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Abstract

Conventional program analyses have made great strides by lever-
aging logical reasoning. However, they cannot handle uncertain
knowledge, and they lack the ability to learn and adapt. This in turn
hinders the accuracy, scalability, and usability of program analysis
tools in practice. We seek to address these limitations by propos-
ing a methodology and framework for incorporating probabilistic
reasoning directly into existing program analyses that are based on
logical reasoning. We demonstrate that the combined approach can
benefit a number of important applications of program analysis and
thereby facilitate more widespread adoption of this technology.

CCS Concepts eoTheory of computation — Program anal-
ysis; Constraint and logic programming; Program verification;
e Software and its engineering — Formal software verification;
o Computing methodologies — Probabilistic reasoning

Keywords Program Analysis, Logic, Probability, Markov Logic
Network, Maximum Satisfiability

1. Introduction

Program analyses are algorithms that discover a wide range of
useful artifacts about programs, including bugs, proofs, and spec-
ifications. Existing program analyses are expressed in the form
of logical axiom/inference rules that are handcrafted by experts.
This logic-based approach provides important benefits. First, logi-
cal rules are human-comprehensible, making it convenient for anal-
ysis writers to express their domain knowledge. Secondly, the re-
sults produced by solving logical rules often come with explana-
tions (e.g., provenance information), making analysis tools easy to
use. Last but not least, logical rules enable program analyses to
provide rigorous formal guarantees such as soundness.

While logic-based program analyses have achieved remarkable
success, however, they have significant limitations: they cannot
handle uncertain knowledge and they lack the ability to learn and
adapt. Although the semantics of most programs are deterministic,
uncertainties arise in many scenarios due to reasons such as impre-
cise specifications, missing program parts, imperfect environment
models, and many others. Current program analyses rely on experts
to manually choose their representations, and such representations
cannot be changed once they are shipped to end-users. However,
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the diversity of usage scenarios prevents such fixed representations
from addressing the needs of individual end-users. Moreover, the
analysis does not improve as it reasons about more programs, and
therefore repeats past mistakes.

To address the drawbacks of the existing logical approach, we
propose to combine logical and probabilistic reasoning in program
analysis. While the logical part preserves the benefits of the current
approach, the probabilistic part enables handling uncertainties and
provides the additional ability to learn and adapt. Moreover, such a
combined approach enables to incorporate probability directly into
existing program analyses, leveraging a rich literature.

Rest of the paper. Section 2 illustrates how combining logic and
probability can benefit important applications of program analysis.
These applications are presented in more detail in [17, 46, 47]. Sec-
tion 3 describes a declarative language for expressing such applica-
tions and presents a general recipe for incorporating probabilistic
reasoning into existing program analyses that are based on logical
reasoning. It also presents a scalable learning and inference engine
for the language using techniques elaborated in [18, 19, 48]. Sec-
tion 4 surveys related work, Section 5 discusses future directions,
and Section 6 concludes.

Key Insights:

e Combining logical and probabilistic reasoning in program
analysis provides the best of both worlds, such as soundness
guarantees on one hand and the ability to adapt on the other.

Program analyses are usually specified using axiom/inference
rules that admit only logical reasoning. We enable incorporat-
ing probabilistic reasoning by attaching weights to such rules.

We adopt the semantics of Markov Logic Networks (MLNs)
from the Al community for weighted rules. We propose learn-
ing and inference algorithms that achieve scalability and accu-
racy by leveraging domain insights from program analysis.

2. Motivating Applications

We present three prominent applications of program analysis to
motivate our approach: automated verification, interactive verifica-
tion, and static bug detection. For ease of exposition, we presume
the given analysis operates on an abstract program representation
in the form of a directed graph. We illustrate our three applications
using a static information-flow analysis applied to the two graphs
depicted in Figure 1.

2.1 Automated Verification

A central problem in automated verification concerns picking an
abstraction of the program that balances accuracy and scalability.
An ideal abstraction should keep only as much information rele-
vant to proving a program property of interest. Efficiently finding



such an abstraction is challenging because the space of possible ab-
stractions is typically exponential in program size or even infinite.

