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Abstract

In this paper we propose an approach to vehicle clas-
sification under a mid-field surveillance framework. We
develop a repeatable and discriminative feature based on
edge points and modified SIFT descriptors, and introduce a
rich representation for object classes. Experimental results
show the proposed approach is promising for vehicle classi-
fication in surveillance videos despite great challenges such
as limited image size and quality and large intra-class vari-
ations. Comparisons demonstrate the proposed approach
outperforms other methods.

1. Introduction

Visual object recognition aims to classify observed ob-
jects into semantically meaningful categories. In this pa-
per we focus on vehicle classification in a mid-field video
surveillance framework with a single static uncalibrated
camera. Several scenarios motivate our work. Activity
monitoring around vital assets (embassy protection, port fa-
cility protection) often involves categorizing patterns of be-
havior, both to monitor normal flow of activity and to serve
as a baseline for detecting possibly anomalous behavior.
Such categorization is based in part on trajectories of mov-
ing objects, but also depends on the type of object. Hence
it is of value to categorize objects by type, including sub-
classes of types. For example, trucks and vans may not be
expected to visit certain parts of a site; a sedan approaching
a person may indicate an arranged pick-up, yet a taxi instead
may only correspond to a leaving person. In multi-camera
settings, it is important to correlate activities through many
different fields of view, which requires establishing corre-
spondence between observations in non-overlapping views.
Again, there is a need to classify objects into subclasses, to
support this determination of correspondence.

Compared with object recognition from still images, the
fact that a surveillance framework deals with video se-
quences simplifies the recognition task in several ways.
Moving objects can be separated from a static background
reasonably well by background modeling and subtraction,
so the problem of clutter can be minimized. Similarly, vari-
ation in scale is not a major challenge since objects can be
extracted and normalized.

However there are still great challenges to this prob-
lem. Vehicles are generally textureless. Limited object im-
age size and quality are special difficulties. Varying light-
ing conditions in video surveillance further complicate the
problem. The requirement to distinguish similar classes
such as sedans vs. taxies makes the problem even harder.

To tackle these challenges, this paper introduces an
edge-based rich representation. The rich representation is
able to give finer categorizations by modeling more details
and improve robustness using over-complete information.
The proposed approach augments edge points to repeatable
and discriminative features, combines several existing tech-
niques with modifications to fit them better to the consid-
ered problem, and gives models that perform sufficiently
well to serve the purposes discussed above. Considering our
applications, we focus on a fixed view angle. Our method
achieves a 1.5% average error rate on cars vs. minivans clas-
sification. For even more similar object types like sedans vs.
taxies, our method gives only a 4.24% error rate.

1.1. Related work

Researchers have investigated various 3D model based
approaches for object recognition [8, 11, 16, 22].
These methods require geometric measurements such as
edge/surface normal [8], saliency-based grouping of lines
or curves [10, 11, 16, 22], or solving 3D to 2D projection
[11, 16]. These requirements become less well-posed for
vehicle recognition in a surveillance framework where im-
ages are of limited size and quality. More closely related
work are the model or region based detection and recog-
nition of road vehicles [24]. However they need camera
calibration to reduce the parameters to be estimated.

Recognition based on edge maps is another related ap-
proach. Chamfer matching [25] and Hausdorff distance-
based method [9] are typical examples. As in 3D model
based approaches, these 2D edge based methods compare
edge maps in a global manner. Unlike the edge-based rep-
resentation proposed in this paper, these methods only take
edge points into account without modeling appearance.

Some recent approaches to object recognition [13, 17,
19, 21] have focused on extracting invariant features that
densely cover the observed objects and used voting schemes
to match observations with models. Experimental results



show that these methods are promising for individual ob-
ject recognition. However they are not suitable for generic
object class recognition, especially when inter-class differ-
ences are small. Furthermore, these features largely de-
pend on distinctive regions, such as corners, blobs and well-
textured patches. In our problem, since vehicles are tex-
tureless and limited in size, the number of these kinds of
distinctive features is limited, making voting less robust.

