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Abstract Adaptive concretization is a program synthesis technique that enables
efficient parallelization of challenging synthesis problems. The key observation be-
hind adaptive concretization is that in a challenging synthesis problem, there are
some unknowns that are best suited for explicit search and some that are best
suited for symbolic search through constraint solving. At a high level, the main
idea behind adaptive concretization is to dynamically identify which unknowns
are best suited to which kind of search, and to parallelize the explicit search on
those unknowns for which that style of search is more suitable.

We first introduced adaptive concretization in an earlier paper [13]. Our original
algorithm involved a few arbitrary design decisions, leaving open the question
of whether different choices could achieve better performance. In this paper, we
systematically evaluate several dimensions of the design space to better understand
the tradeoffs. We show that, in general, adaptive concretization is robust along
those dimensions, and our initial choices were reasonable.

1 Introduction

Program synthesis aims to construct a program satisfying a given specification.
One popular style of program synthesis is syntax-guided synthesis, which starts
with a structural hypothesis describing the shape of possible programs, and then
searches through the space of candidates until it finds a solution. Recent years
have seen a number of successful applications of syntax-guided synthesis, ranging
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from automated grading [21], to programming by example [9], to synthesis of cache
coherence protocols [25], among many others [6,17,23].

Despite their common conceptual framework, each of these systems relies on
different synthesis procedures. One key algorithmic distinction is that some use
explicit search—either stochastically or systematically enumerating the candidate
program space—and others use symbolic search—encoding the search space as con-
straints that are solved using a SAT solver. The SyGuS competition has recently
revealed that neither approach is strictly better than the other [1].

In our prior work [13], we proposed adaptive concretization, a new approach to
synthesis that combines many of the benefits of explicit and symbolic search while
also parallelizing very naturally, allowing us to leverage large-scale, multi-core
machines. Adaptive concretization is based on the observation that in synthesis
via symbolic search, the unknowns that parameterize the search space are not all
equally important in terms of solving time. In Section 3, we show that while sym-
bolic methods can efficiently solve for some unknowns, others—which we call highly
influential unknowns—cause synthesis time to grow dramatically. Adaptive con-
cretization uses explicit search to concretize influential unknowns with randomly
chosen values and searches symbolically for the remaining unknowns. We have ex-
plored adaptive concretization in the context of the Sketch synthesis system [22],
although we believe the technique can be readily applied to other symbolic syn-
thesis systems such as Brahma [14] or Rosette [24].

The original adaptive concretization algorithm involved a few arbitrary design
decisions which were not fully evaluated. In this paper, we perform a system-
atic evaluation of the design space to better understand the tradeoffs. We use
31 benchmarks (of which 26 were from the original paper), and we use the same
experimental platform; however, we use the latest version of Sketch, which has
improved since the original paper was published. (Section 4 provides details of our
experimental design.)

Our adaptive concretization algorithm is parameterized by a degree of con-

cretization, which controls the exact probability of concretizing an unknown based
on its influence. The exact influence computation is explained in detail in Sec-
tion 8, but intuitively it tries to give more weight to unknowns used as conditional
guards, since their values are likely to cause big changes to the choices of other
unknowns. In the original algorithm, at degree 0, an unknown with any positive
influence is concretized with probability 1/2; at degree ∞, only unknowns with
influence 1500 or higher are concretized. The degree is an important parameter
because the optimal amount of concretization depends heavily on the particular
benchmark [13]—hence the “adaptive” part of adaptive concretization is to search
for the optimal degree in an on-line manner, as synthesis proceeds.

While our original algorithm worked well, it was unsatisfying to have 1/2 and
1500 baked into the probability function as constants, especially because there is
not much intuitive justification for those two choices. Moreover, the probability
function, parameterized by an unknown’s influence and the degree of concretiza-
tion, was discontinuous—an unknown with influence 1500 or higher is always con-
cretized, but an unknown with influence 1499 or lower is concretized at most 1/2
the time. Thus, we introduce a new, smooth probability function, with the same
parameters, that eliminates the constants and the discontinuity. In Section 5, we
empirically show that the new, smooth function behaves similarly to the discon-
tinuous function.
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In our original work, we showed that under the discontinuous probability func-
tion, if we make a graph with the degree on the x-axis and the expected time to
find a solution on the y-axis, the graph forms a “vee” shape with a low point at
the optimal degree. This justifies adaptive concretization’s degree search process,
which uses a combination of exponential hill climbing and binary search. In Sec-
tion 6, we empirically demonstrate on a subset of the benchmarks that the “vee”
shape still occurs under the new, smooth probability function, hence re-justifying
adaptive concretization’s search process.

Finally, we consider the last two “magic constants” in adaptive concretization.
First, during degree search, the algorithm uses the Wilcoxon Signed-Rank Test [27]
to compare the mean expected synthesis time from two sets of trials at two dif-
ferent degrees. That test returns a p-value indicating the probability any observed
difference in the mean is due to random chance. Once the p-value exceeds a thresh-
old T , adaptive concretization determines one degree is better than the other and
then continues searching at a different pair of degrees. In our original algorithm,
we fixed T at 0.2. In Section 7, we use a simulation of adaptive concretization to
compare five different T values ranging from 0.001 to 0.5. We find that choosing
a T anywhere between 0.05 and 0.2 seems to yield similarly good results.

Second, adaptive concretization’s original influence calculation assigns arbi-
trary boolean unknowns 0.5 times the influence of unknowns in guard positions of
if-then-else nodes. In Section 8, we empirically evaluate a range of different values
for this ratio, B, ranging from 1/8 to 2. Surprisingly, we find no meaningful dif-
ferences among this wide range of choices, suggesting the influence calculation is
not sensitive to the choice of B.

Cumulatively, our results put adaptive concretization on a much firmer foun-
dation by demonstrating that the algorithm is robust to a wide range of design
decisions.

2 Related Work

There have been many recent successes in sampling-based synthesis techniques.
For example, Schkufza et al. use sampling-based synthesis for optimization [17,
18], and Sharma et al. use similar techniques to discover complex invariants in
programs [19]. These systems use Markov Chain Montecarlo (MCMC) techniques,
which use fitness functions to prioritize sampling over regions of the solution space
that are more promising. This is a more sophisticated sampling technique than
what is used by our method. We leave it to future work to explore MCMC meth-
ods in our context. Another alternative to constraint-based synthesis is explicit
enumeration of candidate solutions. Enumerative solvers often rely on factoring
the search space, aggressive pruning and lattice search. Factoring has been very
successful for programming by example [9,11,20], and lattice search has been used
in synchronization of concurrent data structures [26] and autotuning [2]. However,
both factoring and lattice search require significant domain knowledge, so they are
unsuitable for a general purpose system like Sketch. Pruning techniques are more
generally applicable, and are used aggressively by enumerative solvers.