Consider the graph in Figure 1(a). Suppose the possible abstrac-
tions are indicated by dotted ovals, each of which independently en-
ables the analysis to lose distinctions between the contained nodes,
and thereby trade accuracy for scalability. We thus have a total of
23 = 8 abstractions. We denote each abstraction using a bitstring
b2b4bs where bit b; is 0 iff the distinction between nodes 4, ¢ + 1 is
lost by that abstraction. The least precise but cheapest abstraction
000 loses all distinctions, whereas the most precise but costliest ab-
straction 111 keeps all distinctions. Suppose we wish to prove that
this graph does not have a path from node 1 to node 8. The absence
of such a path may, for instance, imply the absence of malicious
information flow in the original program. The ideal abstraction for
this purpose is 010, that is, it loses distinctions between nodes 2, 3
and nodes 6, 7 but differentiates between nodes 4, 5.

Limits of purely logical reasoning. A purely logical approach,
such as one based on the popular CEGAR (counter-example guided
abstraction refinement) technique, starts with the cheapest abstrac-
tion and iteratively refines parts of it by generalizing the cause of
failure of the abstraction used in the current iteration. For instance,
in our example, it starts with abstraction 000, which fails to prove
the absence of a path from node 1 to node 8. However, it faces a
non-deterministic choice of whether to refine bo, b4, or bg next. A
poor choice hinders scalability or even termination of the analysis
(in the case of an infinite space of abstractions).

Incorporating probabilistic reasoning. A probabilistic approach
can hep guide a logical approach to better abstraction selection. For
instance, it can leverage the success probability of each abstraction,
which in turn can be obtained from a probability model built from
training data. In our example, such a model may predict that refin-
ing b4 has a higher success probability than refining b2 or be.

The case for a combined approach. The above two approaches
in fact address complementary aspects of abstraction selection. A
combined approach stands to gain their benefits without suffering
from their limitations. For instance, a logical approach can infer
with certainty that refining b» is futile due to the presence of the
edge from node 1 to node 4. However, it is unable to decide whether
refining by or bs next is more likely to prove our property of
interest. Here, a probabilistic approach can provide the needed bias
towards refining by over bg, enabling the combined approach to
select abstraction 010 next.

In summary, the combined approach attempts only two cheap
abstractions, 000 and 010, before successfully proving the given
property. Besides allowing logical and probabilistic elements to in-
teract in a fine-grained manner and amplify the benefits of these
individual approaches, the combined approach also allows to en-
code other objective functions uniformly with probabilities. These
may include, for instance, the relative costs of different abstrac-
tions and rewards for proving different properties. The combined
approach thus allows to strike a more effective balance between
accuracy and scalability than the individual approaches.

Our results. We have devised such an approach in recent work
[7, 45, 46] and demonstrated its effectiveness on widely-used anal-
yses, including pointer analysis, type-state analysis, and concur-
rency analysis. For instance, the plot in Figure 2 shows the distri-
bution of the cheapest abstractions identified by our approach for
proving different memory accesses (called “queries”) thread-local
in a multi-threaded Java benchmark program using a thread-escape
analysis, which is part of a static race detection tool for Java. The
program comprises 340 KLOC and each abstraction has ~ 10K bi-
nary components—one per object allocation site in the program—
for a search space of 2'°%_ The plot shows that only a tiny frac-

Figure 1: Graphs depicting how different applications of our ap-
proach enable a program analysis to avoid reporting false informa-
tion flow from node 1 to node 8 in two programs.
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Figure 2: Minimum abstraction sizes needed for proving different
queries by a thread-escape analysis in a Java program.

tion of these components suffices to be refined for proving the vast
majority of queries, but different components must be refined for
queries occurring in different parts of the program. The sparsity of
this data also highlights the promise of training a probabilistic ap-
proach to predict which components to refine for which queries, not
only within the program but even across programs.

2.2 Interactive Verification

Automated verification is inherently incomplete due to undecid-
ability reasons. Interactive verification seeks to address this limita-
tion by introducing a human in the loop. A central challenge for an
interactive verifier concerns reducing user effort by deciding which
questions to the user are expected to yield the highest payoff.

Consider the graph in Figure 1(b). Suppose we once again wish
to prove that this graph does not have a path from node 1 to node 8.
Suppose the dotted edge from node 4 to node 5 is spurious, that is,
it is present due to the incompleteness of the verifier. This spurious
edge results in the verifier reporting a false alarm. Suppose the
questions that the user is capable of answering are of the form:
“Is edge (x, y) spurious?”. Then, the ideal set of questions to ask in
this example is the single question: “Is edge (4, 5) spurious?”.

