. rate
(texture)

31.41% (1.02) 37.68% (1.09) 37.52% (0.66) 37.69% (0.90)

Table 6.1: Comparison of recognition performance on Caltech-101 with kernels
KcSIFT25 and KcSIFT50 (spatial pyramid matching kernels for patch size 25 and 50
respectively), their average combination KSIFT avg and adaptive combination Kcomb,
for 30 training samples per class. The second row are average per-class recognition
rates on the contour channel. The third are average per-class recognition rates on the
texture channel. Numbers in parenthesis are standard deviation.

nel) respectively. These kernels of different feature scales are combined using kernel

alignment on the contour and texture channels respectively. That is, for example, a

combined kernel is defined on the contour channel by

KSIFTcomb = w25KcSIFT25 + w50KcSIFT50 (6.6)

where w25 and w50 are linear combination weights. Equation 6.5 solves for the op-

timal combination weights, and for 30 training samples per class, the recognition

performance of each individual kernel KcSIFT25 and KcSIFT50, and the combined ker-

nel KSIFTcomb is shown in Table 6.1. A non-adaptive combined kernel KSIFT avg by

simply averaging KcSIFT25 and KcSIFT50 is also implemented and compared:

KSIFT avg =
KcSIFT25 + KcSIFT50

2
(6.7)

In Table 6.1, it can be seen that combining kernels on multiple scales helps to

improve the recognition performance by 1.44% in the contour channel. To compare

the relative effectiveness of patch size 25 and 50 on different classes, the characteristic

w25 and w50 for each class are computed as follows: since one-versus-one SVM is

used for classification, for an object class c, there are 100 binary sub-classifiers to

discriminate object class c against the rest of classes of objects in Caltech-101. w25 and

w50 are learned for each of these 100 sub-classifiers for class c, and the characteristic
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w25 and w50 for class c are defined as the 5th smallest w25 and w50, denoted as ŵ25

and ŵ50 respectively, among these 100 sub-classifiers. ŵ25 and ŵ50 can act as a robust

statistical measurement of the relative importance and effectiveness of KcSIFT25 and

KcSIFT50 for recognizing class c. Larger ŵ25 means matching with small patch size 25

is more effective for class c, and smaller ŵ25 indicates matching with larger patches is

more effective instead. Table 6.2 shows the classes with 10 largest ŵ25 and the classes

with 10 smallest ŵ25.

In the left three columns of Table 6.2, for some classes with large ŵ25, the objects

of interest are either small in the field of view(e.g., leopard, mayfly), or narrow and

long (e.g., minaret, wrench, saxophone, crocodile, octopus, stapler). So it is reasonable

that these objects are better distinguished by small patches of size 25. For some other

classes with large ŵ25 (e.g., stop sign , menorah), the reason could be that these classes

are relatively simple yet distinct enough that a collection of small patches of size 25

is able to well represent the classes. For the classes with small ŵ25 as shown in the

right three columns of Table 6.2, their objects typically fill the images, and most of

them are complex. It is conjectured that small patches are not distinctive enough for

these classes and the recognition has to resort to larger patches or the combination of

small and large patch features. In this sense, some level of inter-class scale variation

does exist in the dataset of Caltech-101, and scale adaptation is able to explore the

performance margin provided by adaptive kernel combination.

As shown in the third row of Table 6.1, no similar effect is observed in the texture

channel. The reason could be that, for the texture channel, matching with large

patches of size 50 dominates over small patches of size 25, i.e., KtSIFT50 has much

better recognition performance than KtSIFT25, as shown in Figure 5-8(b), and patches

of size 25 and 50 are not complementary to each other. The texture channels of objects

in Caltech-101 can be well represented by patches of size 50. Hence KSIFTcomb has

the same recognition performance as KtSIFT50 for the texture channel.
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Class ŵ25 Image Class ŵ25 Image

