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Overview
My research mission is to make computer programming easier, more reliable, and more productive.
Computer software has revolutionized our daily lives, but software developers’ lives have not advanced
commensurately. Programming remains “one of our most demanding intellectual activities” as E.W.
Dijkstra said three decades ago [2]. For example, as of 2018, it would cost approximately $14.7 billion
USD to re-develop the Linux kernel [29], giving a cost per line equal to $733. The main thrust of
my research is to develop algorithmic techniques to advance program synthesis — the process of
automatically generating programs that meet the user’s intent. As one of the most central research
problems in computer science and AI, program synthesis is notoriously challenging. Nonetheless, in the
last two decades, largely driven by the flowering of constraint solving and machine learning techniques, this
traditional research area has experienced a renaissance and witnessed emerging programming paradigms
(e.g., program sketching [20]), automated tools (e.g., the plethora of syntax-guided synthesis solvers [1]),
and prominent applications (e.g., the FlashFill feature of Microsoft Excel [4]).

Despite the promising progress, program synthesis still has a long way to go. On one hand, to
replace human written code with machine generated code in any production software, the synthesizer
has to formally guarantee that the produced program is functionally correct, performant, preferable
etc. These topics intersect with program verification, a well known challenging research area which has
been studied for more than five decades [5]. On the other hand, Today’s program synthesizers still can
only be mastered by experts who can articulate their intent using formal specification or informative
examples, determine preferable programs by writing ranking functions, and guide the synthesizer with
domain knowledge. Moreover, while each of the two problems alone is already challenging enough, they
are unfortunately tangled and have to be reconciled in a synthesizer. To this end, my general research
program is to develop accessible synthesis tools that help regular programmers produce high-quality,
trustworthy programs.

In the rest of this statement, I will highlight some of my main contributions to program synthesis,
while mentioning along the way how the accessibility and trustworthiness are reconciled in these results.
I will then conclude with my very recent or ongoing work and future directions.

Provably-Correct Heap-Manipulating Programs
Heap-manipulating programs are one of the least understood classes of programs. Manipulations of
dynamically allocated memory are pervasive in low-level computer systems: garbage collectors, OS
kernels, device drivers, mobile browsers, etc. Moreover, the functional correctness of these programs is
highly desirable, as they should provide a secure and trustworthy platform for higher-level applications.
Unfortunately, building programs in this class eludes existing automatic techniques and poses one of
the greatest challenges in software verification and synthesis. I have developed novel logics, decision
procedures and methodologies for verifying heap-manipulating programs.
Decidable Logics and Automated Reasoning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Programming tools are usually backed by efficient logic solvers for various theories such as integers, reals,
bitvectors, arrays and strings. An important missing piece is decidable logics for tree data-structures,
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which holds promise to automate many verification and synthesis problems not possible before. To this
end, I have developed Strand (“STRucture ANd Data”) [14, 15], an expressive logic that combines
graph-logic and data-logic, resulting in the first decision procedures that can prove properties of tree-like
data-structures.

I have also developed Dryaddec, another decidable logic that allows reasoning about tree data-
structures with measurements [24]. The crux of the decidability proof is a small model property which
allows us to reduce the satisfiability of Dryaddec to quantifier-free linear arithmetic theory which can be
solved efficiently using SMT solvers. This decision procedure has been the first one that can prove full
correctness of programs manipulating AVL trees and red-black trees.

Many synthesis tasks are essentially optimization of program, and the correctness of the optimizations
boils down to reasoning about transformations between tree traversals (over the abstract syntax trees
representing the programs). Recently, my group has developed Retreet [27], a framework that reasons
about transformations between tree-traversal programs. Our idea is a stack-based representation for
iterations in tree traversals and an encoding to Monadic Second-Order logic over trees. Retreet can
automatically discover and verify optimizations for complex traversals on real-world data structures, such
as cascading style sheets (CSS) and cycletrees, which are not possible before.
Natural Proofs and Natural Synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The decision procedures above allow a class of verifiers to boil down the whole verification task to
a set of queries to the decision procedure, leading to push-button systems which are fully-automatic.
Unfortunately, theoretical results suggest their complexity is high and their expressivity is limited.
Moreover, they are black boxes from the perspective of the synthesizer and hence hard to be integrated
into existing synthesis frameworks such as counterexample-guided inductive synthesis (CEGIS).

To this end, I proposed a radically new methodology called natural proofs [16]. The key insight
behind natural proofs was that, to automate the verification process, it is unnecessary to thoroughly
search for all possible proofs, which is the case for all decidability-based approaches. The idea of the
natural proof methodology is: a) to identify a class of natural proof tactics that mimics the human way
of proving heap-manipulating programs; and b) to build algorithms that efficiently and thoroughly search
this class of proofs. Based on this methodology, I have developed VCDryad [22, 18], the first SMT-based
program verifier against separation logic. VCDryad showed that the combination of separation logic,
natural proofs and SMT solving is amenable to automated reasoning with structure, data and separation:
it has automatically verified the full correctness of a wide variety of challenging C programs, including
a large number of well-known routines from open-source libraries (GTK library, OpenBSD, etc.) and
operating systems (Linux kernel and ExpressOS, a secure mobile OS).

