Xiangru Huang

Email: xiangruhuang816 [at] gmail [dot] com • http://people.csail.mit.edu/xrhuang

RESEARCH AREA	• Geometry Processing. Applying robust optimization and machine learning processing tasks including map synchronization, shape correspondence, shape a segmentation.	essing. Applying robust optimization and machine learning techniques to geometry including map synchronization, shape correspondence, shape generation and semantic	
	 3D vision. Combining concepts and techniques from geometry processing to develop 3D vision algorithms and neural architectures that respect geometric priors and motion information for point cloud (sequence) data Efficient Optimization. Developing and analyzing efficient optimization algorithms for machine learning problems that enjoy orders of magnitude speed up. 		
EDUCATION	University of Texas at Austin		
	 Doctor of Philosophy (Ph.D.) in Computer Science Thesis: Learning to Optimize for Geometry Reconstruction and Understanding Shanghai JiaoTong University 	Aug 2014 – Dec 2020	
	 Bachelor of Science (B.S.) in Computer Science. ACM Honored Class 	Sep 2009 – Jul 2013	
WORK	MIT Geometric Data Processing Group		
EXPERIENCE	 Postdoc Associate (working on geometry processing and 3D vision) Supervisor: Justin Solomon Google 	Apr 2021 – Now	
	 Software Engineering Intern, Faster Training Team, Mountain View Project: Efficiency Analysis of Gradient Descent: Deep Learning and Beyond Supervisors: Hossein Mobahi and Shankar Krishnan 	Jun 2018 – Aug 2018	
	eBay		
	 Research PhD Internship, New Product Development, San Jose. Project: Bilingual Semantic Sequence Embedding Modeling Between Chinese and English. Supervisors: Mingkuan Liu and Alan Lu 	May 2017 – Aug 2017	
	Nanyang Technological University		
	 Research Assistant, Division of Mathematical Sciences Project: Trial and Error in Influential Social Networks; game theoretical model of network for Supervisors: Professor Ning Chen and Xiaohui Bei 	Aug 2013 – Jul 2014 mation	
TALKS	Learning from Unlabeled LiDAR Point Cloud Sequences	Oct 2022	
	UIUC vision seminar.		
	 Learning to Optimize for Geometry Reconstruction and Understanding TechBeat [website]. 	Nov 2021	
	Learning to Optimize for Geometry Reconstruction and Understanding GAMES Webinar [video]	Mar 2021	
	 Translation Synchronization via Truncated Least Squares Neurips 2017 Spotlight Presentation 	Dec 2017	
	 Dual Decomposed Learning with Factorwise Oracle for Structural SVM of 	Large Output Domain	
	Dec 2016 NeurIPS workshop on Extreme Classification [website]		
PUBLICATIONS ON 3D VISION	 LiDAR-Based 3D Object Detection via Hybrid 2D Semantic Scene Generation Haitao Yang, Zaiwei Zhang, Xiangru Huang, Min Bai, Bo Sun, Li Erran Li, Qixing Huang 		
	IN Submission		
	Haoxi Ran, Xiangru Huang, Vitor Guizilini, Yue Wang		
	In submission		
	 Representation Learning for Object Detection from Unlabeled Point Cloud Sec Xiangru Huang, Yue Wang, Vitor Guizilini, Rares Ambrus, Adrien Gaidon and Just CoRL 2022 	quences in Solomon.	

Hybrid Geometric Primitives for Point Clouds
$\overline{Contribution}$
In submission
 ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators
Bo Sun, Xiangru Huang, Zaiwei Zhang, Junfeng Jiang, Qixing Huang, and Chandrajit Bajaj.
ICCV 2021
Dense Human Correspondence via Learning Transformation Synchronization on Graphs
Xiangru Huang, Haitao Yang, Etienne Vouga and Qixing Huang.
Neurips 2020
Uncertainty Quantification for Multi-scan Registration
Xiangru Huang, Zhenxiao Liang and Qixing Huang.
SIGGRAPH 2020
Yiangru Huang Zhenyiao Liang Xiaowei Zhou. Yao Xie Leonidas Guihas and Oiying Huang
CVPR 2019
Joint Map and Symmetry Synchronization
Yifan Sun*, Zhenxiao Liang*, Xiangru Huang*, and Qixing Huang
ECCV 2018
 Translation Synchronization via Truncated Least Squares
Xiangru Huang*, Zhenxiao Liang*, Chandrajit Bajaj and Qixing Huang (* equal contribution).
NIPS 2017, Spotlight Presentation
DDDSparce: A Davallel Drimal and Dual Sparce Method to Extreme Classification
Ian F H. Ven, Xiangru Huang, Wei Dai, Pradeen Ravikumar, Inderijt S. Dhillon and Fric P. Xing, KDD 2017
Greedy Direction Method of Multiplier for MAP Inference of Large Output Domain
Xiangru Huang, Ian En-Hsu Yen, Ruohan Zhang, Qixing Huang, Pradeep Ravikumar and Inderjit Dhillon.
AISTATS 2017
Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain
Ian En-Hsu Yen, <u>Xiangru Huang</u> , Kai Zhong, Ruohan Zhang, Pradeep Ravikumar and Inderjit Dhillon. <i>NIPS</i>
• ULI Sparce: A Urimal and Dual Sparce Approach to Extreme Multiclass and Multilabel Classification
- rD-Sparse. A riman and Dual Sparse Approach to Extreme Multiclass and Multillaber Classification