Leopard 1.0000 Camera 0.2817

Minaret 0.9216 Wheelchair 0.2864

Wrench 0.8600 Face 0.3226

Stop sign 0.8155 Dalmatian 0.3286

Mayfly 0.8092 Ferry 0.3418

Saxophone 0.7950 Buddha 0.3441

Menorah 0.7910 Inline skate 0.3484

Crocodile 0.7751 Watch 0.3523

Octopus 0.7382 Panda 0.3656

Stapler 0.7131 Rooster 0.3700

Table 6.2: The left three columns are the 10 classes where small patches are of more
importance in recognition. The first column is the class name, the second is the weight
of the kernel KcSIFT25 with patches of size 25, and the third column is exemplar images
of corresponding classes. The right three columns show the 10 classes where large
patches of size 50 play more important roles in recognition. See text for details.
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6.3.2 Complementarity of Weak and Strong Shape Matching

in Contour Channel

As discussed in Section 5.3.2, the SIFT descriptors capture local appearance and

the spatial matching pyramid applies weak geometric constraints to recognition, and

in the meantime the decomposition also enables robust chamfer matching to employ

strong shape cues for recognition. The two matching schemes address different per-

ceptual aspects of object recognition. The experiment in this section demonstrates the

complementarity of SIFT-spatial-pyramid matching and robust chamfer matching.

In the contour channel, weak geometric matching is implemented with the SIFT-

spatial-pyramid-matching kernels KcSIFT25 and KcSIFT50, and strong geometric match-

ing is implemented with the robust chamfer matching kernel Krchamfer defined by

Equation 5.4 in Chapter 5. The integrated kernel Kcontour for the contour channel is

defined by adaptively combining KcSIFT25, and KcSIFT50 and Krchamfer:

Kcontour = wcSIFT25KcSIFT25 + wcSIFT50KcSIFT50 + wrchamferKrchamfer (6.8)

Table 6.3 and Figure 6-1 compare the recognition performance of the combined

contour channel kernel Kcontour (6.8), combined multiscale SIFT-spatial-pyramid-

matching kernel KSIFTcomb (6.6) and robust chamfer matching kernel Krchamfer (5.4).

For various numbers of training samples per class {1, 5, 10, 15, 20, 25, 30}, the com-

bined contour kernel Kcontour consistently gives higher recognition performance. This

suggests that weak geometric matching with the spatial pyramid kernels and strong

geometric matching with the robust chamfer kernel are complementary to each other,

and the kernel adaptation scheme is able to explore their complementarity for better

recognition.
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Training sample 1 5 10 15 20 25 30
Kcontour 22.99 48.34 57.10 60.75 63.29 65.29 67.08
KSIFTcomb 22.74 45.61 54.20 57.79 59.90 62.37 64.07
Krchamfer 18.64 41.39 49.56 53.30 55.60 57.46 58.91

Table 6.3: Comparison of average per-class recognition rates of the combined SIFT-
spatial-pyramid-matching kernel KSIFTcomb, the robust chamfer matching kernel
Krchamfer and the combined contour kernel Kcontour which adaptively integrates
KcSIFT25, and KcSIFT50 and Krchamfer. Numbers are in percentile.
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Figure 6-1: Comparison of average per-class recognition rates of the combined
SIFT-spatial-pyramid-matching kernel KSIFTcomb, the robust chamfer matching ker-
nel Krchamfer and the combined contour kernel Kcontour which adaptively integrates
KcSIFT25, and KcSIFT50 and Krchamfer.
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6.3.3 Combining Contour, Texture and Color

Effectiveness of Adaptive Combination of Multiple Visual Cues

The experiment in this section adaptively combines all available matching schemes

on contour, texture and color for object categorization. The matching kernels used

are: the SIFT-spatial-pyramid-matching kernels KcSIFT25, and KcSIFT50, the ro-

bust chamfer matching kernel Krchamfer, the texture-spatial-pyramid-matching kernel