I further integrated above verification techniques to synthesis tools. For instance, I extended
Natural Proofs to the context of program synthesis and proposing Natural Synthesis [23], a novel
verification-synthesis integration. In particular, he designed ImpSynt, a synthesis-enabled language that
allows the user to describe only a high-level skeleton of the program, and developed the first synthesizer
that can produce imperative, data-structure manipulations and their proofs in tandem, from these
skeletons.

Other researchers have explored natural proofs in a different context and successfully verified the
Windows Phone Universal Serial Bus (USB) driver. The natural synthesis methodology has influenced
researchers from the Database community.

General-Purpose Synthesis Algorithms and Tools
I have co-developed several influential, user-friendly program synthesis tools, including Sketch, JSketch
and DryadSynth.
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Scalable Sketch-Based Synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sketch-based synthesis lets the programmer specify a synthesis problem as a sketch or template, which
is a program that contains some unknowns to be solved for and some assertions to constrain the choice
of unknowns. Sketch-based synthesis was popularized by the Sketch [21] synthesis tool, which has seen
many successful applications. As a developer of Sketch, I have co-developed several techniques that
make Sketch more useful in practice. The following techniques have been implemented and integrated
into the latest Sketch distribution.

Despite many successful applications, Sketch still does not scale to programs that are even hundreds
of lines long, and making sketch-based synthesis technology more scalable is an important research
question. When a sketch involves too many unknowns which encode a too large search space, the
user typically needs to concretize/fill some of the critical unknowns to reduce the size of the search
space. Based on this key observation, I co-developed a novel synthesis algorithm called Adaptive
Concretization [12, 13]. The key idea is to automate the human concretization process by estimating
highly influential unknowns. Then by randomly concretizing these unknowns we can often speed up
the overall synthesis algorithm, especially when we add parallelism. Experiments show that the new
algorithm often outperforms vanilla Sketch, sometimes very significantly.
Program Sketching for Java. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I have also co-developed JSketch, the first Java sketching tool that delivers sketch-based synthesis
to the hands of Java programmers [11]. JSketch’s input is a partial Java program that may include
holes, expression generators, and class generators. JSketch then translates the synthesis problem into
a Sketch problem, and synthesizes an executable Java program by interpreting the output of Sketch.
JSketch has also inspired the development of other Sketch-based synthesizers, such as EdSketch [6]
and SkASP [19].

A special challenge for JSketch is synthesizing programs that use standard Java libraries. The
known approach was to model libraries with mock library implementations that perform the same function
in a simpler way. However, mocks may still be large and complex, and must include many implementation
details, both of which could limit synthesis performance. To address this problem, we extended JSketch
with algebraic specifications for describing library behaviors, e.g., encryption followed by decryption
(with the same key) is the identity. This enhanced JSketch handles algebraic specifications with a
rewriting-based encoding. With this extension, JSketch successfully synthesized provably correct Java
programs that use data structure libraries, cryptography libraries, or the file system. Most of them were
synthesized within 10 minutes [17].
Syntax-Guided Synthesis Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sketch-based synthesis belongs to a more general theme called Syntax-Guided Synthesis (SyGuS), which
formulates the synthesis task as a computational problem of searching for a program expression that
meets both syntactic and logical constraints. Inspired by other solver competitions which have catalyzed
the plethora of SMT solvers and verifiers, the community has standardized the problem input format and
held an annual competition called SyGuS-Comp since 2014 [1].

I have been leading the development of DryadSynth, the most recent winner solver of SyGuS-
Comp in the conditional linear integer arithmetic (CLIA) track (2018 and 2019). A key novelty behind
DryadSynth is Cooperative Synthesis [8], a framework in which a synthesis problem is repeatedly
split into subproblems and solved by deduction or enumeration separately. We have recently extended
DryadSynth to support the synthesis of bit-vector manipulations [3]. The key driving power is a
distinct enumeration strategy with the guidance of bottom-up enumeration and large language models.
DryadSynth successfully solved 31 bit-vector synthesis problems for the first time, including 5 renowned
Hacker’s Delight problems [28].
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Lowering the Barrier for Users
While program synthesis has advanced a lot and enabled real-life code generation, modern-day synthesizers
(including those I co-developed) can still only be mastered by experts. One vital problem is that these
techniques have not been integrated to the traditional software development process that most regular
programmers are familiar with. In recent years, I have made inroads toward lowering the barrier of
algorithmic program synthesis for regular programmers – in several disparate contexts.
Program Sketching without Custom Templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A fundamental problem that significantly impacts the usability of Sketch (and all sketch-based synthesis
techniques) is the requirement to provide a template for every synthesis task. We showed in [9] that,
at least in the context of recursive transformations on algebraic data-types (ADTs), a user does not
have to write a custom template for every synthesis problem, but can instead rely on a generic template
from a library. Moreover, we developed a new optimization called inductive decomposition, which
achieves asymptotic improvements in synthesis times for large and non-trivial ADT transformations. This
optimization, together with the user guidance in the form of reusable templates, allows the enhanced
Sketch to attack problems that are out of scope for prior synthesis techniques.
Library-Based Synthesis without Hand-Crafted Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