Recently, some researchers have explored ways to use symbolic reasoning to im-
prove sampling-based procedures. For example, Chaudhuri et al. have shown how
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to use numerical search for synthesis by applying a symbolic smoothing transfor-
mation [4,5]. In a similar vein, Chaganty et al. use symbolic reasoning to limit the
sampling space for probabilistic programs to exclude points that will not satisfy a
specification [3].

Finally, there has been significant interest in parallelizing SAT/SMT solvers.
The most successful of these combine a portfolio approach—solvers are run in
parallel with different heuristics—with clause sharing [10,28]. Interestingly, these
solvers are more efficient than solvers like PSATO [29] where every thread explores
a subset of the space. One advantage of our approach over solver parallelization
approaches is that the concretization happens at a very high-level of abstraction, so
the solver can apply aggressive algebraic simplification based on the concretization.
This allows our approach to even help a problem that ran out of memory on the
sequential solver. The tradeoff is that our solver loses the ability to tell if a problem
is UNSAT because we cannot distinguish not finding a solution from having made
incorrect guesses during concretization.

3 Adaptive Concretization

We begin by reviewing how adaptive concretization works. To motivate the algo-
rithm, consider the following example input to the Sketch synthesis tool:

bit [32] foo(bit [32] x) implements spec{
if (??){

return x & ??; // unknown m1

}else{
return x | ??; // unknown m2

} }

bit [32] spec(bit [32] x){
return minus(x, mod(x, 8));

}

Here ?? represents an unknown constant, which is inferred to be a 1-bit boolean in
the branch condition, and a 32-bit integer in the unknowns labeled m1 and m2. The
specification on the right asserts the synthesized code must compute x−(x mod 8).

The sketch above has 65 unknown bits and 233 unique solutions, which is too
large for a naive enumerative search. However, the problem is easy to solve with
symbolic search. Symbolic search works by symbolically executing the template to
generate constraints among the unknowns, and then generating a series of SAT
problems that solve the unknowns for well-chosen test inputs. Using this approach,
Sketch solves this problem in about 50ms, which is certainly fast.

However, not all unknowns in this problem are equal. While the bit-vector
unknowns are well-suited to symbolic search, the unknown in the branch is much
better suited to explicit search. In fact, if we incorrectly concretize that unknown
to false, it takes only 2ms to discover the problem is unsatisfiable. If we concretize
it correctly to true, it takes 30ms to find a correct answer. Thus, enumerating
concrete values lets us solve the problem in 32ms (or 30ms if in parallel), which
is much faster than pure symbolic search. For larger benchmarks the speedup is
even greater, and can make the difference between solving a problem in seconds
and not solving it at all.

It is worth emphasizing that the unknown controlling the branch is special.
For example, if we concretize one of the bits in m1, the solution time does not
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improve. Worse, if we concretize incorrectly, it will take almost the full 50ms to
discover the problem is unsatisfiable, and then we will have to flip to the correct
value and take another 50ms to solve, thus doubling the solution time.

From this example, we see that some unknowns are highly influential, as con-
cretizing them makes the remaining symbolic synthesis problem significantly eas-
ier, leading to a much faster overall synthesis algorithm. Moreover, concretizing
leads very naturally to parallelization, since we can try different concrete values
on different cores.

Thus, if we can combine symbolic and explicit search, we can potentially do
better than either alone. However, we need to solve two key challenges. First,
there is no practical way to compute the precise influence of an unknown. Instead,
our algorithm estimates that an unknown is highly influential if concretizing it
will likely shrink the constraint representation of the problem. Second, because
influence computations are estimates, even the highest influence unknown may not
affect the solving time for some problems. Thus, our algorithm uses a series of trials,
each of which makes an independent decision of what to randomly concretize. This
decision is parameterized by a degree of concretization, which adjusts the probability
of concretizing a high influence unknown.

More details of our influence measure and the degree of concretization, and an
empirical comparison of different design decisions, appear in Sections 5 and 8.

3.1 Adaptive, Parallel Concretization

In our prior work, we found that no single degree of concretization was best across
all subject programs [13]. However, we did find that each benchmark had an optimal

degree, leading to the fastest solution time, and that the farther away from the
optimal degree, the slower the solution time. (We will explore this finding again
in Section 6.) Thus, adaptive concretization works by searching for the optimal
degree, as we discuss next.

Figure 1 gives pseudocode for adaptive concretization. The core step of our
algorithm, encapsulated in the run trial function, is to run Sketch with the spec-
ified degree. That is, Sketch will calculate the influence of each unknown; ran-
domly select unknowns to concretize based on their influence and the degree, using
the probability functions described in Section 5; assign randomly chosen values to
the selected unknowns; and then use the standard symbolic solving engine for the
remaining unknowns.

If a solution is found, we exit the search. Otherwise, we return a rough estimate
of how long it will take to find a solution if we continue running at the current
degree. We compute the estimate by first determining the size m of the concretiza-
tion space, that is, the number of possible different ways we could concretize the
unknowns that were selected for this by Sketch. For example, if Sketch chose n

bits to concretize, then m = 2n.

Then we make two assumptions: First, we assume that there is exactly one
solution, so the probability of finding with a random concretization is 1/m. Second,
we assume that every trial at this degree will take the same amount of time. Thus
the expected time to find a solution is the running time of the trial multiplied by
m.
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run trial(degree)

run Sketch with specified degree

if solution found then

raise success

else

return ( running time ∗
|concretization space| )

compare(deg a, deg b)

dist a ← ∅
dist b ← ∅
while |dist a | ≤ Max dist ∧

wilcoxon(dist a, dist b) > T do

dist a ∪← run trial(deg a)

dist b ∪← run trial(deg b)

if wilcoxon(dist a, dist b) > T then

return tie

elsif avg(dist a ) < avg(dist b) then

return left

else

return right

climb()

low, high ← 0, 1

while high < Max exp do

case compare(2low, 2high) of

left : break

right:

low ← high

high ← high + 1

tie : high ← high + 1

return (low, high)

bin search(low, high)

mid ← (low + high) / 2

case compare(low, mid) of

left : return bin search(low, mid)

right: return bin search(mid, high)

tie : return mid

main()

(low, high) ← climb()

deg ← bin search(2low, 2high)

while (true) do run trial(deg)

Fig. 1: Adaptive Concretization Algorithm.