KtSIFT50 with patch size 50, and the color-channel kernels KcColor and KtColor which

denote the spatial pyramid matching kernels of color in contour and texture channels

with color vocabulary of size 100 (see Chapter 5 Section 5.2.3 and 5.4.2). Let Kall comb

denote the adaptively combined kernel:

Kall comb = wcSIFT25KcSIFT25 + wcSIFT50KcSIFT50 + wrchamferKrchamfer

wtSIFT50KtSIFT50 + wcColorKcColor + wtColorKtColor (6.9)

An average kernel Kall avg is also tested. The recognition rates for various numbers

of training samples per class {1, 5, 10, 15, 20, 25, 30} are shown in Table 6.4 and Figure

6-2. For comparison, the kernel Kcontour (Equation 6.8) which combines matching

schemes on the contour channel alone is also shown Table 6.4 and Figure 6-2.

If the combination is done by simply averaging contour, texture and color channels,

the average kernel Kall avg only gives marginal improvement over the contour kernel

Kcontour. Compared with Kall avg, when all available visual cues (contour, texture

and color) are adaptively combined, the kernel Kall comb gives additional boost to

the recognition performance when trained with sufficient number of training samples.

This shows it helps to improve recognition accuracy when multiple visual information

are adaptively combined, giving more weights to the more discriminative visual cues

for each pair of classes. These experimental results corroborate the postulation of

human perception as discussed in Section 1.1.

The only exception lies in the recognition performance when using 1 or 5 training
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samples per class, where simple average combination gives the best recognition rates,

especially when there is only 1 training sample per class. In this case, for each pair-

wise sub-classifier, the adaptive combination by kernel alignment is only determined

by two data samples, and the learned optimal combination is sensitive to data scarcity.

Training sample 1 5 10 15 20 25 30
Kall comb 18.80 48.74 58.75 63.31 66.02 67.98 69.84
Kall avg 24.43 48.90 57.00 61.32 63.85 65.65 67.63
Kcontour 22.99 48.34 57.10 60.75 63.29 65.29 67.08

Table 6.4: Average per-class recognition rates of the combined contour kernel Kcontour,
and the adaptive kernel Kall comb and the average kernel Kall avg that combine match-
ing schemes of contour, texture and color. Numbers are in percentile.
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Figure 6-2: Comparison of average per-class recognition rates of the combined contour
kernel Kcontour, and the adaptive kernel Kall comb and the average kernel Kall avg that
combine matching schemes of contour, texture and color.
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Examples of Adaptive Combination of Multiple Visual Cues

This section demonstrates the effectiveness of adaptive visual cue combination by

embedding various kernels in a 2D plane and visually showing the improvement of

class pair separation. For two classes, using the weights learned in Equation 6.9, we

can define kernels on different channels by summing and normalizing corresponding

kernels for each channel as follows:

Kcontour =
wcSIFT25KcSIFT25 + wcSIFT50KcSIFT50 + wrchamferKrchamfer

wcSIFT25 + wcSIFT50 + wrchamfer

(6.10)

Ktexture = KtSIFT50 (6.11)

Kcolor =
wcColorKcColor + wtColorKtColor

wcColor + wtColor

(6.12)

And also we define integrated weights for each channel by summing corresponding

weights over each channel as follows:

wcontour = wcSIFT25 + wcSIFT50 + wrchamfer (6.13)

wtexture = wtSIFT50 (6.14)

wcolor = wcColor + wtColor (6.15)

For a pair of classes, the kernels Kcontour, Ktexture,Kcolor and Kall comb are em-

bedded into a 2D Euclidean space using classical Multi-dimensional Scaling (MDS).

