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ABSTRACT
While the networking community has extensively tackled
network design problems using optimization or other tech-
niques (e.g., in areas such as traffic-engineering, and resource
allocation), much of this work focuses on efficiently generat-
ing designs assuming well-defined objectives. In this paper,
we argue that in practice, the objectives of a network de-
sign task may not be easy to specify for an architect. We
argue for, and present a structured approach where the ob-
jectives of a network design task are learnt through iterative
interactions with the architect. Our approach is inspired by
a programming-by-examples approach that has seen suc-
cess in the programming languages community. However,
conventional program synthesis techniques do not apply
because in our context a user can only provide a relative
comparison between multiple choices on which one is more
desirable, rather than provide an exact output for a given
input. We propose a novel comparative synthesis approach
to tackle these challenges. We sketch the approach, present
promising preliminary results, and discuss future research
questions.
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1 INTRODUCTION
Many network design problems such as planning, traffic en-
gineering and resource allocation require making decisions
in a manner guided by policies expressed by the architect.
For instance, when managing wide area networks in cloud
provider settings, a network architect must decide how to
allocate bandwidth to different applications, and route traffic,
in a manner that reflects application priorities, while balanc-
ing fairness, throughput and latency considerations [10–12].
The primary focus of much research in the networking

community has been on realizing a design (e.g., determine
how bandwidth must be allocated) given well specified ob-
jectives (e.g., given a max-min fair criteria, or given well de-
signed utility functions). The typical practice is to formulate
optimization problems with well-defined objectives, with the
focus being on strategies for efficiently solving the problem.
However, in practice, it may be challenging for an architect
to precisely state the objectives in the first place. As one
example, while many network design problems simultane-
ously trade-off multiple objectives (e.g., latency, bandwidth,
throughput, fairness), it may not be easy for an architect to
precisely express the trade-offs between these different cri-
teria. While one approach is to provide objective functions
with knobs that an architect could control, the functions
could be overly restrictive, and it may not be intuitive to an
architect how the knobs should be set to match her intent. As
another example, many network allocation problems require
architects to specify utility functions (e.g., [12]). However,
such functions are fairly abstract and may not be intuitive
for a designer to specify in practice.

In this paper, we take the position that when synthesizing
network designs, the challenge is not just how to solve a
well-defined formal problem specification, rather how to
obtain a formal specification that reflects architect goals
in the first place. To this end, we argue for an approach
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where the objectives behind the synthesis are learnt through
iterative interactions with the architect.

Our approach is inspired by, and draws from the program
synthesis community. Program synthesis is the process of
automatically generating programs that meet the user’s in-
tent, and has seen many successful applications recently in
many domains, e.g., synchronization for high-performance
parallel code [22], high-quality feedback for early program-
mers [16], and SQL queries [2, 23] among others. Since writ-
ing precise specification for a programming task is chal-
lenging especially for average programmers, there has been
much interest in the programming-by-examples (PBE) tech-
niques, populated by success stories such as Sketch [17, 18]
and FlashFill [8, 9]. Here, the synthesizer is given a set of
input-output examples and tasked to find a program whose
behavior matches the given examples through iterative in-
teractions with the user.
Unfortunately, PBE techniques are not directly applica-

ble to our context of learning objectives when interacting
with the network designer. First, PBE techniques assume
that the user knows the exact output for a given input. Un-
fortunately, in the network synthesis context, the architects
cannot provide exact outputs for a given configuration. For
example, when evaluating a design which achieves a certain
throughput for a set of flows, the architects cannot provide
a computed total utility value across all the flows, because
precisely formulating utility functions is itself the challenge
that we seek to tackle. However, an architect can provide
a relative comparison between two proposed designs (e.g.,
given two candidate flow allocations, an architect can rank
which one is more acceptable).

Motivated by these observations, in this paper, we pro-
pose comparative synthesis, a novel synthesis framework for
learning and realizing network design objectives. From the
perspective of program synthesis, our key contribution is a
novel way of interaction with the user based on a comparison
(rather than exact output values). From the perspective of
networking, our key contribution is to advocate the learning
of formal specifications for network verification/synthesis
problems through a comparative synthesis approach.
We present a preliminary evaluation to demonstrate the

feasibility and potential of a comparative synthesis approach.
Ourwork is preliminary, but indicates the promise, and opens
several questions for future research.