Comparing Degrees. Since Sketch solving has some randomness in it, a single trial
does not provide a good estimate of the time-to-solution. Moreover, the precise
number of trials needed to make a good estimate will vary from benchmark to
benchmark, so setting the number of trials to a fixed value would mean that either
we waste time running to many or we compute inaccurate information by running
too few.

Instead, our algorithm uses the Wilcoxon Signed-Rank Test [27] to determine
when we have enough data to distinguish two degrees. Given two sets of estimates
for the solution time generated by two different degrees, thewilcoxon(dist a, dist b)

routine determines the probability that the two sets of samples were drawn from
the same distribution of times to solution; this probability is known as the p-value.
Once the Wilcoxon test determines there is enough data to confidently distinguish
the two distributions, we chose the degree that promises the best solution time.
If a maximum set of samples Max dist is reached without reaching a good enough
p-value, the two degrees are deemed to be indistinguishable. This whole process
of repeatedly running trials and applying Wilcoxon tests takes place inside the
function compare, which takes two degrees as inputs and decides which one is
better.

In our experiments, we use 3 × max(8, |cores|) for Max dist. Thus, compare

runs at most three “rounds” of at least eight samples (or the number of cores, if
that is larger). This lets us cut off compare if it does not seem to be finding any
distinction. In Section 5, we use 0.2 for the threshold T to match our previous
work. In Section 6, we empirically evaluate a range of p-values to find the best
choice.
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Searching for the Optimal Degree. Now we can implement the search algorithm.
The entry point is main, shown in the lower-right corner of Figure 1. There are
two algorithm phases: an exponential climbing phase (function climb) in which we
try to roughly bound the optimal degree, followed by a binary search (function
bin search) within those bounds.

We opted for an initial exponential climb because binary search across the
whole range could be extremely slow. Consider the first iteration of such a pro-
cess, which would compare full concretization against no concretization. While the
former would complete almost instantaneously, the latter could potentially take
a long time and would not stop until it found a solution, thereby defeating the
purpose of concretization.

Exponential Climb. The climb function aims to return a pair low, high such that
the optimal degree is between 2low and 2high. It begins with low and high as 0 and
1, respectively. It then increases both until it finds values such that at degree 2high,
search is estimated to take a longer time than at 2low. Notice that the initial trials
of the climb will be extremely fast, because almost all variables will be concretized.

To perform this search, climb repeatedly calls compare, passing in 2 to the
power of low and high as the degrees to compare. Then there are three cases.
If left is returned, 2low has better expected running time than 2high. Hence we
assume the true optimal degree is somewhere between the two, so we return them.
Otherwise, if right is returned, then 2high is better than 2low, so we shift up to
the next exponential range. Finally, if it is a tie, then the range is too narrow
to show a difference, so we widen it by leaving low alone and incrementing high.
We also terminate climbing if high exceeds some maximum exponent Max exp. In
our implementation, we choose Max exp as 14, since for our subject programs this
makes runs nearly all symbolic.

Binary Search. After finding rough bounds with climb, we then continue with a
binary search. Notice that in bin search, low and high are the actual degrees,
whereas in climb they are degree exponents. Binary search is straightforward,
maintaining the invariant that low has expected faster or equivalent solution time
to high (recall this is established by climb). Thus each iteration picks a midpoint
mid and determines whether low is better than mid, in which case mid becomes
the new high; or mid is better, in which case the range shifts to mid to high; or
there is no difference, in which case mid is returned as the optimal degree.

Finding a solution. Finally, after the degree search has finished, we repeatedly run
Sketch with the given degree. The search exits when run trial finds a solution,
which it signals by raising an exception to exit the algorithm. (Note that run trial

may find a solution at any time, including during climb or bin search.)

Parallelization. Our algorithm is easy to parallelize. The natural place to do this is
inside run trial: Rather than run a single trial at a time, we perform parallel trials.
More specifically, our implementation includes a worker pool of a user-specified
size. Each worker performs concretization randomly at the specified degree, and
thus they are highly likely to all be doing distinct work.

The algorithm as described so far involves a number of design decisions, some
of which are important to the performance of the algorithm and some of which
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are not. In the rest of the paper, we conduct a detailed empirical evaluation to
evaluate the most salient of these design decisions against possible alternatives.

4 Experimental Design

We evaluated adaptive concretization across 31 benchmarks collected from five
categories of synthesis problems.1 Each category stems from a distinct application
domain and varies in complexity, amount of symmetry, etc. We briefly describe
each category below, and Table 1 lists each benchmark, along with its lines of code
and brief description.

– Pasket. The first three benchmarks, beginning with p , come from the applica-
tion that inspired this work: Pasket, a tool that aims to construct executable code
that behaves the same as a framework such as Java Swing, but is much simpler
to statically analyze [12]. Pasket’s sketches are some of the largest that have ever
been tried, and we developed adaptive concretization because they were initially
intractable with Sketch.
– Data Structure Manipulation. The second set of benchmarks, beginning with l or
t , is from a project aiming to synthesize provably correct data-structure manip-
ulations [16]. Each synthesis problem consists of a program template and logical
specifications describing the functional correctness of the expected program.
– Invariants for Stencils. The next set of benchmarks, beginning with a mom , are
from a system that synthesizes invariants and postconditions for scientific com-
putations involving stencils. In this case, the stencils come from a DOE Miniapp
called Cloverleaf [8]. These benchmarks involve primarily integer arithmetic and
large numbers of loops.
– SyGuS Competition. The next set of benchmarks, beginning with ar and hd ,
are from the first Syntax-Guided Synthesis Competition [1], which compared syn-
thesizers using a common set of benchmarks. We selected nine benchmarks that
took at least 10 seconds for any of the solvers in the competition, but at least one
solver was able to solve it.
– Sketch. The last group of benchmarks, beginning with s , deriv, and q , are
from Sketch’s performance test suite, which is used to identify performance re-
gressions in Sketch and measure potential benefits of optimizations.

Throughout the paper, all performance reports (such as Tables 2 and 5) are
based on 13 runs on a server equipped with forty 2.4 GHz Intel Xeon processors
and 99 GB RAM, running Ubuntu 14.04.1. LTS. We used the same machine to
collect per-degree Sketch data for the simulations in Section 6. The baseline sketch
results for this paper were run using Sketch release 1.7.0, which is a newer version
than the one from our prior work [13].