Limits of purely logical reasoning. A purely logical approach can
help prune the space of possible questions to ask. In particular, for
our example, it can determine that it is fruitless to ask the user
whether any of edges (2, 4), (3, 4), (5, 6), and (5, 7) is spurious.
But it faces a non-deterministic choice of whether to ask the user
about the spuriousness of edge (1, 4), (4, 5), or (5, 8). In the worst
case, this approach ends up asking all three questions, instead of
just (4, 5).

Incorporating probabilistic reasoning. A probabilistic approach
can help guide a logical approach to better question selection in



interactive verification. In particular, it can leverage the likelihood
of different answers to each question, which in turn can be obtained
from a probability model built from dynamic or static heuristics. In
our example, for instance, test runs of the original program may
reveal that edges (1, 4) and (5, 8) are definitely not spurious, but
edge (4, 5) may be spurious. Similarly, a static heuristic might state
that an edge (x, y) with a high in-degree for x and a high out-degree
for y is likely spurious—a criterion that only edge (4, 5) meets in
our example.

The case for a combined approach. The above two approaches
can be combined to compute the expected payoft of each question.
For instance, the inference by the probabilistic approach that edge
(4, 5) is likely spurious can be combined with the inference by
the logical approach that no path exists from node 1 to node 8 if
edge (4, 5) is absent, thereby proving our property of interest. This
approach can thus infer that the question of whether edge (4, 5) is
spurious is the one with the highest payoff.

The combined approach allows to encode other objective func-
tions that may be desirable in interactive verification. Consider a
scenario in which multiple false alarms arise from a common root
cause. In our example, such a scenario arises when we wish to ver-
ify that there is no path from any node in {1, 2, 3} to any node in
{6, 7,8}. Maximizing the payoff in this scenario involves asking
the least number of questions that are likely to rule out the most
number of these paths. In our example, even assuming equal like-
lihood of each answer to any question, we can conclude that the
payoff in this scenario is maximized by asking whether edge (4, 5)
is spurious: it has a payoff of 9/1 compared to, for instance, a pay-
off of 5/2 for the set of questions {(1,4), (5,8)} (since 5 of the 9
paths are ruled out if both edges in this set are deemed spurious by
the user).

Our results. We have devised such an approach in recent work [47]
and showed its effectiveness on a concurrency analysis. The ap-
proach achieves two key goals: generalization and prioritization.
Generalization ensures that the number of questions asked is much
smaller than the number of false alarms eliminated while prioriti-
zation aims to prioritize asking questions that eliminate the most
false alarms.

Figure 3 shows the efficacy of our approach at resolving false
alarms of a static datarace analysis on a multi-threaded Java bench-
mark program comprising 160 KLOC. Only 18 questions regard-
ing the thread-locality of memory accesses suffice to resolve 87%
of the 594 false alarms, highlighting the impact of generalization;
and the first 3 questions eliminate over 300 false alarms, highlight-
ing the impact of prioritization. The red points plot the results of
an idealized oracle wheres the blue points plot the results obtained
using a decision tree trained to predict users’ answers from sim-
ple static and dynamic heuristics. The coincidence of the two plots
highlights the accuracy of the combined approach at nearly per-
fectly predicting the payoft.

2.3 Static Bug Detection

Another widespread application of program analysis is bug detec-
tion. Its key challenge lies in the need to avoid false positives (or
false bugs) and false negatives (or missed bugs). They arise because
of various approximations and assumptions that an analysis writer
must necessarily make. However, they are absolutely undesirable
to analysis users.

Consider the graph in Figure 1(b). Suppose this time all edges in
the graph are real but certain paths are spurious, resulting in a mix
of true positives and false positives among the paths from nodes in
{1, 2, 3} to nodes in {6, 7, 8}.
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Figure 3: Number of questions asked and false alarms resolved by
interactive static race detection on a Java program.

Limits of purely logical reasoning. A purely logical approach
allows the analysis writer to express idioms for bug detection. An
idiom in our graph example is:

“If there is an edge (z, y) then there is a path (x, y).”

Another idiom captures the transitivity rule:

“If there is a path (z, y) and an edge (y, 2), then there is a path
(x, 2).”