2 MOTIVATING EXAMPLE
In this section, we present a concrete example to illustrate
that (i) when designing networks, specifying objectives is
often not straight-forward; and (ii) existing specification
approaches may not be intuitive to the network designer.

Consider traffic engineering in the wide-area settings with
SDN networks [10–12]. Typically such settings have multiple
classes of traffic (e.g., higher priority latency sensitive traffic,
and lower priority elastic traffic). An architect must decide
how to allocate bandwidth to different applications and route
traffic in a manner that considers application priorities, and
fairness considerations, while maximizing throughput and
minimizing latency. While existing methods [10–12] focus
on designing for a given set of requirements, precisely speci-
fying requirements may itself be challenging as we illustrate
below:

Expressing latency, throughput and fairness trade-
offs. Given a set of flows, and tunnels, with flow i having
demand di , and tunnel j having a weight w j , consider the
problem of determining the bandwidth bi that must be al-
located to flow i , and the portion of this bandwidth bi j that
must be sent on tunnel j. SWAN [10] tackles this problem
through seperate formulations that either maximize through-
put, or ensure a max-min fair allocation. Further, when con-
sidering throughput, SWAN also considers latency as an
additional factor. Specifically, it optimizes an objective:∑

i

bi − ϵ
∑
i, j

w jbi, j (2.1)

The first term corresponds to the total throughput, and the
second term imposes a penalty for traffic on higher latency
paths. The knob ϵ is a parameter that controls the penalty
assigned to longer paths. While in theory an architect can
tune ϵ to trade-off throughput, and latency, in practice it is
not clear that (i) it is easy for an architect to find a desirable
ϵ ; and (ii) the above approach is sufficiently expressive to
capture how the designer would really like to trade these
parameters off. For instance, an architect may care about
the latency of individual flows (not just the average latency
across flows weighted by traffic), may be particular that
latency and throughput meet certain absolute requirements,
and trade the two goals differently depending on how far
they are to these requirements.
More generally, a designer may also wish to jointly con-

sider fairness and throughput. An approach to do so is pre-
sented in [3] which maximizes qf such that every flow re-
ceives at least a fraction qf of its max-min fair allocation,
while the total allocation across flows is at leastqtTopt , where
Topt is the optimal throughput that could be achieved across
flows if fairness is not considered. However, it is unclear how
an architect chooses qf , or qt , and if the above approach is
reflective of how the architect would trade-off the two crite-
ria. Finally, it may be necessary to simultaneously combine
the above criteria with latency requirements.

Expressing fairness andpriority requirements.When
multiple traffic classes are involved, SWAN [10] strictly prior-
itizes traffic belonging to a higher class, and uses a max-min
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fair allocation for traffic within the same class. An architect
may wish more flexibility in specifying such requirements.
For instance, rather than strict priority, a weighted max-min
fair allocation may be more reflective of designer intent. Be-
yond a max-min fair allocation, other allocation schemes
such as proportionally fair allocations, or alpha-fair alloca-
tions may better match the designer’s goals [20]. While it is
feasible to design optimization formulations for a given no-
tion of fairness, it is unclear how an architect decides which
of these (fairly abstract) choices is the most appropriate in
her context. Another approach used by Google [12] is to
use functions where the bandwidth requirement is specified
as a concave function of fair share. However, specifying a
bandwidth function (which requires knobs such the slope as
a function of fair share to be specified) is a black-art.

3 A COMPARATIVE SYNTHESIS
FRAMEWORK

To tackle the challenges discussed in §2, we present a general
and structured approach to obtain a formal specification that
reflects architect goals in the first place. Rather than precise
specifications (e.g., exact utility functions), or limit designers
to narrow ways of expressing objectives (e.g., constraining
them to choosing an ϵ parameter to control the trade-off be-
tween bandwidth and latency), our approach supports richer
and more expressive methods for intent to be expressed,
and learns the objectives behind the synthesis task through
iterative interactions with the architect.