5 Concretization Probability

As mentioned in Section 3.1, adaptive concretization probabilistically chooses the
unknowns to concretize, as determined by the degree of concretization and the

1 Our testing infrastructure, benchmarks, and raw experimental data are open-sourced and
explained at: http://plum-umd.github.io/adaptive-concretization/.
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Benchmark
Description

Name LoC
p button 3,436 aims to synthesize a model of JButton and ActionListener
p color 3,194 aims to synthesize a model of JColorChooser
p menu 4,099 aims to synthesize a model of JMenu and JMenuItem
p file 8,706 aims to synthesize a model of JFileChooser
p check 5,455 aims to synthesize a model of CheckBox and Button for Android

l prepend 708 accepts a sorted singly linked list L and prepends a key k, which is
smaller than any element in L

l min 795 traverses a singly linked list via a while loop and returns the
smallest key in the list

l reverse 1,817 reverses a singly linked list via a while loop and returns the new
head of the list

l insert 1,842 inserts a new key into a sorted list via a while loop and returns the
new head of the list

t rotate 1,215 perform the left rotate manipulation on a binary search tree
a mom 1 229 stencil 1
a mom 2 231 stencil 2
ar s 4 313 array search SyGuS benchmark
ar s 5 334 larger array search benchmark
ar s 6 337 larger array search benchmark
ar s 7 322 larger array search benchmark
ar sum 328 array sum SyGuS benchmark
hd 13 d5 310 hackers delight bit-vector SyGuS benchmark
hd 14 d1 304 another bit-vector SyGuS benchmark
hd 14 d5 329 another bit-vector SyGuS benchmark
hd 15 d5 329 another bit-vector SyGuS benchmark
deriv2 1,444 automatically grades Python code to compute a derivative
deriv3 1,410 different automated grading Python benchmark
deriv4 1,410 different automated grading Python benchmark
deriv5 1,410 different automated grading Python benchmark
s cg 124 conjugate gradient benchmark from Sketch benchmark suite

s log2 49 computes the logarithm base two of a bit vector
s logcnt 30 counts the number of ones in a bit-vector in logn steps
s rev 136 reverses a list
q noti 262 SQL Query synthesis benchmark 1
q serv 2,005 SQL Query synthesis benchmark 2

Table 1: Benchmarks.

unknown’s influence. More concretely, when Sketch is run as part of the run trial

function in Figure 1, it computes each unknown’s influence as a real number N .
Details of the influence calculation are described in Section 8; for this section,
it is only important to know that positive influence means there is some chance
concretization will be beneficial.

Sketch then computes a probability of concretization based on the non-negative
integer-valued degree d, where unknowns with high influence (i.e., with large N)
are assigned a higher probability, as the overall probability of concretization de-
creases as d increases. (So, if d is 0, many unknowns are concretized, and if it is
∞, then none are.)
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(a) Discontinuous (b) Smooth

Fig. 2: Probability functions at degree 512.

5.1 Discontinuous Probability Function

In prior work [13], we computed the probability p of concretization using the
following formula, which we refer to as the discontinuous probability function:

p =

 0 if N < 0
1.0 if N > 1500
1/(max(2, d/N)) otherwise

To understand this function, ignore the first two cases, and consider what happens
when d is low, e.g., 10. Then any node for which N ≥ 5 will have a 1/2 chance of
being concretized, and even if N is just 0.5—the minimum N for an unknown not
involved in arithmetic—there is still a 1/20 chance of concretization. Thus, low
degree means many nodes will be concretized. In the extreme, if d is 0 then all
nodes have a 1/2 chance of concretization. On the other hand, suppose d is high,
e.g., 2000. Then a node with N = 5 has just a 1/400 chance of concretization,
and only nodes with N ≥ 1000 would have a 1/2 chance. Thus, a high degree
means fewer nodes will be concretized. There are also two special cases: Nodes of
influence less than 0 are never concretized, and nodes of influence greater than
1500 are always concretized.

Figure 2a draws the discontinuous probability function at degree 512. There is
a linear slope from 0 until the ceiling of 0.5, followed by a straight line until the
degree cutoff 1500, and then the probability becomes 1.0.

While this function worked well, it is unsatisfying for a few reasons. First, the
choices of probability ceiling 0.5 and influence cut off 1500 are ad hoc, based on
what worked well for a subset of our benchmarks. Second, it has two large dis-
continuities as shown in the figure. The one is a straight line; depending on the
degree, its length, which corresponds to the range of somewhat ambiguous influ-
ences, might be too long; e.g., for degree 512, a node with 256 has the same 0.5
probability as a node with influence 1499 has. The other one is the discontinuous
jump at influence 1500; a variable with influence 1499 is concretized with prob-
ability at most 0.5, whereas a variable with influence 1500 is always concretized.
Such discontinuity is why we call this the discontinuous probability function.
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5.2 Smooth Probability Function

To address these issues, we developed a new, smooth probability function:

p =

(
1

1 + e−N/d
− 0.5

)
× 2

Like the discontinuous function, the smooth function is parametrized only by de-
gree d and influence N of node n; the larger N is, the more likely node n is
concretized; and the larger d is, the less likely concretization is overall.

However, the smooth function addresses all the aforementioned issues. First, it
does not include any ad hoc constants. In addition to base e, there are two extra
constants in the formula, 0.5 and 2, but they are only used to ensure the output lies
between 0 and 1. Second, it does not have any discontinuity. To visually compare
both functions, Figure 2b depicts the smooth function at the same degree 512. As
clearly shown in the figure, the smooth function has neither a straight line, where
nodes with quite different influences may have the same concretization probability,
nor discontinuous jumps at any points.

Thus, the first question we address in this paper is:

Research Question 1 How does the smooth probability function compare to the dis-

continuous probability function?

Table 2 compares both functions on our full benchmark suite, running on 32
cores. For each benchmark, we list its lines of code, followed by the results under
the discontinuous probability function, the smooth probability function, and the
speedup, which is the ratio of the running time under the smooth function to the
time under the discontinuous function.

For each probability function, we list the median of the final degrees chosen
by adaptive concretization (column d), the median number of calls to run trial

(column ||), and the median running time. The columns that include running time
are greyed for easy comparison, with the semi-interquartile range (SIQR) in a
small font. We boldface the fastest time in each row.

Note that the discontinuous results differ from the data reported in our previous
paper [13], because Sketch has undergone some significant improvements since we
ran the earlier experiments.

Overall, the degrees chosen by both functions are very similar in the sense
that they usually are within a factor of two, which indicates that the climbing
phase ended in about the same range. The two probability functions are about the
same in terms of performance. Indeed, each function outperforms the other one
for half of the benchmarks. The median speedup is 1.0, the average is 1.038, and
the variance is 0.05.