These embeddings give a visual presentation of how well each kernel can separate

the two classes. For example, for class Bonsai versus Joshua Tree, the correspond-

ing embeddings are shown in Figure 6-4. As seen in Figure 6-4 (a)-(c), while each

single visual cue can recognize some object instances of Bonsai and Joshua Tree,

no single visual cue is able to separate the two classes in a clean way. It also can

be seen that, contour and texture are relatively better in differentiating the two

classes of Bonsai and Joshua Tree, whereas color distributions of the two classes

are quite similar. The embedding of the adaptively combined kernel is shown in

Figure 6-4(d). In this combined representation, the separation between Bonsai and

Joshua Tree is improved. The learned weights of different channels are {wcontour =

0.6856, wtexture = 0.1918, wcolor = 0.1225}. These weights are well adapted to the

relative importance of various visual cues as discussed above, with contour as the
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most important cue and texture as the second, and color as the least effective cue.

As another example, the embeddings for Pizza versus Soccer Ball are shown in

Figure 6-6, which shows that color plays a larger role in distinguishing these two

classes, compared with Bonsai versus Joshua Tree. The learned adaptive weights are

{wcontour = 0.6028, wtexture = 0.1572, wcolor = 0.2399}. The combined kernel as shown

in Figure 6-6 (d) again gives a visually better distinction between the classes of Pizza

versus Soccer Ball.

To demonstrate the relative effectiveness of contour, texture and color for different

classes, similar to Section 6.3.1, for each of the weights wcontour, wtexture, wcolor, the

characteristic weight for a class is defined as the 5th largest weight among all 100

sub-classifiers for that class, denoted as ŵcontour, ŵtexture, ŵcolor respectively. These

characteristic weights are robust indicators of the relative importance of each visual

cue for different object classes. The classes with the 10 largest characteristic contour

weight ŵcontour, texture weight ŵtexture and color weight ŵcolor are shown in Table 6.5,

6.6 and 6.7 respectively. In Table 6.5, most of the classes have prominent shape cues.

Most of the classes in Table 6.6 are rich in texture, such as dollar bill print patterns,

buttons and reeds on accordions, background trees in car side views and fur of emus

and cougars. And the classes in Table 6.7 have distinct colors such as black and

white yin-yang images, yellow sunflowers, red flamingos and white water lilies. It is

interesting to see that the classes of airplanes and ferries also have relative important

color cues. The reason could be the distinctive sky and water colors in these classes.

Also noticeable is that, by comparing the characteristic weights ŵcontour, ŵtexture

and ŵcolor in Table 6.5, 6.6 and 6.7, it is apparent that the 10 largest contour weights

are much larger than the 10 largest texture weights, which in turn are larger than

the 10 largest color weights. Figure 6-7 shows, for each pair of classes of Caltech-101,

the learned adaptive weights of contour, texture and color for classification. Overall,

the same trend is observed: weights for contour are significantly larger than texture

and color weights, and texture weights are slightly larger than color weights. This

corroborates the observation in Section 5.4.1 that salient contours play an important

role and are the dominant visual information in recognizing objects in Caltech-101.
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Figure 6-3: Example images of Bonsai and Joshua Tree.
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Figure 6-4: Multi-dimensional Scaling (MDS) embedding of different kernels: contour
kernel, texture kernel, color kernel and adaptively combined kernel, for the class of
Bonsai versus the class of Joshua Tree.
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Figure 6-5: Example images of Pizza and Soccer Ball.
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Figure 6-6: Multi-dimensional Scaling (MDS) embedding of different kernels: contour
kernel, texture kernel, color kernel and adaptively combined kernel, for the class of
Pizza versus the class of Soccer Ball.
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Class ŵcontour Image

Wheelchair 0.9726

Buddha 0.9726

Tick 0.9620

Rooster 0.9620

Panda 0.9548

Ant 0.9538

Butterfly 0.9485

Headphone 0.9474

Inline skate 0.9460

Dragonfly 0.9455

Table 6.5: Classes where the visual cue of contour plays a larger role for recognition
compared with other classes.
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Class ŵtexture Image