Our approach ismotivated by the programming-by-examples
(PBE) techniques that have beenwell explored in the program
synthesis community. In PBE, the synthesizer is given a set of
input-output examples and tasked to find a program whose
behavior matches the given examples. A successful use case
is the FlashFill feature of Microsoft Excel [8, 9]. Rather than
require a lay user to enter complex formulae or programs,
these techniques automatically synthesize programs from
examples provided by the user. An example-based specifica-
tion approach is inherently ambiguous and potentially can
be satisfied by many spurious programs. Hence, the success
of a PBE system relies on two components: i) how to rank
many candidate programs and pick the likely desired one;
and ii) when the chosen program does not correctly produce
outputs for all inputs, how to interact with the user and
re-synthesize a better candidate.
Motivated by the above, we represent an objective func-

tion as a program. A program representation provides ex-
pressive power to capture a rich set of objectives that an
architect may have in mind. We model the task of learning
an objective function as one of synthesizing an appropriate
program. Unfortunately, existing PBE techniques are not di-
rectly applicable in our context. Consider a context where

the goal is to synthesize an objective function based on both
the throughput and latency of a network design. Current
PBE techniques require that the architect specifies the exact
objective for a few example combinations of throughput and
latency, and provides feedback on whether the output of
a synthesized objective function is correct. Unfortunately,
in our context, if the architect can provide these kinds of
feedback, she would have written the precise objective that
we want to synthesize.

An architect can however indicate which combination of
throughput and latency is more preferable given two (or
more) such combinations. To this end, we argue for a novel
synthesis framework that we call Comparative Synthesis il-
lustrated in Figure 1. We summarize the key ideas below:
• The synthesizer takes as input a set of metrics that summa-
rize the performance of a network design, and are of interest
to the designer. For example, in Eq (2.1). the relevant metrics
are (i) the total throughput across all the flows; and (ii) the
average latency of network flows weighted by the traffic on
that flow. Henceforth, we refer to these metrics as through-
put and latency respectively. More generally, the metrics
could include the throughput and latency of individual flows
(e.g., to capture requirements applicable at the flow level).
•The synthesizermay also take as input one ormore sketches
or templates of typical objective functions (we provide a con-
crete example later). Such sketches may be provided by a
domain expert to incorporate the structure of objective func-
tions typical for the context, and to constrain the synthesis
process.
• The goal of the synthesizer is to produce an objective func-
tion that matches the architect’s intent. At each step, the
synthesizer requests the architect to provide a preference
ranking for different sets of metric combinations (e.g., dif-
ferent throughput/latency combinations). Henceforth, we
refer to each distinct metric combination as a scenario. Based
on these inputs, the synthesizer generates multiple candi-
date objective functions that satisfies the user ranking. The
synthesizer interacts with the architect, providing new sce-
narios to be ranked, and this process eventually converges
to a desired objective function.

We present more concrete details in the next section, with
a case study.

4 SYNTHESIS PROCESS
In this section, we briefly describe our synthesis process
focusing on the SWAN example described in Section 2. We
first describe a sketch of the objective and what the synthe-
sis problem is, then formulate how the synthesis algorithm
works under the user’s guidance. Finally, we report our pre-
liminary experimental results and our observations.
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Figure 1: Overview of the comparative synthesis framework.

4.1 Sketching the Objective Function
We adopt the popular sketch-based synthesis approach [17,
18], in which the programmer specifies a synthesis problem
as a sketch or template, which is a program that contains
some unknowns to be solved for and some assertions to
constrain the choice of unknowns.

To learn the network design objectives, we expect a sketch
of the objective function reconciling throughput and latency
has been provided by domain experts. In the case of SWAN,
our objective function synthesis starts from a sketch as
shown in Figure 2a. The objective function takes two argu-
ments throughput and latency which are the two metrics
that the user targets to optimize. The body of the function is
a partial program containing four unknown holes (as high-
lighted in the figure): tp_thrsh, l_thrsh, slope1 and slope2.
Then the synthesis task is to fill all four holes automatically
to form a desirable objective function. Figure 2b shows a
solution of the synthesis problem with values of filled holes
colored red.