Other approaches [1, 3, 7, 26] find features in objects and
build generative or discriminative models for recognition.
Features used by [7] detect regions that give local maxima
of entropy and saliency. As demonstrated in [13], these fea-
tures are still not consistent enough within one object class.
This is also shown in our experiments.

Rich representations based on edges [2] describe objects
in a redundant way and are proven to be powerful in ac-
complishing object recognition purposes. In their original
forms, the features take statistics of distribution of edge
points around each edge point. The discriminability de-
pends on the detected edge points. In our approach, we use
edge points only for anchoring purposes. A rich descriptor
is designed to characterize the appearance of a neighbor-
hood of an edge point, thus its discriminability is decoupled
from edge point detection.

Active appearance model [6] and vehicle classification
using deformable templates [12] generate models that can
only deform in allowed ways, thus can search instances in
an efficient way. These methods focus on modeling global
shape and appearance, making them inefficient in distin-
guishing very similar objects.

2. Edge-based features

In this section, we describe our features defined by edge
points and associated descriptors. Our feature extraction
method is:

(1) Extract edge points.
(2) Attach a descriptor to each edge point.
(3) Segment edge points into point groups.
(4) Form features from edge point segments.

2.1. Edge points and descriptors

Repeatability of detected features is one of the pivotal
factors for successful recognition. As seen in mid-range
surveillance videos, the appearance of vehicles is domi-
nated by the vehicle contours; finer details are often not
present or are highly variable. Thus, we expect edge points
to be more repeatable than other feature points. Figure 1
shows edge points extracted by a Canny edge detector [4]
for several vehicles. Many detected edge points are repeat-
able within one class. Also it should be noted that there are
still quite evident variations in edge images of objects from
the same class. This makes global edge map-based meth-
ods ineffective. By modeling local appearance and group-

Figure 1. Edge points detected in vehicle objects. Many
of the edge points are repeatable within one class. Also note
the noise within one class and similarities between classes.
These challenges require a careful design of edge-based fea-
tures.

ing similar edge points as described below, our method is
able to deal with this issue.

Besides repeatability, a good set of features should ex-
hibit sufficient discriminability. We achieve this by asso-
ciating edge points with appropriate descriptors. In [20],
SIFT [17] is empirically shown to outperform many other
local descriptors. A SIFT descriptor is created by first com-
puting the gradient magnitude and orientation at each im-
age sample point in a region around an anchor point. The
region is split into r×r subregions. An orientation his-
togram for each subregion is then formed by accumulating
samples within the subregion, weighted by gradient magni-
tudes. Concatenating the histograms from subregions gives
a SIFT vector.

We adopt SIFT, with several key modifications tuned to
vehicle classification, as descriptors for edge points. The
first modification is that during gradient orientation binning
for histograms forming SIFT, gradient orientations with
180◦ differences are regarded as the same, i.e., polarities
are thrown away. This makes SIFT more robust against con-
trast differences and lighting changes. In his original test-
ing for SIFT descriptors [17], Lowe found histograms with
8 orientations gave the best performance. Thus, we use 4-
orientation histograms for unpolarized gradient orientation
which ranges between0◦ and180◦. Secondly, instead of
thresholding the values in a unit SIFT vector, we thresh-
old gradient magnitudes before forming a SIFT vector to
reduce the influence of large specular reflections and non-
uniform illumination changes. Thirdly, we useχ2-distance
as the distance between SIFT vectors instead of Euclidean
distance [17]. Euclidean distance only cares about absolute
differences in histogram bins. If the absolute differences
of corresponding bins are small, their Euclidean distance is
small, no matter how large the differences are relative to the
values in the bins.χ2-distance considers bin differences rel-
ative to bin values to give a better comparison between two
histogram distributions.



2.2. Edge point segmentation and features

As a result of low-resolution images and intra-class ap-
pearance variations, edge points of objects from the same
class still have evident variabilities as shown in Figure 1.
This observation suggests that individual edge points are not
good enough features in terms of spatial repeatability.

Edge points that both are spatially close to each other
and have similar descriptors can be grouped together. Edge
point groups are advantageous compared with individual
edge points. Firstly, edge point groups are more repeatable
in terms of spatial locations. Secondly, edge point groups
lead to more concise models. Thus in this step edge points
are segmented into groups by the mean-shift technique [5].