Dollar bill 0.6677

Accordion 0.6509

Euphonium 0.6192

Emu 0.6008

Trilobite 0.5872

Car side 0.5754

Hedgehog 0.5620

Hawksbill 0.5271

Pizza 0.5242

Cougar face 0.5101

Table 6.6: Classes where the visual cue of texture plays a larger role for recognition
compared with other classes.
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Class ŵcolor Image

Yin yang 0.4766

Sunflower 0.4766

Water lily 0.4733

Flamingo head 0.4659

Flamingo 0.4623

Airplanes 0.4551

Lotus 0.4546

Cougar body 0.4481

Bonsai 0.4469

Ferry 0.4435

Table 6.7: Classes where the visual cue of color plays a larger role for recognition
compared with other classes.
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Figure 6-7: Learned adaptive weights for contour, texture and color when combining
visual cues for classifying Caltech-101 (better view in color).
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6.3.4 Comparison with Other Methods

Comparison with Non-multi-visual-cue Combination Methods

In this section, the performance of the proposed scheme in this thesis is compared

against many state-of-the-art methods where visual information in patches is repre-

sented as an integrated whole [9, 49, 51, 57, 70, 88, 113], i.e., visual information is

not decomposed and all visual cues in patches are effectively given uniform weights.

One exception is the method in [117, 118] where local appearance and global tex-

ture information are combined with fixed trade-off weights between them. I put this

method in this category since in this method the two visual cues of appearance and

texture are not adaptively combined. The methods mentioned above are tested on

the original Caltech-101 dataset where a class of background is included.

Table 6.8 and Figure 6-8 show the comparison the proposed scheme against these

methods. In this setting (i.e., multiple visual cues are not decomposed and adaptively

combined; the background class of Caltech-101 is included), the best performance

of previously published results is achieved by [51] and [117]. Compared with [51],

for {5,10,15,20,25,30} training samples per class, the proposed scheme in this thesis

achieves recognition improvement of about {7.24%, 5.75%, 4.31%, 2.02%, 1.98%,

2.24%,} respectively. Compared with [117], for {5,10,15,20,30} training samples per

class, the proposed scheme in this thesis achieves recognition improvement of about

{3.51%, 4.14%, 4.19%, 4.13%, 3.16%,} respectively.

Since these methods, especially [51, 70, 117], and the proposed scheme in this

thesis use comparable features and feature representations, it is reasonable to at-

tribute the performance improvements to the visual decomposition model introduced

in this thesis. Consistent with the behaviorial and psychophysical evidence of per-

ceptual disassociation and integration as discussed in Chapter 1, these comparison

experiments demonstrate the effectiveness of the proposed visual decomposition and

recombination scheme for object recognition.

The performance improvements are more significant when only a few training

samples, e.g., 5, 10 or 15, are available for each class. This suggests that when there
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are not enough training samples, it is more important to decompose various visual

cues, leverage each of them to their full potential and recombine them for a better

understanding of image contents. This conforms with the capability of learning to

recognize a class of objects from a few sample images in the human visual system.

The confusion matrix for classification of Caltech-101 by the proposed method in

this thesis is shown in Figure 6-9.

Caltech-101 with Background Class
Training sample 1 5 10 15 20 25 30
This Thesis 18.80 48.74 58.75 63.31 66.02 67.98 69.84
Griffin et al. CIT-TR2007[51] 41.5 53 59 64 66 67.6
Zhang PhD Thesis07[118] 62.4
Zhang et al. CVPR06[117] 21.95 45.23 54.61 59.12 61.89 66.23
Lazebnik et al. CVPR06[70] 56.4 64.6
Mutch&Lowe CVPR06[88] 51 56
Grauman&Darrell MIT-TR06[49] 17.76 34.41 43.7 49.52 53.24 56.02 58.23
Berg et al. CVPR05[9] 45
Wang et al. CVPR06[113] 19 44 50 58 63
Holub et al. ICCV05[57] 16.1 35.7 40.1 42.9