These idioms enable to suppress certain false positives, e.g.,
they prevent reporting a path from node 8 to node 1. However, they
cannot incorporate feedback from an analysis user about retained
false positives and generalize it to suppress similar false positives.
For instance, suppose subpath (1, 5) is spurious. Even if the analysis
user labels paths (1, 6) and (1, 7) as spurious, a purely logical
approach cannot deduce that the subpath (1, 5) is the likely source
of imprecision, and generalize it to suppress reporting path (1, 8).
As a result, an analysis user must manually inspect each of the 9
paths to sift the true positives from the false positives.

Incorporating probabilistic reasoning. A probabilistic approach
can provide the ability to associate a probability with each analysis
fact and compute it based on a model trained using past data. In our
example, it can compute a probability for each path in the graph.
For instance, a model might predict that paths of longer length
are less likely. Ranking-based bug detection tools exemplify this
approach.

The case for a combined approach. The above two approaches
can be combined to incorporate positive (resp. negative) feedback
from an analysis user about true (resp. false) positives, and learn
from it to retain (resp. suppress) similar true (resp. false) positives.
For this purpose, we associate a probability with each idiom written
by the analysis writer using the logical approach, and obtain the
probability by training on previously labeled data. In our example,
then, suppose the analysis user labels paths (1, 6) and (1, 7) as
spurious. These labels are themselves treated probabilistically. The
objective function seeks to balance the confidence of the analysis
writer in the idioms with the confidence of the analysis user in the
labels. In our example, the optimal solution involves suppressing
the subpath (1, 5), which in turn prevents deducing path (1, 8).

Our results. We have devised such an approach [17] and demon-
strated its effectiveness on a datarace analysis, a call-graph analy-
sis, and an information-flow analysis for Java programs. Figure 4
shows the extent of generalization of user feedback on (5%, 10%,
15%, 20%) of randomly selected bug reports by a datarace analy-
sis on a multi-threaded Java program comprising 200 KLOC. The
underlying analysis produces 338 false reports and 700 true reports
for a total of 1,038 reports. With only 5% feedback on these re-
ports (i.e., by labeling roughly 50 of these reports as true vs. false),
our approach is able to eliminate almost 70% of the false reports
while retaining almost 100% of the true reports. This highlights the
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Figure 4: Generalization of feedback provided on bugs reported by
a static race detection analysis on a Java program.

promise of a combined logical and probabilistic approach in im-
proving the accuracy of bug detection through limited feedback.

3. Our Approach

In this section, we first introduce a declarative language for com-
bining logic and probability. Then we describe a general framework
built upon it for integrating probabilistic reasoning into an existing
logical analysis. Finally, we present an effective learning and infer-
ence engine for this language to support our framework.

3.1 Markov Logic Network

Combining logical and probabilistic reasoning has been an active
research area in artificial intelligence [36]. Towards this end, re-
searchers have proposed various languages [10, 12, 21, 23, 34]. We
choose Markov Logic Network (MLN) [34] as the language in our
framework as it extends first-order logic, which and whose variants
are often used to express program analyses.

A Markov Logic Network is a set of pairs (F;, w;) where F;
is a first-order formula and w; is a real number. Given a set of
constants C, the MLN defines a distribution of outputs, each of
which is a set of tuples. We call [F;]¢ the grounding of F; with
respect to C, which is a set of formulae produced by instantiating
all quantified variables in F; by constants in C'. Given a set of tuples
z, its probability is defined by:

P(X =x):= %exp(z wini(z)),

where Z is a normalization factor, exp is the exponential function,
w; is the weight for rule 4, and n;(z) is the number of formulae
satisfied by x in the grounding of F;.

We solve an MLN by performing a probabilistic inference com-
putation that finds the most likely output set of tuples.

3.2 A Framework to Combine Logic and Probability

We illustrate our framework for integrating probabilistic reasoning
into existing analyses by means of the application of incorporat-
ing user feedback in static bug detection. Specifically, we illustrate
our approach using the example of applying the static race detec-
tion tool Chord [24] to a real-world multi-threaded Java program,
Apache FTP server [1].