We applied Mann-Whitney U test [15], which tests whether one of given sample
sets is consistently better than the other, to the performance results under the two
probability functions. Notice that this test is different from Wilcoxon signed-rank
test [27] that we used to compare two degrees during the adaptive concretization.
The main difference is the category of input samples: Wilcoxon signed-rank test is
applicable to repeatable samples on the single same benchmark, whereas Mann–
Whitney U test is applicable to two performance result samples from the whole
benchmark set. According to the statistical test, we cannot reject the alternative
hypothesis that either performance set is exceeding the other, due to a very poor
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Bench Discontinuous Smooth speedup
mark d || Tm (s) d || Tm (s) (D/S)

p button 4,864 597 52 9 2,048 592 46 10 1.130

p color 3,072 462 36 12 640 336 21 2 1.714

p menu 212 590 70 14 3,072 601 72 28 0.972

p file 6,144 577 139 20 5,120 492 90 13 1.544

p check 256 254 32 2 256 208 33 2 0.970

l prepend 32 88 13 1 256 151 17 1 0.765

l min 128 204 41 12 256 204 34 10 1.206

l reverse 32 1 21 1 16 1 21 2 1.000

l insert 32 1 25 2 32 1 29 1 0.862

t rotate 16 23 49 4 16 96 58 6 0.845

a mom 1 256 306 248 20 1,024 222 198 12 1.253

a mom 2 4,096 355 1,130 144 2,048 219 848 98 1.333

ar s 4 32 11 4 0 16 3 5 0 0.800

ar s 5 16 18 5 0 16 11 5 1 1.000

ar s 6 32 38 9 2 16 15 9 0 1.000

ar s 7 64 106 49 10 16 37 40 10 1.225

ar sum 16 15 40 6 32 8 55 32 0.727

hd 13 d5 16 14 8 0 32 15 8 1 1.000

hd 14 d1 32 70 16 6 52 107 22 6 0.727

hd 14 d5 32 14 265 62 32 10 237 70 1.118

hd 15 d5 32 13 130 48 32 12 178 56 0.730

s cg 64 141 13 1 32 73 11 2 1.118

s log2 64 110 141 156 128 109 136 227 1.037

s logcnt 32 110 27 8 32 37 25 46 1.080

s rev 128 164 40 13 128 118 44 18 0.909

deriv2 16 20 7 2 16 25 8 1 0.875

deriv3 32 15 7 2 32 20 8 2 0.875

deriv4 16 17 6 0 32 18 5 0 1.200

deriv5 32 19 6 0 32 9 5 2 1.200

q noti 32 115 7 0 64 125 7 2 1.000

q serv 16 9 21 4 16 5 22 4 0.955

Table 2: Comparing Adaptive Concretization with discontinuous vs. smooth prob-
ability function.

confidence: 0.50. Therefore, from a statistical point of view, it is difficult to identify
which one strictly outperforms the other, hence it is fairly safe to choose either
function. The smooth probability function is preferable, since it is much intuitive
due to the lack of design choices, i.e., magic numbers. In the remainder of the
paper, all experiments use the new, smooth probability function.

Although there are no noticeable outliers, in the next subsection we investi-
gated some cases where the smooth function performs better and some cases where
the discontinuous function performs better, to get a better understanding of the
algorithm.
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5.3 Discussion

In the following discussion, we refer to unknowns as holes, which is Sketch’s
internal terminology for unknowns. Holes are named by prefixing their unique id
with H , e.g., H 26. Sometimes the same syntactic hole may appear multiple times
in the SAT formula due to inlining a function call or unrolling a loop. In this case,
the hole name is appended with addition unique IDs, e.g., H 26 22 and H 26 23

are two instances of the same original syntactic hole H 26.
While investigating the experimental results, we found the benchmarks can be

divided into three general categories: those with many influential holes; those with
few influential holes; and those with a lot of symmetry. The smooth probability
function tends to work better for the first two, and the discontinuous function
better for the last one. We discuss each category in depth next, using concrete
examples.

Many Influential Holes. Suppose there are many holes that are influential, but not
above the cutoff of 1500 hard-coded into the discontinuous function. Then the
smooth function tends to do better because it gives these holes a much higher
probability of concretization, whereas the discontinuous function caps the proba-
bility at 0.5.

As an example, Figure 3 shows hole concretization statistics and histograms
for a mom 2 at low, medium, and high degrees: 16, 512, and 2048, respectively. In
each table, for each probability function, we list the success rate (how often we
find a solution out of how many trials); the median time for a successful trial; the
median time for a failed trial; and the maximum search space size.

We also give a partial histogram of the most often concretized holes, where
the number indicates the count of times a hole was concretized in the trials, and
the parenthesized number indicates in how many of those times synthesis was
successful when that hole was concretized. For example, under the discontinuous
function at degree 2048, hole H 29 26 29 was concretized 264 times (out of 523
trials), and 1 concretization (out of 264) was in a trial that succeeded.

Looking at the table for degree 16, we see that under the discontinuous func-
tion, even the most influential holes (H 26 23 and H 26 22) are concretized in at
most half the trials, whereas they are always concretized under the smooth func-
tion. As a result, the maximum search space under the smooth function is four
orders of magnitude larger. However, the failed trials also speed up, here by a fac-
tor of seven, thus leading the smooth function to give up sooner at this low degree.
Under both functions the probability of success is extremely low, and there are no
successful trials.

While the search algorithm climbs up to degree 2048, however, the two func-
tions behave differently. Under the discontinuous function, those influential holes
still have a 0.5 probability of concretization. In contrast, under the smooth func-
tion, a concretization probability of those holes has dropped from 0.5 to around
0.16. Thus the overall level of concretization is much smaller, as is the concretiza-
tion search space (1,024 for smooth versus 32,768 for discontinuous).