Table 6.8: Comparison of the proposed scheme to state-of-the-art methods where
multiple visual cues are not adaptively combined.
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Figure 6-8: Comparison of the proposed scheme to state-of-the-art methods where
multiple visual cues were not adaptively combined.
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Figure 6-9: The confusion matrix for classification of Caltech-101 by the proposed
method in this thesis.
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Comparison with Adaptive Combination Methods with Similar Features

In [43, 44], Frome et al. proposed methods of adaptively learning distance func-

tions which combine shape features and color features. In [73], Lin et al. extended

the kernel alignment theory to incorporate localized kernel alignment for recognition

tasks. Although these methods used adaptive combination of multiple distance func-

tions or kernels, visual information is still treated in an integrative manner without

visual decomposition. Since these adaptive combination methods use similar fea-

tures and feature representation to the ones used in this thesis, the comparisons to

these adaptive combination methods show the importance and effectiveness of visual

decomposition, especially when the number of training samples is limited.

In the experiments in [43, 44], the class of background is excluded from Caltech-101

and the class of ‘faces easy’ is added for test. The experiment in this section follows

this setting. Table 6.9 and Figure 6-10 show the comparison. Except for a marginal

difference for 20 training samples per class, the proposed scheme performs better,

especially when there are only 5 or 10 training samples per class. The reason is again

postulated to be that the proposed “recognition-through-decomposition-and-fusion”

scheme is able to fully use the potential of decomposed visual cues. Whereas in [43,

44, 73], since visual information is used in an integral manner, each individual visual

cue is not fully explored. When there are limited training samples, the performance

of these methods drops significantly.

Caltech-101 without Background, with ‘Faces easy’
Training sample 1 5 10 15 20 25 30
This Thesis 18.99 49.32 59.30 63.82 66.53 68.41 70.38
Frome et al. ICCV07[44] 43.9 53.3 63.2 66.6
Lin et al. CVPR07[73] 61.25
Frome et al. NIPS06[43] 37.9 60.3 65.7

Table 6.9: Comparison of the proposed scheme to state-of-the-art methods where
multiple distance functions or kernels were adaptively combined.
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Figure 6-10: Comparison of the proposed scheme to state-of-the-art methods where
multiple distance functions or kernels were adaptively combined.
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6.4 Summary

In this chapter, the decomposed contour and texture channels are adaptively com-

bined via kernel alignment for the task of object recognition, as an emulation to hu-

man observers’ capability of selectively integrating multiple visual stimuli in a joint

effort to distinguish different object classes. By achieving the optimal alignment to

an ideal kernel, various matching kernels on the contour and texture channels are

linearly combined, with learned linear weights reflecting the relative importance of

each visual cue in discriminating different class pairs.

By adaptively combining multiple visual cues, the proposed computational model

of “recognition-through-decomposition-and-fusion” achieves better performance than

most of the state-of-the-art methods. These experimental results demonstrate the

effectiveness of the visual decomposition and recombination scheme developed in this

thesis. It is noticeable that, when the number of training samples is limited, the per-

formance improvements of the proposed system are more significant, which suggests

that it is more important to decompose and combine various visual stimuli when there

are not enough training samples.

It is also observed that inter-class level of scale variation exists in the dataset

of Caltech-101. Adaptive combination of multiple scales is able to select suitable

feature scales for different classes. Weak and strong geometric matching schemes are

shown to be complementary to each other. Shape contour is demonstrated to be the

most important visual cue in recognizing objects in Caltech-101, with texture and

color playing substantial roles in some texture-rich and color-rich classes, which are

consistent with intuitive observations.
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Chapter 7

Conclusion and Discussion

This chapter first reviews some recent developments in improving feature repre-

sentation and kernel combination for object categorization, then shows the typical

differences between the decomposed contours by the proposed coupled Conditional

Random Field model and the computed probabilities of boundary by a learned model

by Martin et al. [80], and discusses the avenues for future work based on these reviews

and comparisons. In the last section, we summarize the key components and the key

results of the proposed system.