With edge points segmented, coordinates and associated
SIFT vectors of edge points in one segment define a feature.
Denote the number of points in segmenti asJi, the 2D co-
ordinate of thejth point in segmenti as~pij , the SIFT vector
of this point as~sij . A featuref i is a 3-tuple{{~pij}, {~sij},
~ci}, j = 1, ..., Ji, where{~pij} is the set of coordinates of
all edge points in segmenti, {~sij} is the set of SIFT vec-
tors that are anchored at the edge points in segmenti and
~ci is the average SIFT vector of segmenti, i.e., mean of all
~sij in segmenti. Further denote the set of all features of an
object asF = {f i}, i = 1, ...N , whereN is the number of
features of that sample.

Some feature examples are shown in Figure 2. The left
column shows descriptors for edge points near the trunk.
The right column shows descriptors for edge points near the
rear window. Red dots mark the corresponding edge points.
Blue squares correspond to neighborhoods where SIFTs are
computed. The 2×2 subregions are also marked. The de-
scriptors in the left column are more useful to discriminate
between the cars (sedan and taxi) and the minivan, since
the descriptor captures the differences around the rear part
of the cars and minivan. The most evident differences lie
in the 9th to 12th elements in each descriptor, which corre-
spond to the upper-right sub-region. The descriptors in the
right column are useful to discriminate between the sedan
and the taxi, since the upper-right subregion of the taxi cap-
tures the textured area of the top light. Again the 9th to
12th elements of each descriptor are different. The collec-
tion of these features gives a good base to build models and
classifiers.

2.3. Comparisons with other features

We ran tests on both the Saliency feature used by Fergus
et al. [7] and the DoG feature used by Lowe [17]. Figure 3
shows the features detected in three samples of sedan type.
Typically, due to the low texture nature of vehicles, there
are only 10 to 20 Saliency or DoG features for each ob-
ject. Furthermore, it is seen from the figure that the features
are not consistently repeatable within one class because of
intra-class variations.
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(a) sedan: trunk (b) sedan: rear window
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(c) taxi: trunk (d) taxi: rear window

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

(e) minivan: trunk (f) minivan: rear window

Figure 2. Feature examples. Red dots mark the cor-
responding edge points. Blue 2×2 squares correspond to
neighborhoods and subregions where SIFTs are computed.
Bar graphs are corresponding SIFT vectors. Left column:
this feature is suitable to distinguish minivans from sedans
and taxies. Right column: this feature is suitable to dis-
tinguish taxies from sedans. In both cases, the 9th to 12th
elements in each descriptor give most evident differences.

It should be noted that Ferguset al.’s approach [7] needs
3 to 7 repeatable features and Lowe stated in [17] that his
approach requires repeatable features that densely cover the
image over the full range of scales and locations and the
quantity of features is particularly important. So these ap-
proaches are not suitable for our task considering the low
repeatabilities and low number of features. Also as seen in
Figure 3(c), our feature is more repeatable in terms of spa-
tial locations.
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Figure 3. Repeatability comparisons of features. Saliency
and DoG features are typically low in number and repeata-
bility, thus unsuitable for our task.

3. Object modeling

In this section, we develop the object class models that
are to be used for classification.

3.1. Constellation model

A constellation model [3, 7, 26] is a probabilistic model
of a collection of parts with flexible appearance and spatial
configuration. In [7], Ferguset al. model appearances from
object parts as independent Gaussians and shape configura-
tion as a joint Gaussian of object parts’ coordinates. We use
a modified version of this constellation model.

For two classesω1, ω2, a Bayesian decision is given by

C∗ = arg max
c=1,2

p(ωc|F ) = arg max
c=1,2

p(F |ωc)p(ωc) (1)

whereF is the set of features of an observed object. We
assume constant priors. A simple extension should work
for multiple classes.