In sum, many holes in this benchmark are equally influential, which makes it
hard to find an optimal degree as well as a right amount and subset of holes for
concretization. Our new smooth function achieves slightly better performance, for
two reasons. First, when degrees are low, it can quickly climb up, thanks to faster
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D
e
g
r
e
e
1
6

Discontinuous Smooth
Success Rate 0 / 592 0 / 559

Success Time (ms) N/A N/A
Fail Time (ms) 2,598 343

Max Search Space 5.37e8 2.75e12
Concretization Histogram
H 26 23 321 (0) 559 (0)

H 26 22 312 (0) 559 (0)

H 27 19 35 36 (0) 16 (0)

H 8 23 25 18 (0) 17 (0)

· · · · · · · · ·

D
e
g
r
e
e
5
1
2

Discontinuous Smooth
Success Rate 0 / 624 0 / 320

Succeeded Tm(ms) N/A N/A
Failed Tm(ms) 10,243 9,485

Max Search Space 131,072 4,194,304
Concretization Histogram
H 26 23 301 (0) 140 (0)

H 26 22 322 (0) 160 (0)

H 27 27 35 56 (0) 11 (0)

H 30 27 33 49 (0) 7 (0)

· · · · · · · · ·

D
e
g
r
e
e
2
0
4
8

Discontinuous Smooth
Success Rate 1 / 523 37 / 320

Success Time (ms) 764,183 757,921
Fail Time (ms) 64,292 109,731

Max Search Space 32,768 1,024
Concretization Histogram

H 29 26 29 264 (1) 81 (6)

H 30 26 35 276 (1) 76 (9)

H 28 26 33 239 (1) 69 (3)

H 27 26 35 286 (0) 80 (7)

· · · · · · · · ·

Fig. 3: Hole concretization histograms for a mom 2.

individual trials caused by aggressive concretization. Second, when a degree is
high enough, it can balance the amount of concretization and the running time of
individual trials by generously lowering the concretization probability of influential
holes.

Few Influential Holes. If there are few influential holes, then it is better to use
symbolic search rather than explicit search. We observed that under the smooth
function, holes with smaller influence tend to have a lower probability of con-
cretization; thus the smooth function yields more symbolic search, which in turn
achieves slightly better performance.

For example, Figure 4 shows the concretization statistics and histogram for
ar s 7 at degree 16. This benchmark is very exceptional in that it has many equally
unimportant holes—more than 1,200 of them. Since their influence is small, the
probability of concretizing them under the smooth function is lower than un-
der the discontinuous function. For example, the concretization probability of the
most influential hole, H 17 10 1 0, is around 0.3 under the discontinuous function,
whereas under the smooth function it is around 0.15. As a result, fewer holes are
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D
e
g
r
e
e
1
6

Discontinuous Smooth
Success Rate 0 / 536 8 / 323

Success Time (ms) N/A 39,600
Fail Time (ms) 3,792 6,674
Search Space 2.028e+31 2.882e+17

Concretization Histogram
H 17 10 1 0 164 (0) 50 (2)

H 17 10 2 1 0 160 (0) 51 (1)

H 0 10 2 1 1 2 49 (0) 21 (1)

H 13 10 1 0 4 1 24 (0) 15 (1)

H 1 10 0 4 2 2 24 (0) 8 (1)

(. . . and more than 1,200 similar holes)

Fig. 4: Hole concretization statistics and histogram for ar s 7.

D
e
g
r
e
e
1
6 Discontinuous Smooth

Success Rate 10 / 110 6 / 60
Success Time (ms) 37,540 83,740

Fail Time (ms) 4,586 12,359
Search Space 7.556e+22 6.872e+11

Fig. 5: Hole concretization statistics for ar sum.

concretized under the smooth function, and the search space is sixteen orders of
magnitude smaller.

Symmetry. If the synthesis problem has a lot of symmetry, then concretization
helps in general, because there’s a high probability of finding a solution. In this
case, the discontinuous function does better because it tends to concretize more.

For example, Figure 5 shows the concretization statistics for ar sum. This
benchmark is very similar to ar s 7 in that it has many low-influence holes. How-
ever, it also has many solutions, and thus even aggressive concretization under the
discontinuous function has a relatively good chance of concretizing correctly.

In this particular example, the discontinuous function has a search space that
is 11 orders of magnitude larger. This huge search space makes both successful
and failed trials around twice as fast as the ones under the smooth function. But
the empirical success rates are similar (10/110 vs. 6/60). Thus, the discontinuous
function, which has faster individual trials, outperforms the smooth function.

6 Degree/Time Tradeoff Curve

A critical hypothesis underlying adaptive concretization is that there exists an
optimal degree such that the farther away from the optimal degree, the slower
the running time (i.e., the running time forms a “vee” around the optimal de-
gree). While we found this held for the discontinuous probability function [13], we
should reconfirm this for the smooth function before investigating other research
questions:

Research Question 2 Under the smooth probability function, do the expected running

times across all concretization degrees form a vee shape around the optimal degree?
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Bench Degree
mark 16 32 64 128 256 512 1024 2048 4096

p button 7 6 5 5 6 6 7 8 18

p menu 1 1 2 163 196 196 196 196 196

l prepend >1M >1M >1M 908,067 474 19 6 4 4

l min 1 1 0 4 52 337 597 142 150

a mom 1 7,717 7,324 4,198 1,832 2,403 1,610 228 103 61

a mom 2 >1M >1M >1M >1M >1M >1M 8,697 1,571 641

hd 14 d5 23,142 10,010 4,184 N/A N/A N/A N/A N/A N/A

hd 15 d5 5,299 29 0 0 N/A N/A N/A N/A N/A

s log2 918 626 472 399 ∞ ∞ N/A N/A N/A

s rev >1M >1M >1M 39,290 13,111 146 N/A N/A N/A

Table 3: Expected running time (s) using empirical success rate. Fastest time in
dark grey, second-fastest in light grey, ∞ if all failed trials exceed the 2-hour
timeout, and N/A if there are no failed cases.

To answer this question, we created a database of individual trials of Sketch

run on a particular benchmark under a given degree (i.e., the run on Sketch in
run trial in Fig. 1). We gathered the data from the 13 runs used to generate
Table 2, and we also ran extra trials for various benchmark/degree combinations
to gather more information (more details below). We used a 2-hour timeout for
the extra trials. For each trial the database records whether it succeeded or failed,
the running time t, and the size of the concretization space n.

We assume the running is single-threaded, one trial after another, and compute
the expected time to success as t ∗ n, where t is the median running time of failed
trials, and n is search space of the failed trials after random concretization. Then we
can group the trials in the database by their benchmark and concretization degree,
and compute each benchmark/degree pair’s median expected running time. Table 2
summarizes the results. Here we give data for the two longest-running (according
to Table 2) benchmarks from each category.

There are a few exceptional cases in SyGuS and Sketch benchmarks. For Sy-

GuS benchmarks, hd * d5, starting from degrees 128 or 256, randomly concretizing
influential holes always succeeds in finding a solution, thanks to the low level of
concretization as well as the symmetry in those benchmarks. For s log2, at de-
grees 256 and 512, all the failed trials exceed the 2-hour timeout, hence ∞ expected
running time. Starting from degree 1024, similar to SyGuS benchmarks, random
concretization always succeeds as well. The other Sketch benchmark, s rev, has
the same behavior at the same degrees (from 1024 to 4096). In case of no failed
cases, we cannot expect the running time of the random concretization because
the (empirical) success rate is 1. (Such cases are labeled as N/A.) In terms of the
optimal degree of the adaptive concretization, those degrees are out of scope, since
the adaptive concretization eventually settles earlier on other beneficial degrees.