The sketch captures the following rules: 1) we prefer sat-
isfying scenarios, i.e., those in which both the throughput is
at least tp_thrsh and latency is at most l_thrsh, by giving an
extra f actor bonus points to them (in Figure 2a we just use
a large number 1000); 2) we weigh throughput and latency
differently for satisfying and unsatisfying scenarios, and the
weights can be represented by different slopes slope1 and
slope2. We make several comments. First, the sketch allows
for more flexibility than a single ϵ parameter, as it captures
the notion that satisfying scenarios (which are intuitive to
interpret) are prioritized, and allows for different slopes in
different regions. Second, the sketching approach leaves the

task of determining the various knobs such as slope1 and
slope2 to the synthesis engine, and the parameters are cho-
sen to match the architect’s notion of which scenarios are
more desirable. Third, the above sketch is just an example - it
can be generalized to support multiple regions, and different
ways of combining the objectives. The sketch can also encode
requirements on throughput and latency of individual flows,
or other summary metrics besides sum of throughput and
weighted average latency of flows, and also even the exact
functions in the summarization could be left unspecified.

4.2 Preference-Guided Synthesis
Recall that our goal is to fill the unknowns in the user-
provided sketch, in the case of SWAN, tp_thrsh, l_thrsh,
slope1 and slope2, such that the complete objective function
matches the user’s intent. As mentioned in Section 3, our sys-
tem understands the user’s intent by making queries about
concrete scenarios. The system records the user’s preference
as a directed acyclic graph (DAG) G, in which each vertex
represents a concrete scenario (in the case of SWAN, con-
crete throughput and latency values), and each directed edge
represents a preference (the head scenario is more preferred
than the tail scenario). For example, if there is an edge in
G connecting a vertex (throughput = 2, latency = 100) to
another vertex (throughput = 5, latency = 10), then the
synthesizer must ensure the synthesized objective function
satisfies

objective_func(2, 100) > objective_func(5, 10)

At the beginning, the synthesizer generates a set of ran-
domly generated scenarios and asks the user to indicate her
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objective_func(throughput, latency)

if

throughput >= tp_thrsh && latency <= l_thrsh
then

throughput - slope1*throughput*latency + 1000

else

throughput - slope2*throughput*latency

(a) Sketched objective function (the highlighted part is un-
known holes to be filled).

objective_func(throughput, latency)

if

throughput >= 1 && latency <= 50

then

throughput - 1*throughput*latency + 1000

else

return throughput - 5*throughput*latency

(b) Target objective function (red indicates the synthesized
values).

Figure 2: Example of sketch-based objective function synthesis.

preferences over them. The user’s feedback forms the ini-
tial graph G and helps the synthesizer discard most of the
obviously incorrect solutions.

Next, the synthesizer repeatedly makes more queries and
expands G with the user’s answers. In each interaction, the
synthesizer finds multiple candidate solutions that are con-
sistent with the current preference graph G, say fa and fb .
Then to determine which candidate is closer to the user’s
expectation, the synthesizer further generate two scenar-
ios, say (t1, l1) and (t2, l2) such that fa and fb give different
preferences over these two scenarios. The synthesis task is
automated by making a logical query to a satisfiability solver
such as Z3 [4]:

∃fa , fb , t1, l1, t2, l2.
∧ Viable(fa) ∧ Viable(fb ) ∧∧(
(t,l),(t′,l′)

)
∈G

fa(t, l) > fa(t
′, l′) ∧ fb (t, l) > fb (t

′, l′)

∧ fa(t1, l1) > fa(t2, l2) ∧ fb (t2, l2) > fb (t1, l1)
∧ ClosedInRange

The query asks the SMT solver to find candidates fa , fb and
scenarios (t1, l1) and (t2, l2) such that a set of constraints are
satisfied. First, both candidates should be viable, i.e., they
can be implemented with some knobs the user can tune.
Note that the viability check is ad-hoc for different network
design problems and can be very sophisticated. However, in
the SWAN example, arbitrary combination of thresholds and
slopes can be implemented by an appropriate knob ϵ , hence
we simply skip the viability check.