We call a matching from detected features to model parts
anhypothesis. Then the likelihood items in Equation (1) can
be expanded as follows:

p(F |ωc) =
∑

h∈H

p(F , h|ωc) =
∑

h∈H

p(F |h,ωc)p(h|ωc)

(2)wherec = 1, 2, andH is the set of all possible hypotheses.
In our case, the configuration of an hypothesis is differ-

ent from that in [7]. Firstly, we assume no occlusion or clut-
ter since we can separate moving object from background.
Secondly, an hypothesis mappingh could be many-to-1, in-
stead of the 1-to-1 mapping as in [7]. This is because it is
possible for edge points of an observed object to be over-
segmented, and thus give several almost identical features.

Typically the number of possible hypotheses is pro-
hibitively large, hence it is quite difficult to efficiently
search through the hypothesis space. To overcome this
problem, we only use a most probable hypothesish∗ de-
fined as follows:

For theith feature of the observed object and thepth part
of the model, the corresponding mean SIFT vectors are~ci

and~cp. Dissimilarity between featurei and partp is simply
theχ2-distance between~ci and~cp. Then a most probable
hypothesish∗ is defined as a mapping where each feature
of an observed object only maps to its most similar part in
models, i.e., the part with leastχ2-distance to the feature.
Equation (2) then becomes

p(F |ωc) ' p(F |h∗,ωc) (3)

3.2. Model parameterization

We assume that features of an object are independent of
each other, and for each feature, assume that its edge point
coordinates{~pij} and corresponding SIFT vectors{~sij}
are also independent. Then

p(F |ωc) '
N∏

i=1

p({~pij}|h∗, ωc)p({~sij}|h∗, ωc) (4)

whereN is the number of features.
Based on whether to deal with shape implicitly or explic-

itly, we developed two models.

3.2.1. Implicit shape model

If we use a relatively large neighborhood size to model
an edge point’s local appearance, each descriptor effectively
characterizes both the geometry and appearance of a large
portion of an observed object, hence implicitly incorporates
a certain amount of geometry information. The collection
of all these descriptors forms a rich representation of the ob-
ject. So our first model only utilizes the descriptor vectors,
leaving out their explicit positions. We call this an implicit
shape model.

In this case, Equation (4) becomes

p(F |ωc) '
N∏

i=1

p({~sij}|h∗, ωc) (5)

The SIFT vectors item in Equation (5) is modeled as a
single Gaussian with diagonal covariance matrix

p({~sij}|h∗, ωc) = G({~sij}|µh∗(i),Σh∗(i)) (6)

whereh∗(i) is the index of the part that matches featurei
of the observed object,h∗(i) ∈ {1, ..., P} whereP is the
number of parts in the model,µh∗(i) is the mean vector and
Σh∗(i) is the diagonal covariance matrix of the underlying
Gaussian.



3.2.2. Explicit shape model

Alternatively, we model both SIFT descriptors and their
positions explicitly. The distribution of edge point coordi-
nates is modeled as a mixture of Gaussians, i.e.,

p({~pij}|h∗,ωc) =
Kh∗(i)∑
m=1

αh∗(i),m∗G({~pij}|µh∗(i),m,Σh∗(i),m)

(7)
whereh∗(i) is the index of the part that matches featurei of
the observed object,Kh∗(i) is the number of mixture com-
ponents,αh∗(i),m is the weight of themth mixture compo-
nent,µh∗(i),m andΣh∗(i),m are the mean vector and covari-
ance matrix of themth Gaussian component.

The reason for using a mixture of Gaussians instead of
a single Gaussian is that positions of edge points are highly
structured. For example, edge points along the side window
of a vehicle essentially form a curve, which a single Gaus-
sian is not able to model well. Replacing Equation (6) and
(7) into (4) gives the explicit model.

4. Learning and recognition

We now discuss our learning and recognition scheme. A
straightforward training scheme could use all features from
all samples to learn the model parameters. However, we
found that some of the features only occur in a small por-
tion of the training samples. Due to a reason described in
Section 5.2.1, these features generally will not facilitate or
even harm the recognition process. So a pruning process is
needed.

Features of each training sample are computed first.
Then a sequential clustering is performed on all features
from all training samples to give a feature pool. The se-
quential clustering runs as follows.