Figure 5 shows a code fragment from the program. The Request-
Handler class is used to handle client connections and an object
of this class is created for every incoming connection to the server.
The close() method is used to clean up and close an open client
connection, while the getRequest() method is used to access the
m_request field. Both these methods can be invoked from var-
ious components of the program (not shown), and thus can be
simultaneously executed by multiple threads in parallel on the

1 package org.apache.ftpserver;

2 public class RequestHandler {

3 Socket m_controlSocket;

4 FtpRequestImpl m_request;

5 FtpWriter m_writer;

6 BufferedReader m_reader;

7 boolean m_isConnectionClosed;

8 public FtpRequest getRequest () {

9 return m_request;

10 }

11 public void close() {

12 synchronized (this) {

13 if (m_isConnectionClosed)
14 return ;

15 m_isConnectionClosed = true;
16 }

17 m_request.clear (); // x1

18 m_request = null; // x2

19 m_writer.close(); // y1i

20 m_writer = null; // y2

21 m_reader.close();

22 m_reader = null;

23 m_controlSocket.close();

24 m_controlSocket = null;

25 }

26

Figure 5: Java code snippet of Apache FTP server.

Analysis Input Relations:
next(pl, pz) (program point p; is immediate successor of
program point ps)
(at least one common lock guards program
points p1 and p2)
(instructions at program points p; and p2 may

guarded(p1,p2)

mayAlias(p1, p2)
access the same memory location, and constitute
a possible datarace)

Analysis Output Relations:

parallel (pl s p2) (different threads may reach program points p1

and po in parallel)

race(pl, p2) (datarace may occur between different threads

while executing the instructions at program

points p; and p2)

Analysis Rules:

parallel(p1, p2) A next(ps,p1) = parallel(ps,p2) (1)

parallel(p1,p2) = parallel(p2,p1) (2)

parallel(p1,p2) A
mayAlias(pi,p2) A
—guarded(p1, p2)

= race(p1,p2) (3)

Figure 6: Simplified race detection analysis.

same RequestHandler object. To ensure that this parallel exe-
cution does not result in any dataraces, the close() method uses a
boolean flag m_isConnectionClosed. If this flag is set, all calls
to close() return without any further updates. If the flag is not set,
then it is first updated to true, followed by execution of the clean-up
code (lines 17-24). To avoid dataraces on the flag itself, it is read
and updated while holding a lock on the RequestHandler object
(lines 12-16). All the subsequent code in close() is free from
dataraces since only the first call to close() executes this section.
However, note that an actual datarace still exists between the two
accesses to field m_request on line 9 and line 18.

Logical Datarace Analysis. To scale to large real-world pro-
grams, Chord employs a context-sensitive but path-insensitive
datarace analysis. This is a common design choice for balanc-
ing precision and scalability of static analyses. The analysis in
Chord is expressed using Datalog [5], a declarative logic pro-
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Figure 7: Race reports produced for Apache FTP server. Each report specifies the field involved in the race, and line numbers of the program
points with the racing accesses. The user feedback is to “dislike” report R2.

gramming language widely used for specifying program analy-
ses [4, 16, 41, 44, 46]. Figure 6 shows a simplified subset of the
logical inference rules used by Chord. These rules are used to
produce output relations from input relations, where the input rela-
tions express known program facts and output relations express the
analysis outcome. These rules express the idioms that the analysis
writer deems to be the most important for capturing dataraces in
Java programs. For example, Rule (1) in Figure 6 conveys that if a
pair of program points (p1, p2) can execute in parallel, and if pro-
gram point p3 is an immediate successor of p1, then (ps, p2) are
also likely to happen in parallel. Rule (2) conveys that the parallel
relation is commutative. Rule (3) expresses the idiom that only
program points not guarded by a common lock can be potentially
racing. In particular, if program points (p1, p2) can happen in par-
allel, can access the same memory location, and are not guarded
by any common lock, then there is a potential datarace between p1
and po.

Figure 7 (a) shows the bug reports produced by applying
the above analysis on the example program. Chord successfully
captures the real datarace between line 9 and line 18 on field
m_request (denoted by R1). However, it also reports another four
false alarms (denoted by R2-R5). To avoid producing these false
alarms, Chord needs to precisely track the control dependencies be-
tween threads. However, to scale to real-world programs including
the Apache FTP sever, Chord is designed to be path-insensitive and
therefore overapproximates the control-flow dependencies between
threads. As a result, Chord concludes that the clean-up code (line
17-24) can be executed by different threads simultaneously, which
in turn leads to the four aforementioned false alarms.

Conventionally, the interaction between the analysis and the
analysis user stops after the reports are produced and the user has to
inspect each report manually. In the current example, the user can
quickly get frustrated due to the high false positive rate (80%).