Except for those cases, we can generally see that the running times indeed
form a “vee” around the optimal degree, i.e., performance gets worse the farther
away from optimal in either direction. This matches our previous result for the
discontinuous function, and it suggests that hill climbing and binary search can
successfully find an optimal degree. The table also shows that the optimal degree
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t ← 0 /∗ ‘‘wall-clock’’ time measurement ∗/
sample trial(degree)

sample a failed trial with specified degree, and

get the running time ∆ and concretization space size S.

(∆, S) ← sample from database()

t ← t + ∆

return (∆/S)

Fig. 6: Sampling trials in the database in lieu of actual Sketch runs.

varies across all benchmarks; indeed, all degrees except 1024 are optimal for at
least one benchmark. This confirms our assumption that there is no fixed optimal
degree, and necessitates our adaptive search algorithm.

In addition, we also use the resampling method [7] to check if our sample size is
reasonable large to give us a reliable answer to Research Question 2. Specifically,
for each benchmark and for each degree, if there are n trials in the database we
resample from these trials n times, with replacement, and call the collected trials
a bootstrap sample. Then based on these bootstrap samples, we compute the
median expected running time for each benchmark/degree again, using the same
formulation we set forth above. Although the expected running times are slightly
different from those in Table 3 for most cases, bootstrap samples still show us the
same “vee”, with the same optimal degree. This experiment shows that what we
reported in Table 3 is solid enough and reliable.

7 Wilcoxon Test Threshold

Now that we have data about the optimal degree of each benchmark, we can
ask whether adaptive concretization actually finds it. Recall that the algorithm
is parameterized by a threshold T for the p-value of the Wilcoxon test. Thus, we
actually want to ask:

Research Question 3 How is adaptive concretization’s search affected by the thresh-

old T?

We could try to answer this by running adaptive concretization many times, but
since we already have a database of trials, there is a better way: We can perform a
simulation in which we run the algorithm, but instead of running Sketch itself, we
randomly (with replacement) pick an appropriate benchmark/degree trial result
from the database and return that from run trial.

More concretely, we replace run trial with a new function sample trial in Fig-
ure 6. Here global variable t simulates the wall-clock time for the whole algorithm.
Each time we retrieve a trial from the database, we add its time to the running
wall-clock time and then return the estimated time to success.

We also simulate parallelized version of the algorithm using a single thread.
Specifically, if there are n workers in the pool and the manager dispatches m

trials at a time, the sample trial function will sample failed trials m times with
replacement, and get their running time ∆1 through ∆m. Then assuming that
every worker is fully utilized in the long rung and n ≤ m, sample trial can simply
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Bench Optimal T = 0.001 T = 0.05
mark Degree Degree Tm Degree Tm

p button 608 128 2056 2064 99 2064 2056 99
p menu 30 16 2056 3076 251 44 40 231

l prepend 2048 4096 4096 104 4199 48 4096 2310
l min 64 32 2048 N/A 79K 2048 52 70K
a mom 1 3328 4096 3328 2560 69K 3072 3328 56K
a mom 2 4096 2048 3328 3320 289K 3328 3712 299K
hd 14 d5 64 32 64 N/A 224K 64 16 216K
hd 15 d5 64 32 64 N/A 110K 64 16 107K
s log2 128 64 512 16 135K 512 16 135K
s rev 512 256 512 48 81K 512 48 74K

Bench T = 0.1 T = 0.2 T = 0.5
mark Degree Tm Degree Tm Degree Tm

p button 2080 2064 95 16 2080 90 16 48 N/A
p menu 44 44 165 16 40 131 16 32 97

l prepend 48 4096 2175 48 4096 1697 48 16 981
l min 2048 16 64K 2048 16 52K 2048 16 41K
a mom 1 3072 3584 50K 3072 16 47K 4096 16 26K
a mom 2 3328 3712 301K 3328 3712 292K 32 16 270K
hd 14 d5 64 16 217K 64 16 208K 64 16 181K
hd 15 d5 64 16 107K 64 16 102K 64 16 94K
s log2 512 48 133K 512 48 125K 512 16 N/A
s rev 512 48 73K 512 48 69K 512 48 71K

Table 4: Simulating 32-core adaptive concretization as T varies: Mode degree found
and Median time taken. Most often found degrees in large text and second most
often found degrees in small text.

return the running results from the m trials, and advance the global time by(∑
i∈[1,m] ∆i

)
/n.

Using this approach, we simulated 32-core adaptive concretization runs with
T set at five thresholds: 0.001, 0.05, 0.1, 0.2 and 0.5. (Recall that a small number
means we need more trials before reaching that significance level.) For each bench-
mark b and for each threshold p, we run adaptive concretization on b with p as the
p-value, for 301 times. For each benchmark/threshold combination, we counted the
most often found degree and the median time taken by adaptive concretization to
find a fixed degree.

Note that the sampled trials might be insufficient for the Wilcoxon test to pro-
duce a small enough p-value, and resampling more trials from the database won’t
help. In that case, we run extra trials with the current concretization degree, and
add them to the database and restart the simulation from scratch. This iteration
continues until the mode degree becomes obvious, i.e., the mode degree won’t
change no matter what the unsettled runs’ results would be. For each simulation
that is still stuck on comparing degrees d1 and d2 due to the insufficient number of
samples for d1 or d2 in the database, we assume every candidate degree (multiple
of 16) within [d1, d2] may be chosen with the same probability. For example, if a
simulation stops at [16, 48], we count each degree from {16, 32, 48} as being chosen
1/3 times.

Table 4 summarizes our simulation results and compares them with the optimal
degree based on all the trials in the database. The mode degrees are shown in large
text and the second most often found degrees are shown in small text. Similarly,
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we show the optimal degrees in large text and the second-to-optimal degree in
small text.

Experiments also show that the random nature of the adaptive concretization
algorithm makes it robust with moderate thresholds (T = 0.05, 0.1 or 0.2): the
found degrees are very similar, and lower thresholds usually take just slightly less
time to find a degree than higher thresholds take. However, extreme thresholds
(T = 0.001 or 0.5) are clearly not good choices: on the one hand, when the thresh-
old is extremely high, the Wilcoxon test usually cannot conclude which degree is
better, and then algorithm tends to climb to very high degrees for most bench-
marks; on the other hand, when the threshold is extremely low, the Wilcoxon
test’s results can be easily affected by random noises, and the algorithm will stop
at very low degrees too often. In summary, the simulation results suggest that any
threshold between 0.05 and 0.2 is reasonable.