7.1 Recent Developments

The experiments in this thesis have demonstrated the effectiveness of “recognition-

through-decomposition-and-fusion”, by comparing to previous state-of-the-art meth-

ods with similar descriptors and feature representations. At the time of this thesis,

some researchers are concurrently investigating similar ideas of combining multiple

matching schemes, with improved features and enhanced adaptive combination meth-

ods than the kernel alignment theory. These enhanced methods are shown to achieve

significant performance improvements. It is expected that incorporating these en-

hanced elements into the proposed visual decomposition and recombination model

will be able to achieve further improvements.
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For completeness, a brief discussion of these methods is included as follows.

In [18], Bosch et al. developed a spatial shape descriptor PHOG (Pyramid of

Histograms of Orientation Gradients) which extends the spatial pyramid representa-

tion [70]. Combination of PHOG and a series of SIFT features on various scales is

done on the kernel level. The optimal combination is carried out with an exhaustive

search. Classification is done with a one-versus-all SVM. When kernels are combined

with globally optimal weights, they achieve 71.5% average recognition rates with 30

training samples per class for Caltech-101. When kernels are combined with optimal

weights for each class, their method has 77.8% average recognition rates.

In an improved version [17], Bosch et al. used the same set of features as in [18],

added automatically selected ROI (Region of Interest) to confine the matching to

objects of interest only, and incorporated random forests and ferns to automatically

combine multiple features. For 30 training samples per class, they achieve 79.2% -

81.3% recognition rates for various versions of classifiers.

In [110], Varma and Ray developed a multi-kernel combination method, by aug-

menting the original SVM training scheme to learn the optimal kernel combination

with a sparsity constraint. They adopted the two kernels in [117] and the four en-

hanced features and kernels in [18]. For 15 training samples per class, with an adap-

tive one-versus-one SVM, they achieve 78.43% for Caltech-101; with an adaptive

one-versus-all SVM, they achieve 87.82%.

It appears that the main sources of the performance improvements of the above

methods are improved feature representations such as PHOG and detected ROI, and

enhanced kernel combination schemes such as learning kernel combination in the

SVM training with sparsity constraints. In this thesis, decomposition of visual stim-

uli has been shown to be effective for fully leveraging various visual cues and achieve

significant performance improvements compared to non-adaptive methods with com-

parable features, especially when the number of training samples is limited. It will

be interesting to incorporate the above recently developed features and kernel combi-

nation methods to the proposed framework of “recognition-through-decomposition-

and-fusion”.
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7.2 Comparison to “Learning Probabilities of Bound-

ary”

In [80], Martin et al. used a similar set of low-level image measurements, such as

the orientation energy and the gradient of brightness, color and texture, to learn the

probabilities of boundary in natural images. In Figure 7-1, we visually compare the

results by the approach of “learning the probabilities of boundary” in [80] and the

coupled Conditional Random Field model in this thesis. As can be seen in Figure

7-1(b), for two images from the Weizmann horse database [14] in Figure 7-1(a), the

learned boundary model in [80] generates many spurious strong contours. To suppress

these spurious contours, nearby compatible contour and texture pixels need to be

considered to correct the errors. As discussed in Chapter 4, these compatibilities of

contour and texture are captured by the proposed coupled Conditional Random Field

model. The decomposed contours of the two horse images by the coupled Conditional

Random Field model are shown in Figure 7-1(c). The coupled Conditional Random

Field model gives much cleaner contours, especially on the horse bodies.

Since the seminal work of Martin et al. [80], there has been much work which

extends the original framework of learning the probabilities of boundary. For example,

Arbelaez [4] combined region information with local contour cues to achieve better

boundary detections. Ren et al. [92] used a manually segmented training set to

build a class-specific shape model to improve the results. We expect the coupled

Conditional Random Field model can be improved in similar ways, by incorporating

mid-level and high-level image measurements, such as coherent image regions and

class-specific shapes.