Combining Logic with Probability. To address the above chal-
lenge, our approach enables the analysis to consider the user’s feed-
back as the user inspects each report and update the reports accord-
ingly. Currently, our approach considers feedback in the form of
binary likes and dislikes. Suppose the user inspects R2 which is

denoted by the output tuple race(z1, 22), and concludes it to be
a false alarms. By considering this negative feedback on R2, our
approach will eliminate the other three false alarms (R3-R5) that
are derived for similar reasons. Figure 7 (b) shows the reports after
incorporating the feedback. We next illustrate how we can achieve
this effect by integrating probability into Chord.

Since all the rules in the logical analysis are rigid, directly
adding the negative feedback on R2 as a rule —race(z1, x2) will
make the logical system unsatisfiable. Ideally, we wish to violate
certain rule instances that introduce imprecision, and thus guide
the analysis to produce results that are more desirable to the user.

Towards this end, we attach a weight to each imprecise rule and
convert it from a conventional hard logical rule into a soft proba-
bilistic rule. This in turn converts the existing analysis specified in
Datalog into a novel analysis specified in MLN, which combines
logical and probabilistic reasoning. Intuitively, the weight for each
rule represents the confidence of the analysis writer in each rule:
the higher the weight is, the less likely the rule will introduce false
alarms. Such weights can be either manually specified by the anal-
ysis writer or automatically trained on programs whose reports are
fully labeled. As for the rules considered to be precise, they remain
as hard logical rules.

The MLN analysis defines a distribution of possible sets of bug
reports rather than a single set of bug reports, and the most likely set
are the final bug reports. Moreover, it allows us to incorporate user
feedback as a new rule to the system, which will change the output
distribution and the most likely output. Since the user can make
mistakes, we also add the user feedback as a soft rule to the system,
whose weight represents the user’s confidence in it and can be also
trained from labeled data. Intuitively, the bug reports produced after
feedback are the ones that the analysis writer and the analysis user
will most likely agree upon.

We next discuss how our approach can generalize the effect of
user feedback on a single bug report to multiple bug reports. Our
key insight is that most false alarms are symptoms of a few common
root causes. For example, all false alarms in the example are derived
because Chord falsely conclude that the clean-up code (line 17-24)
can be executed by multiple threads simultaneously. If we can treat
these few sources of imprecision, we can significantly improve the
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Figure 8: Derivation graph of datarace analysis and a user feedback.

accuracy of the analysis. We use the example analysis to explain
how our approach achieves this effect below.

In the example datarace analysis, we convert Rule (1) into a soft
rule as it considers neither conditional statements nor synchroniza-
tion operations. On the other hand, the other two rules remain as
hard rules as they rarely introduce imprecision. This leads to the
analysis specification below:

parallel(p1, p2) A next(ps, p1) = parallel(p3, p2)  weight 5 (1)
parallel(p1, p2) = parallel(p2, p1) 2)
parallel(p1,p2) A >
mayAlias(p1,p2) A = race(p1, p2) 3)
—guarded(p1, p2)

where the weight of Rule (1) is learnt from training programs
whose reports are fully labeled.

By running the MLN analysis on the example program, we
obtain the same set of bug reports as running the original Datalog
analysis. The execution of the analysis can be visualized via a
derivation graph, part of which is shown in Figure 8. In the graph,
each node represents either an input tuple or a derived output tuple,
while each hyperedge represents a rule instance: the dotted edges
represent soft rule instances, and the solid edges represent hard rule
instances.

Suppose the user inspects R2 (denoted by race(z2,x1)) and
gives a negative feedback on it. This feedback is translated into a
soft rule —race(x2, 1) weight 25 where the weight is learnt from
fully labeled data. We add the feedback rule to the MLN analysis
and it forms a conflict with the following two rule instances:

parallel(z1, z1) A next(z2,21) = parallel(z2, z1) weight 5 (a)
parallel(z2,z1) A
mayAlias(22,21) A | = race(z2,z1) () -
—guarded(z2, z1)

Since rule instance (b) is hard and rule instance (a) has a lower
weight compared to the feedback rule, the most likely output is
a set of tuples that violate rule instance (a) and satisfy rule in-
stance (b) and the feedback rule in order to maximize the corre-
sponding probability. This in turn will eliminate parallel(xz2, z1)
and race(z2, z1). At the same time, we also implicitly enforce the
least fixpoint semantics of the original Datalog analysis'. As a re-

U1t can be achieved by either adding additional soft rules or ensuring that
the underlying inference engine always returns a minimal model.

sult, all the other tuples that are derived from parallel(x2, z1) are
eliminated, which include the other three false alarms (R3-R5).