While the algebraic library models in [17] let JSketch handle libraries more efficiently, it is not too
different from a user’s perspective – they still have to provide carefully crafted mocks or models to
JSketch, requiring a lot of extra manual work. Recently, I explored an approach aiming at reducing
the user’s burden of writing library models, and developed Toshokan (“library” in Japanese) [7], a
bootstrapping synthesis framework which extends traditional counterexample guided inductive synthesis
(CEGIS) with an automatically built library model from logged behavior of the library. Toshokan has
been implemented and integrated into JSketch. Comparing to vanilla JSketch using mocks or models,
Toshokan reduces up to 159 lines of code of required manual inputs, at the cost of less than 40 second
of performance overheads.

Similar challenges are also faced by the users of static analyzers for Android apps, who have to provide
abstract models for Java frameworks (e.g., Swing and Android). I have co-developed Pasket [10], a first
step toward automatically generating Java framework models. Pasket takes as input the framework API,
together with tutorial programs that exercise the framework, and emits framework models by instantiating
design patterns to the framework API. This tool has been able to synthesize models for a subset of
Swing and a subset of Android.
Quantitative Synthesis without Hand-Crafted Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Writing formal specification for synthesis is a major barrier for average programmers. In particular, in some
quantitative synthesis scenarios (such as network design), the first challenge faced by the user is expressing
their optimization targets. To address this problem, my group developed Comparative Synthesis [25, 26],
an interactive synthesis framework that learns near-optimal programs through comparative queries,
without user-specified optimization targets. We developed a voting-guided learning algorithm which
provides a provable guarantee on the quality of the found program. This approach has been embodied in
a system called Net10Q for wide-area network design. Experiments with oracles and a pilot user study
with network practitioners and researchers show Net10Q is effective in finding allocations that meet
diverse user policy goals in an interactive fashion.
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Ongoing and Future Work
I will continue my work on making program synthesis more trustworthy and user-friendly, by developing
advanced programming systems and making them accessible to domain users.
Algorithmic Innovations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On the Systems side, I am committed to the continued development and improvement of practical, general-
purpose program synthesis tools including DryadSynth and JSketch. These tools have the potential
to significantly broaden the base of people who can overcome the programming-related challenges in
their own fields, by delivering the power of algorithmic program synthesis to their hands. In particular, I
believe that modularity—a key enabling concept in many disciplines for hiding and managing complexity
of large systems—remains an essential missing piece in the program synthesis puzzle and will potentially
lead to the next wave of breakthrough for program synthesis. I envision a modular synthesis framework
which decouples complex verification and synthesis tasks, decomposes a large synthesis task to multiple
verification or synthesis subtasks, and delegates each subtask to an appropriate, off-the-shelf solver. This
line of work is currently supported by my NSF CAREER award (CCF-2046071).

Besides conventional formal methods-based approaches, I am enthusiastic about the advent of
large language models (LLMs) and look forward to harnessing the power of this revolutionary thrust for
my research program. Our recent research in bit-vector synthesis [3] has shown that while GPT models
are incapable of producing complete solutions for most challenging synthesis problems, we can extract
some critical components that significantly assist in DryadSynth’s search process. I am eager to delve
deeper into understanding the strengths and weaknesses of LLMs and exploring more novel interaction
paradigms between LLMs and traditional enumerative and deductive synthesis techniques.
Engaging with Domain Users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On the Domain side, I will explore novel programming techniques to the fields of Networking and
Quantum Programming. In the realm of Networking, I believe what remains missing is a flexible language
for data plane programming. Despite promising development in recent years, there is still a long way to
go to let average network architects program data planes in a natural and efficient way. Such a language
will transplant and adapt a suite of computer-aided programming techniques I developed—including
sketch-based synthesis, comparative synthesis and automated reasoning—to the field of networking. This
endeavor has been supported by two consecutive NSF Formal Methods in the Field (FMitF) awards
(CCF-1837023 and CCF-2319425).

Furthermore, I have been collaborating with colleagues on applying synthesis techniques to the
exciting domain of Quantum Programming. Our particular focus lies in the discovery of quantum circuit
identities [30], i.e., finding general patterns of quantum circuit that can be transformed to a simpler
and (approximately) equivalent circuits. This pursuit necessitates the development of novel synthesis
and verification techniques and holds great promise for quantum program compilation, analysis, and
education.
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