8 Influence Computation

As discussed earlier, the influence of an unknown is an estimate of how much con-
cretizing that unknown may improve synthesis performance. Ideally our influence
computation would model its exact effect on running time, but there is no practical
way to compute this.

Instead, following the intuition from Section 3.1, we aim to assign high influence
to unknowns that select among alternative program fragments (e.g., used as guards
of conditions), and to give low influence to unknowns in arithmetic operations.

This immediately raises the question:

Research Question 4 What should be the relative weighing between different influ-

ence unknowns?

In particular, our influence measurement distinguishes guards of conditionals from
other booleans; the former are likely highly influence, while the latter may or may
not be. In our previous paper, we fixed a particular ratio of the influence between
these two. In this section, we explore the tradeoff between different ratios.

In our influence computation, for unknown n we define

influence(n) =
∑

d∈children(n)

benefit(d, n)

where children(n) is the set of all nodes that depend directly on n. Here benefit(d, n)
is meant to be a crude measure of how much the overall formula might shrink if
we concretize the parent node n of node d. The function is defined by case analysis
on d:

– Choices. If d is an ite node,2 there are two possibilities. If n is d’s guard (d =
ite(n, a, b)) then benefit(d, n) = 1. This is a high-influence position, so 1 is our
baseline for the ratio between high and low influence. If n corresponds to one
of the choices (d = ite(c, n, b) or d = ite(c, a, n)), then benefit(d) = 0, since
replacing n with a constant has no effect on the size of the formula.

2 ite(a, b, c) corresponds to if (a) b else c, as in SMT-LIB.
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Bench Influence Weights B
mark 1/8 1/4 1/2 3/4 1 4/3 2

p button 42 4 35 8 46 10 41 6 38 10 42 6 50 8

p menu 71 22 87 37 72 28 62 13 55 15 60 18 91 37

l prepend 18 2 19 2 17 1 17 2 17 2 17 2 18 2

l min 29 7 26 4 34 10 27 10 35 17 29 7 43 20

a mom 1 211 32 204 24 198 12 188 18 185 37 199 30 214 26

a mom 2 1,004 153 699 122 848 98 811 80 889 126 905 137 822 98

hd 14 d5 313 125 175 48 237 70 286 110 231 92 197 63 211 68

hd 15 d5 300 157 188 141 178 56 227 28 284 40 257 40 149 105

s log2 222 161 444 461 136 227 159 271 137 310 390 212 84 70

s rev 52 51 69 20 44 18 70 32 64 22 116 59 52 34

Table 5: Comparing influence weights of boolean nodes.

– Boolean nodes. If d is any boolean node except negation, its benefit should be
some fraction B of the baseline benefit 1. In our previous work, we set B to
be 0.5, so that ite nodes are two times as important as boolean nodes. Our
intuition was that boolean nodes are often used in conditional guards, but
sometimes not. We explore the choice of B shortly.
If d = ¬(n), then benefit(d, n) equals influence(d), since the benefit in terms of
formula size of concretizing n and d is the same.

– Choices among constants. Sketch’s constraint graph includes nodes representing
selection from a fixed sized array. If d corresponds to such a choice that is
among an array of constants, then benefit(d, n) = influence(d), i.e., the benefit
of concretizing the choice depends on how many nodes depend on d.

– Arithmetic nodes. If d is an arithmetic operation, benefit(d, n) = −∞. The in-
tuition is that these unknowns are best left to the solver. For example, given
??+in, replacing ?? with a constant will not affect the size of the formula.

Note that before settling on this particular influence measure, we tried a simpler
approach that attempted to concretize holes that flow to conditional guards, with
a probability based on the degree of concretization. However, we found that a
small number of conditionals have a large impact on the size and complexity of
the formula. Thus, having more refined heuristics to identify high influence holes
is crucial to the success of the algorithm.

To evaluate the choice of B, the ratio between choice nodes and other booleans,
we ran a subset of our benchmarks on seven ratios: 1/8, 1/4, 1/2 (our previous
choice), 3/4, 1, 4/3, and 2. Notice the last two ratios weigh arbitrary booleans
as more important than choice nodes. We used the same subset of benchmarks
as Tables 3 and 4 in Section 6. We ran each benchmark/B combination thirteen
times on 32 cores. Table 5 shows the results. As in Table 2, the columns show
median running time, with the SIQR in a small font, and we highlight fastest and
second-fastest times in each row.

From these results, the fastest running times appear across all degrees except
for 1/8, though the second-smallest weight, 1/4, typically has many fastest running
times. This reinforces our intuition that choice nodes should be more influential
than boolean nodes. However, the performance differences are not that huge. In
order to see whether there exists a degree that outperforms everything else, we
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applied Mann-Whitney U test again to all possible pairs of ratios. The confidence
from those tests ranges from 0.35 to 0.96, which simply implies that there is no best
ratio at all. This rather indicates that our influence computation is not sensitive
to the ratio between choice nodes and other booleans.

9 Conclusion

In this paper, we empirically evaluated several of the key design choices in adap-
tive concretization, which we previously introduced [13]. The key insight behind
adaptive concretization is that, by concretizing high influence unknowns, we can
often speed up the overall synthesis algorithm, especially when we add parallelism.
Since the best degree of concretization varies with the problem, adaptive concretiza-
tion uses exponential hill climbing and binary search to find a suitable degree by
running many trials in parallel.

We evaluated four key design decisions. First, we introduced a new function
to assign a concretization probability to an unknown based on its influence and
the degree. Our new function assigns probability in a smooth, continuous man-
ner, eliminating both heuristic constants and a discontinuity in the original func-
tion. We showed that both functions behave similarly. We also showed that when
graphed against expected running times, the degree forms a “vee” around the
optimal point, justifying adaptive concretization’s degree search process.

Finally, we explored a range of values for T , the threshold at which adaptive
concretization decides that the p-value returned by the Wilcoxon Signed-Rank Test
is significant enough to distinguish two degrees; and B, the ratio of the influence
of arbitrary boolean unknowns versus those in guards of if-then-else nodes. We
showed that many different choices for T and B work equally well, including T =
0.2 and B = 0.5, which were the choices in our original algorithm.

Overall, this paper makes adaptive concretization simpler by introducing a new,
smooth concretization probability function, and we showed that our algorithm is
robust to a wide range of design decisions.
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