3.3 Learning and Inference

To support the aforementioned framework, we developed an engine
to solve learning and inference problems for MLNs.

Learning. We use a standard algorithm [40] to automatically learn
weights from training data which consists of a set of input tuples
and a set of expected output tuples. The initial weight of every rule
is computed as the log of the ratio of the number of its instances
satisfied by the expected output tuples over the number of its in-
stances violated by the expected output tuples. Then the algorithm
iteratively updates weights as follows: first, it invokes the inference
algorithm to produce the most likely output according to current
weights; then, it increases (decreases) the weight of any rule that
has more (less) violations in the current output than it has in the ex-
pected output, so that the output produced in next iteration is more
likely to match the expected output. The algorithm terminates when
the difference between the produced output and the expected out-
put is within a predefined bound or it reaches a given number of
iterations. Since the learning algorithm is built upon the inference
algorithm, its scalability and accuracy is largely dictated by the in-
ference engine, which we discuss next.

Inference. The Al community has developed several solvers for
the inference problem [11, 25, 26, 35]. However, none of them suf-
fices for our applications. First, the solutions produced by most of
these solvers do not necessarily satisfy hard rules in the problem
formulation, as typically there are no hard rules in Al problems.
On the other hand, hard rules are essential for program analysis
applications to enforce formal guarantees such as soundness. Sec-
ondly, none of these solvers scale to large instances produced by
applications on real-world programs as they fail to exploit domain
knowledge in program analysis. To address this challenge, we have
developed a scalable and accurate inference engine that exploits
various insights in program analysis.

Our inference algorithm is divided into two phases: grounding
and solving. In the grounding phase, the MLN inference problem
is reduced to a Weighted Partial Maximum Satisfiability (WPMS)
problem by instantiating all the quantified variables with all con-
stants. In the solving phase, the WPMS problem is solved by an
off-the-shelf WPMS solver. Both phases are challenging to scale:
for grounding, naively instantiating all quantified variables with all
constants can lead to an intractable WPMS formula (comprising
upto 103 clauses); for solving, the WPMS problem itself is also
a combinatorial optimization problem, which is known for its in-
tractability. We next describe how we address this challenge by ex-
ploiting various domain insights.

Our first insight is sparsity, the observation that the solutions
to most inference problems only contain a small subset of the uni-
verse of tuples. Based on sparsity, we have developed an iterative
lazy grounding algorithm [19]. It starts by constructing an empty
‘WPMS formula. Then in each iteration, it solves the current WPMS
formula and expand the formula by adding clauses that are violated
by the current solution. The algorithm terminates when the objec-
tive of the WPMS formula no longer improves. By exploiting spar-
sity, we effectively reduce the size of the grounded formula.

The above algorithm can take a long time to terminate due to
the excessive number of iterations. To reduce the number of itera-
tions, we start with a non-empty WPMS formula by exploiting the
structure of logical formulae in program analyses [19]. In particu-
lar, we leverage the observation that most logical rules in program
analyses are Horn clauses.

To further speed up the solving phase, we observe that the above
grounding algorithm is solving a sequence of similar WPMS prob-



lems, where each problem is a subset of its immediate successor.
By exploiting this insight, we have developed incremental solving
which speeds up WMPS solving by reusing past results [39] .

Finally, we observe that often only a small fraction of output
tuples are of interest, which we refer to as query tuples. Such
tuples typically concern the program analysis output (e.g., tuples
representing bug reports). Intuitively, if we only care about these
few tuples, it is unlikely that we need to reason about the whole
problem. This locality hypothesis is akin to that exploited by query-
driven program analyses. Based on this insight, we have developed
an effective algorithm that lazily resolves a given set of query
tuples [48].

4. Related Work

Our approach is related to data-driven approaches to program
analysis, statistical bug ranking, and statistic-learning-based ap-
proaches to program synthesis.

Data-Driven Program Analysis. Data-driven approaches have
been adopted to learn various knobs of existing program analyses
from different sources of data. These approaches can be broadly
classified into two categories: learning program invariants from
program executions [6, 27, 30, 37, 38] and learning tuning param-
eters from past analysis runs [7, 8, 28, 29]. Such tuning parameters
balance various tradeoffs in the analysis such as the tradeoff be-
tween precision and scalability [7, 29, 29] and the tradeoff between
soundness and completeness [8]. Similar to our approach, they also
combine both probabilistic and logical reasoning, but in a differ-
ent manner. While in these approaches, probabilistic methods are
used as a pre-processor for the logical analysis, in our approach,
probabilistic and logical reasoning are combined seamlessly using
a unified language.