7.3 Summary and Conclusion

It is shown by behavioral and psychophysical experiments in associationist psy-

chology that the visual stimuli of contour and texture are processed separately in

early stages of human visual perception, and recombined at a higher level of visual
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(a) Horse images from the Weizmann horse database [14]

(b) Probabilities of boundary obtained by the learned model by Martin et al. [80]

(c) Decomposed contours by the coupled Conditional Random Field model

Figure 7-1: Comparisons of the probabilities of boundary obtained by the learned
model by Martin et al. [80] and the decomposed contour channels by the coupled
Conditional Random Field model.
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processing. This thesis proposes a computational system of “recognition-through-

decomposition-and-fusion” to emulate the dissociation and integration properties of

human visual perception. Four key components of the proposed system are intro-

duced and studied. At the lowest level, contour and texture processes are defined and

measured. In the mid-level, a novel coupled Conditional Random Field is proposed

to model the contour and texture processes in natural images. The learned coupled

Conditional Random Field model is able to well decompose the different visual stimuli

of contour and texture. Various matching schemes are introduced to match the de-

composed contour and texture channels in a dissociative manner. The decomposition

enables the system to fully leverage each decomposed visual stimulus to its full po-

tential in discriminating different object classes. As a counterpart to the integrative

process in the human visual system, various matching schemes on the decomposed

contour and texture channels are adaptively combined. The learned adaptive lin-

ear weights for visual cue combination mirror the fact that different visual cues play

different roles in distinguishing various object classes. Experimental results of ob-

ject recognition on Caltech-101 demonstrate that the proposed computational model

of “recognition-through-decomposition-and-fusion” achieves better performance than

most of the current best methods.

The key results are two-fold. The proposed coupled Conditional Random Field

model is shown to be an important extension of popular single-layer Random Field

models for modeling image processes. By dedicating a separate layer of random field

grid to each individual image process, the proposed model is able to capture the

distinct properties of multiple visual processes, by explicitly modeling different inter-

active dynamics of different image processes. On the contrary, in order to accommo-

date different characteristics of multiple visual processes, a single-layer Conditional

Random Field is shown to be forced to model the disparate image processes with

only a single layer of random field, which leads to degraded modeling power. The

coupled Conditional Random Field is demonstrated to outperform the single-layer

Conditional Random Field for the task of dissociating the visual stimuli of contour

and texture. The second key result is shown by empirical object recognition exper-
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iments on Caltech-101. By decomposing and recombining contour and texture, the

proposed computational model is able to select best visual cues for discriminating

different class pairs, and achieve a better object categorization system. More im-

portantly, when there are only a small number of training images, it is shown that

decomposition of various visual cues is more valuable, by leveraging each visual cue to

its full potential and recombining multiple visual stimuli for a better understanding

of image contents. In this case, the proposed computational model is demonstrated

to achieve significant improvements of recognition performance. This is consistent

with the fact that human observers are able to recognize object classes with only a

few sample images.

Some other aspects of object recognition are also studied in this thesis. It is

observed by both matching decomposed channels individually and combining multiple

visual channels that the shape contour information is more prominent and important

in recognizing the objects in Caltech-101. It is reasonable to postulate that salient

contours are the dominant visual cue for many classes of objects in Caltech-101. Weak

and strong geometric matchings are demonstrated to be complementary to each other.

Employing better geometric matching schemes are expected to further improve the

performance. Inter-class level of scale variation is demonstrated to exist in Caltech-

101 and scale adaptation is able to improve the performance by selecting the best

scales for different object classes.

While in this thesis we explored many aspects of the proposed system, the key

message to be conveyed is that by decomposing and recombining multiple disparate

visual cues in object images, the proposed computational system of object categoriza-

tion is able to adapt to the discriminative visual cues for different classes and achieve

improved object recognition performance, especially when only a limited number of

training image are available. The framework of recognition by decomposition and

recombination of visual stimuli is expected to be a promising direction for building

effective and efficient object categorization systems.
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