MISCELLANEOUS Applying deep learning to the cache replacement problem **PUBLICATIONS** Zhan Shi, Xiangru Huang, Akanksha Jain, Calvin Lin

Zhan Shi, Xiangru Huang, Akanksha Jain, Calvin Lin *MICRO 2019*

Trial and Error in Influential Social Networks

Xiaohui Bei, Ning Chen, Liyu Dou, <u>Xiangru Huang</u>, Ruixin Qiang, (ordered alphabetically by last name). *KDD 2013*

• Learning from Unlabeled LiDAR Point Cloud Sequences (CoRL 2022)

Point cloud sequence is a natural data modality that is underexplored. Due to high annotation expense, there is a large number of unlabeled LiDAR point cloud sequences. We developed unsupervised and self-supervised algorithms that can learn from unlabeled sequences for object detection task, achieving state-of-the-art performance.

• Learning Transforamtion Synchronization (CVPR 2019)

Transformation Synchronization is a crucial step of 3D reconstruction. The major challenge in designing algorithms for this task is to tolerate unexpected errors. Existing algorithms guarantee exact recovery for certain prior error distributions such as i.i.d. gaussian or a very small fraction of arbitrary error, which hugely deviates from real-world error distribution. We propose to apply learning techniques to detect and prune unexpected error, which greatly advances previous approaches that use hand-crafted heuristic objective functions. We demonstrate that our approach can work even for extremely noisy input data with a dominating fraction (> 70%) of outliers.

• Efficient Extreme Multiclass Classification (ICML 2016)

Multiclass classification of huge number of classes is still a challenge. Standard multiclass methods can hardly scale to $K > 10^3$ where K=#classes. Other state-of-the-art methods such as tree-hierarchical approach and low-rank approach loses test accuracy significantly when their assumptions are not satisfied. We observe that dual sparsity are natural since each sample has only "few confusing classes". Further adding L1-regularization can guarantee primal sparsity. Therefore, we propose a variant of Block-Coordinate Frank-Wolfe algorithm with fast greedy oracle that can simultaneously leverage the primal and dual sparsity. On problems of $K > 10^3$, without sacrificing accuracy, the proposed method can be orders of magnitude faster than existing methods, and also achieve running space and model size sublinear to the number of classes and features.

MENTORING	 MIT Summer Research Program (MSRP) Hybrid Geometric Primitives for point clouds. 	Jun 2022 – Aug 2022
	 Summer Geometry Initiative (SGI 2022) 	summer 2022
	Data augmentation for 3D point cloud data.	
	 Summer Geometry Initiative (SGI 2021) 	summer 2021
	Extract motion information from unlabeled point cloud sequences.	
TEACHING	 CS311 Discrete Math 	Fall 2014
	Teaching Assistant.	
	 CS345 Programming Languages 	Spring 2015
	Teaching Assistant.	
	 CS371p Object-Oriented Programming 	Fall 2015
	Teaching Assistant.	
	CS324E Elements of Graphics	Spring and Fall 2016
	Teaching Assistant.	
	CS395T Numerical Optimization for Graphics and AI	Fall 2017 and 2018
	Teaching Assistant.	
AWARDS	 University of Texas at Austin Graduate School Summer Fellowship 	2019
	2nd class Academic Excellence Scholarship in Shanghai JiaoTong University	2012
	• 2nd class award of National Olympiad in Informatics (NOI) in China	2007

PROGRAMMINGC++, Matlab, Python, Tensorflow, PyTorch, Java, CUDA. **SKILLS**