Denote a pool of features asF p. To initialize, ran-
domly select a sample with all its featuresF ={f i}, and
put them into the feature pool so now the feature pool is
F p=F ={f i}. Then add another sample with all its features
F ′={f ′i}. For eachf ′i, compute theχ2-distance to all fea-
tures in the feature pool. Supposefmin in the feature pool
has the smallest distance tof ′i. If this smallest distance is
less than a threshold, mergef ′i with fmin in the feature
pool by adding all its edge points coordinates{~p′

ij} and
SIFT vectors{~s′

ij} to fmin and update the mean SIFT vec-
tor offmin. Otherwise addf ′i into the feature pool as a new
feature. Running through all training samples will generate
a feature pool.

Denote the percentage of training samples that generate
featuref i in the feature pool asri. Features whoseri is
below a threshold are marked as invalid, that is to say:

validity of f i =
{

1 ri ≥ rthresh

0 otherwise
(8)

All valid features form the final feature pool for learning
the model parameters.

Figure 4. Some samples in dataset.

For the model structures established in Section 3.2, the
parameters to be learned are{Kp, αp,m, µp,m,Σp,m, µp,
Σp}, where m = 1, ...,Kp, p = 1, ..., P where P is
the number of parts in the model. With the feature pool
achieved above, learning is quite straightforward. Each fea-
ture in the feature pool is regarded as a part candidate. With
SIFT vectors of thepth feature in the feature pool, maxi-
mum likelihood estimation givesµp,Σp. With edge points
coordinates of thepth feature in the feature pool, a typical
EM algorithm estimates parameters of a mixture of Gaus-
sians,Kp, αp,m, µp,m, Σp,m.

During recognition, features of an observed object are
computed, then class-conditional likelihoods are evaluated
with the learnt models. Note that in Equation (4), the like-
lihood of a feature is determined by the probabilities of po-
sitions{~pij} and SIFT vectors{~sij} of all edge points that
form the feature. We use the largest probability among all
p(~pij) to representp({~pij}), and similarly forp({~sij}).
Then a Bayesian decision rule - Equation (1) - gives the
recognition result.

5. Results

5.1. Experimental setup
Our objective to tackle challenges confronted by surveil-

lance applications makes some readily available databases
(such as Caltech 101 [15]) unsuitable since they concen-
trate on static images. More importantly, current focuses on
these databases are to distinguish between quite different
objects, while our goal is to distinguish objects on a more
detailed level, such as sedans vs. taxies.

We collected videos of traffic from an overlooking cam-
era. Currently we focus on a fixed view angle. A track-
ing system [23, 18] gives tracked moving vehicles in the
videos. Average size of tracked vehicles is 75×50 pix-
els. Note that they are much smaller than typical ob-
ject sizes in other static image databases. Three kinds
of vehicles are hand-labeled: sedan, passenger minivan
and taxi. Some examples are shown in Fig 4. Note the
large inter-class similarities. (This dataset is available at
http://people.csail.mit.edu/xiaoxuma/proj.)

In the tracking system [23, 18], objects can be sepa-
rated from background. Then the scaling problem can be
eliminated by normalizing objects to a normalized reference
frame. For each object, the mass center is computed first.
Then for all edge points, relative coordinates to this mass



center are computed. Finally relative coordinates are di-
vided by object width. Thus the width coordinate is approx-
imately normalized to the range of [-0.5, 0.5]. The reason
for dividing width coordinate and height coordinate with the
same value is to preserve the aspect ratio of objects.

Several free parameters also need to be set. The first
two are the size of the neighborhood and sub-region num-
ber of the SIFT descriptor. The third is the threshold used
for pruning out invalid features as shown in Equation (8). In
our experiments, the size of the SIFT neighborhood is set to
be proportional to object width. The ratios of SIFT neigh-
borhood size to object width in our tests are{0.2, 0.3, 0.4,
0.5}. The sub-region numbers of SIFT in our tests are{4,
16}, i.e., 2×2 and 4×4. The valid feature thresholds in our
tests are{0, 0.05, 0.1, 0.2, 0.3}.