Secondly, both candidates should honor existing prefer-
ences inG , and have different preferences on the two scenar-
ios. The last condition is ClosedInRange, which represents a
set of constraints that enforce the metrics (throughput and
latency) are closed in the range that we assume. For SWAN,
we assume both throughput and latency should be greater
than or equal to 0; the throughput is under 10Gbps; the
latency should be under 200ms.
Once an appropriate set of scenarios is generated, the

synthesizer passes it to the user. As the scenarios are concrete

Metrics Average Median SIQR
# Iterations 31.33 30 4.25

Synthesis Time per Iteration (s) 2.45 2.37 0.12
Total Synthesis Time (s) 76.13 71.67 11.16
Table 1: Summary of experimental results.

metrics, the user can easily understand and order them based
on her preferences, which will be added to the preference
graph G. The synthesis continues to the next iteration.
Note that the user does not have to give a full rank of all

concrete scenarios. If some scenarios are indistinguishable
or incomparable from the user’s view, the synthesizer can
still update the preference graph with the partial rank and
make progress toward finding a solution.
The SMT solver may return unsatisfiable, which means

the preference graphG is rich enough such that there is only
one viable solution. In that case, the synthesis process and
the unique solution will be returned.

4.3 Experimental Evaluation
Wedeveloped a prototype of the comparative synthesis frame-
work and evaluated the effectiveness of our approach by
synthesizing objective functions for the SWAN system. As a
preliminary evaluation, we use an oracle to play the role of
an ideal user in the synthesis process. For any set of scenarios
given by the synthesizer, the oracle evaluates the scenarios
using the ground truth (the target function in Figure 2b) and
returns the preference ranking accordingly. Our framework
leverages Z3 [4], a state-of-art SMT solver as our back-end
constraint solver. We conducted our experiments on a laptop
with a dual-core, 2.9GHz CPU and 8GB memory running
macOS 10.12.
We initialized the preference graph G by asking the user

to rank 5 randomly generated scenarios. Then in each fol-
lowing interaction, we asked the user to rank one additional
pair of scenarios. Since G was randomly initialized, our ex-
periments were not deterministic. The solving time and the
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Figure 3: Experimental results with tuned threshold
or slope.

number of interactions (we use iterations and interactions in-
terchangeably) between the user and the synthesizer varied
across runs. We ran each experiment nine times and col-
lected the iteration number, synthesis time for each iteration
and the total synthesis time. Since the user is simulated by
an oracle, we omit the time spent by the oracle. Table 1 gives
the average, the median and the semi-interquartile range
(SIQR) for these numbers. We found the total synthesis time
is reasonable and stable regardless of different initial input
pairs.

We further investigate the robustness of our approach
by tuning various components of the synthesis framework,
including different target functions and different numbers
of scenarios.

Effect of target function. It is important to ensure the
framework can synthesize various target functions, since
these represent different user’s intents. We tuned the thresh-
olds tp_thrsh and l_thrsh, and slopes slope1 and slope2 in
the target function separately, each with 5 different values.
l_thrsh varies in range between 20 and 80, and others vary
in the range between 1 and 5. Figure 3 reports the average
number of iterations and average synthesis time per itera-
tion for each variant target function. While the number of
interactions and the synthesis time vary, we successfully
synthesized all different correct objective functions.

Effect of number of ranked scenarios. The number of
iterations interacting with oracle was around 30 in the orig-
inal setting, which is a bit excessive if a human user were
participating. Therefore, we consider generating multiple
pairs of scenarios per iteration for the user to compare. As il-
lustrated in Figure 4, ranking 2 scenarios per iteration helped
the synthesizer find a solution in similar amounts of time but
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Figure 4: Experimental results with more pairs of sce-
narios ranked per iteration.
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Figure 5: Experimental results with different number
of initial scenarios.

with fewer interactions,. However, ranking 3 or more sce-
narios per iteration only reduced the interaction moderately
but increased the total synthesis time significantly.