Statistical Bug Ranking. Statistical error ranking techniques [9,
13, 14] employ statistical methods and heuristics to rank errors re-
ported by an underlying static analysis. Similar to data-driven pro-
gram analysis, these techniques combine logical and probabilistic
reasoning in a loose manner. But probabilistic methods are used
as a post-processor for the logical analysis rather than as a pre-
processor.

Program Synthesis via Statistical Learning. Program synthe-
sis is a class of techniques that aims to automate programming.
Conventional synthesis techniques have mainly employed logical
approaches [20, 31, 42]. Recently, probabilistic approaches have
been proposed for various synthesis tasks, including code comple-
tion [32], code deobfuscation [3], variable naming [33], and pro-
gram repair [15]. Combining logical and probabilistic reasoning in
program synthesis is an interesting future direction. Probabilistic
reasoning can help guide the search strategy in logical approaches
while logical reasoning can help prune the search space of proba-
bilistic approaches.

5. Future Challenges

We identify a set of key challenges to building applications that
leverage combined logical and probabilistic reasoning.

Languages. While Markov Logic Networks enables the aforemen-
tioned applications, it has limitations. First, we need a more fine-
grained way to integrate probabilities into logical formulae in order
to further improve the performance of these applications and enable
new applications. In an MLN, given a pair (F}, w; ), all instances in
the grounding of the logical formula F; are assigned with the same
weight w;. However, in practice, one can imagine that there are
many scenarios where they wish to assign separate weights to indi-
vidual instances. For instance, whether a given analysis rule holds

is closely related to the context of the code fragment that it is ap-
plied to. Secondly, MLNs lack built-in support for the least fixpoint
operator, which is used prevalently in abstract-interpretation-based
program analyses. In the current applications, we mitigate this issue
by adding additional soft constraints to enforce the least fixpoint se-
mantics. However, a more fundamental and elegant solution would
be to refine the language design.

Guarantees. We need statistical guarantees to reason about the
correctness of the new combined approach as conventional logical
guarantees such as soundness are not expressive enough or appli-
cable to certain applications. For instance, the static bug detection
application can introduce false negatives after it incorporates proba-
bilistic, therefore no longer guarantees soundness. By applying sta-
tistical guarantees such as precision and recall, we can effectively
quantify the false positive rate and false negative rate. One possible
direction to enforce such guarantees is to leverage the literature of
probably approximately correct learning (PAC learning) [43].

Learning. Until now, we have assumed that the logical formulae
directly come from existing logical analyses and the weights are
the only learnt parameters. However, there are cases where these
logical formulae also need to be learnt. For instance, we may lack
specifications for certain program properties (e.g., security vulnera-
bilities). In this case, both the logical part and the probabilistic part
of the analysis specification can be only obtained by learning from
labeled data. There are also cases where the specification may exist
but is too imprecise such that simply making the rules probabilistic
does not suffice to improve the performance unless new rules are
introduced. One possible direction for structure learning is to lever-
age the literature of inductive logic programming [22] and program
synthesis [2].

Inference. The inference engine is the key component that affects
the scalability and accuracy of our approach as even the learning
problem is solved by solving a series of inference problem. How-
ever, the inference problem is a combinatorial optimization prob-
lem, which is known for its intractability. While the general prob-
lem is computationally challenging in theory, in practice, we can
still build scalable and accurate inference engine by exploiting vari-
ous domain insights. Currently, by leveraging the insights described
in Section 3.2, we are able to scale the learning and inference algo-
rithms upto programs comprising half million lines of code without
sacrificing the accuracy. In the future, we plan to leverage other do-
main insights such as modularity in programs to further improve
the scalability.

6. Conclusion

We presented a novel approach to program analysis that combines
logical and probabilistic reasoning. While the logical part preserves
the benefits of conventional analyses, the probabilistic part enables
handling uncertainty and provides the ability to adapt and learn.
Then we described an end-to-end system for supporting the ap-
proach, which includes a declarative language for combining logic
and probability, a general framework for incorporating probability
in existing program analyses using this language, and an effective
learning and inference engine for the language. We believe such a
combined approach will help address long-standing open problems
in program analysis and enable new applications.
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