Other parameters in our algorithm are the kernel width of
the mean-shift algorithm and theχ2-distance threshold dur-
ing feature pool formation. These two parameters are set to
be the same considering their identical nature of clustering
on SIFT vectors. For this parameter, an empirical test de-
termines 0.03 is appropriate for SIFT with 4×4 sub-regions
and 0.01 is appropriate for SIFT with 2×2 sub-regions.

5.2. Experimental results

We tested on two classification tasks: cars vs. minivans
and sedans vs. taxies. Note sedans and taxies are all re-
garded as cars, so sedans vs. taxies can be viewed as sub-
classification within the car class. To build the models, for
cars vs. minivans, we use 50 cars and 50 minivans randomly
selected from the dataset; for sedans vs. taxies, we used 50
sedans and 50 taxies. Another 200 sedans, 200 minivans
and 130 taxies are selected for testing.

5.2.1. Car versus minivan

Results of cars vs. minivans classification with explicit
shape models are shown in Figure 5. The x-axis in Figure 5
is the valid feature thresholdrthresh in Equation (8). The y-
axis is error rate. Curves in the figures correspond to differ-
ent ratios of SIFT neighborhood size to object width. Com-
bination ofrthresh=0.05 and 2×2 SIFT with SIFT-size-to-
object-width-ratio=0.5 turns out to give the lowest error rate
on cars vs. minivans classification.

First of all, we notice that the effect of size of SIFT
neighborhood conforms with the claim by Belongieet al.
[2] and Kumar and Hebert [14], that is, a rich representa-
tion is necessary for limited (in both quality and quantity)
training data. In our problem, SIFT-size-to-object-width ra-
tio=0.5 turns out to capture more geometry and appearance
information and generate rich enough representations, re-
sulting in good performance. Corresponding constellation
models for car and minivan are illustrated in Figure 6. El-
lipses in Figure 6 depict the distribution of edge points be-
longing to a particular model part. Features in learnt models
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Figure 5. Recognition results on cars vs. minivans by
constellation model with explicit shape. x-axis is the valid
feature thresholdrthresh. y-axis is error rate. The figure
shows error rates on test set with 2×2 SIFT.
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Figure 6. Constellation models with explicit shape. Fea-
tures form a rich representation of corresponding object
classes.

densely cover objects hence represent objects in a rich way.
Smaller or largerrthresh generally gives more errors in

recognition. The reason lies in the nature of hypothesish∗

defined in Section 3.1. The validity of hypothesish∗ is crit-
ical to the success of recognition. If the selected hypothe-
sish∗ consists of bad mappings from observed object fea-
tures to model parts,h∗ is a very poor approximation of the
summation of all possible hypotheses. Whenrthresh is too
small, many superfluous features are kept in the models. If
rthresh is too large, fewer features are kept in the models.
Both cases lead to larger probabilities of mis-match thus
poor hypothesesh∗, hence give more errors on recognition.

For the explicit shape models, high recognition rates are
achieved for both classes, as shown by the confusion ma-
trix in Table 1 (a). We also built and tested implicit mod-
els. For comparison, models with shape only and no appear-
ance (SIFT vectors) are also built and tested. Correspond-
ing confusion matrices are shown in Table 1 (c) & (e). As
discussed in Section 3.2.1, the performance of the implicit
shape model only degrades to a small extent. This confirms
our expectation that a relatively large neighborhood can ef-



Car Minivan
Car 98% 2%

Minivan 1% 99%

Sedan Taxi
Sedan 94% 6%
Taxi 1.54% 98.46%

(a) Explicit shape (b) Explicit shape

Car Minivan
Car 98% 2%

Minivan 1.5% 98.5%

Sedan Taxi
Sedan 94.5% 5.5%
Taxi 1.54% 98.46%

(c) Implicit shape (d) Implicit shape

Car Minivan
Car 95% 5%

Minivan 5.5% 94.5%

Sedan Taxi
Sedan 92% 8%
Taxi 19.23% 80.77%

(e) Shape-only (f) Shape-only

Table 1. Confusion matrices on test sets. Small differ-
ences in performances of explicit and implicit shape mod-
els show the merit of rich representation. Large differences
in performances of explicit and shape-only models indicate
the importance of appearance modeling.

fectively capture both geometry and appearance. This is
again the merit of a rich representation. As for a shape-
only model, from Table 1 (e), it is clearly seen that, without
modeling appearance, shape information alone gives worse
performance than the other two models.