Effect of number of initial scenarios. We also inves-
tigated if the randomly generated scenarios help. We tried
various number of initial random scenarios ranging from 0
to 10. As shown in Figure 5, initial randomly generated sce-
narios slowed down synthesizing target function but helped
decreasing the number of interactions.

5 RELATEDWORK
The research community has started exploring the use of
program synthesis techniques to networking [6, 7, 14, 15, 19,
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21, 25]. These systems all focus on synthesizing forwarding
tables, or router configuration files. In contrast, our frame-
work takes the first step toward learning network design
objectives using synthesis techniques. Recently Birkner et
al. [1] has also recognized the challenge of writing network
specifications. However, they do not account for generat-
ing quantitative design objectives that match the architect’s
intent.

The PBE techniques have been applied to synthesize net-
work configurations. For example, NetEgg [25] can generate
stateful configurations, e.g., those look up and maintain in-
ternal states, from user-provided scenarios. While we are
inspired by PBE techniques, a direct application is not vi-
able in our context, and we propose a comparative synthesis
approach.

6 DISCUSSION AND CHALLENGES
In this paper, we have taken the position that when designing
networks, it is not sufficient to address difficulties in solving
a well-defined formal problem specification. Rather, it is
also important to tackle challenges in obtaining a formal
specification in the first place. To this end, we have proposed
a novel comparative synthesis approach that can allow
learning of design objectives through iterative interactions
with network architects.

Our work is preliminary, and many challenges need to be
addressed to realize our approach at scale in practice. Our
work also has potential applications in many other contexts
beyond those discussed in this paper. We discuss below.

6.1 Challenges
Considering tractability of realizing an objective. In
this paper, we have focused on synthesizing objective func-
tions that capture architect intent. However, ultimately, it is
also necessary to synthesize designs that meet these goals. It
may be intractably hard to synthesize designs for arbitrary
objective functions. One approach is for the domain architect
to create templates that guide the architect towards objective
functions that are tractable, and pick functions that closely
approximate architect intent. Another approach is for the
solver to use a more tractable objective function and gener-
ate multiple (rather than a single) solution that are good for
that objective function, and subsequently pick one of these
based on the exact architect objective.

Robustness to user inputs. As a PBE approach, compar-
ative synthesis also depends on the quality of inputs from the
architect. Since an architect can potentially provide inconsis-
tent or vague relative preference information, the synthesis
approach must be robust to detect and remove noise in user
inputs. A potential approach is to use machine learning tech-
niques to this end.

Comparing scenarios through simulators.Akey ques-
tion for comparative synthesis is how architects can rank
a given set of scenarios. In some domains, an architect can
intuitively reason about the scenarios, and indicate which is
more preferable. In other contexts, it may be helpful to create
simulations that mimic the scenarios, to allow architects to
decide which scenario is more preferable. Such an approach
is particularly relevant to the video streaming application
that we discuss below.

6.2 Other applications
Beyond network design, comparative synthesis may apply
to many other networking contexts. We present some below.

Algorithm design for video streaming. Consider the
design of Adaptive Bit Rate (ABR) algorithms in the context
of HTTP-based video streaming [13, 24]. It is well understood
that many video delivery metrics impact user experience,
such as the average video bit rate, start up latency, rebuffer-
ing ratio, and variations in bit rate [5]. However, it is not
clear how best to simultaneously reconcile these metrics.
State-of-the-art approaches in the field [13, 24] formulate ob-
jective functions that combine these metrics in fairly ad-hoc
ways (e.g., simple linear combinations), and use optimization
or machine learning techniques to optimize these composite
measures. It is however unclear if these composite measures
meaningfully reflect user experience. A comparative synthe-
sis approach can be used by video publishers to learn richer
objective functions that better relate to user experience. The
ranking of preferences could be combined with simulations
described above to create scenarios corresponding to differ-
ent video deliverymetrics, with the rating from users guiding
the design of objective functions.

Configuring home networks. Another application do-
main is the configuration of home networks tomanage policy
regarding how bandwidth must be utilized across compet-
ing applications (e.g., different home users, IoT devices). It
would be particularly challenging for home users to config-
ure weights and utility functions for different kinds of traffic,
and a comparative synthesis approach can potentially be
beneficial in such settings.
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