5.2.2. Sedan versus taxi

Similar experiments are carried out on recognition of
sedans vs. taxies. Considering the vast similarity be-
tween sedans and taxies, this is an even harder task com-
pared with cars vs. minivans recognition. Combination of
rthresh=0.1 and 2×2 SIFT with SIFT-size-to-object-width-
ratio=0.5 gives the lowest error rate. Classification results
are shown in the confusion matrices in Table 1 (b)(d)(f).
The results show that, even for very similar object classes
such as sedan and taxi, the method also performs quite well.
Table 1 (b)(f) also show that there are even larger differ-
ences between explicit and shape-only models. This indi-
cates that appearance modeling plays a significantly impor-
tant role to achieve the high performance.

5.3. Discussion

This section gives several comparisons to demonstrate
the modeling capability of the proposed approach.

5.3.1. Comparisons with Chamfer matching and Haus-
dorff distance-based matching

As mentioned in Section 2.1, while our method takes re-
peatable edge segments as features, there are still large vari-
ations in positions of individual edge points. This makes
global edge map matching schemes such as Chamfer match-
ing and Hausdorff distance-based matching less effective.
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Figure 7. Performance comparisons to Chamfer matching
and Hausdorff distance matching. x-axis is training sample
number. y-axis is error rate. Chamfer matching and Haus-
dorff distance matching use individual edge points and no
appearance. Both give higher error rates than those of our
approach.
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Figure 8. Performance comparisons to original SIFTs. x-
axis is training sample number. y-axis is error rate. The dot-
dashed curve gives error rates of recognition with DoG fea-
tures and SIFT voting. The dashed curve gives error rates of
constellation model with original SIFT descriptors. Results
show our rich representation and modifications to SIFT im-
prove the performance.

Figure 7 gives comparisons on performances of these meth-
ods. X-axis is the number of training samples used. Y-
axis is average error rate. We can see that the robust 0.8-
fractional Hausdorff matching [9] is better than Chamfer
matching. But they both perform worse than our approach.
For 50 training samples, our method has 1.5% error rate for
cars vs. minivans, 4.24% for sedans vs. taxies. Chamfer
matching has 11.75% for cars vs. minivans and 10.91% for
sedans vs. taxies. Hausdorff matching has 11% for cars vs.
minivans and 10.3% for sedans vs. taxies. These methods’
ineffectiveness lies in the nature of global matching and lack
of appearance modeling.

5.3.2. Comparisons with original SIFT

We also implemented the DoG feature extraction and
SIFT voting method for object recognition proposed by
Lowe [17]. Its error rates are shown as the dot-dashed



curves in Figure 8. This method is worse than the proposed
method for our task. The reasons are two-fold: first, the
scheme uses a matching ratio score to do voting for each
feature, whereas our approach uses a probabilistic constel-
lation model on all features; second, as discussed in Section
2.3, the original voting scheme uses sparse representation
rather than rich representation for recognition.

Another comparison is to demonstrate the necessity of
modifying original SIFT to fit better to our surveillance sys-
tem as stated in Section 2.1. For this comparison, we keep
the probabilistic constellation model, but use original SIFT
rather than our modified SIFT as descriptors. Performance
comparison is shown in Figure 8. It can be seen that, com-
pared to original voting scheme, incorporating constellation
model improves the performance. However its error rates
are still higher than those of the proposed approach. This
shows the modifications developed in Section 2.1 are nec-
essary to further improve the performance.

6. Conclusion and future work

In this paper we proposed a repeatable and discrimina-
tive feature. Each of these features describes a relatively
large region and the whole set of features forms a rich rep-
resentation for object classes. Experimental results demon-
strate the good performance of the proposed approach on
vehicle classification in mid-field video surveillance.

Classification under view changes and occlusion is still
to be investigated. Future work also includes experiments
on more vehicle types and vehicle identity recognition.
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