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I. Vision     

Music improvisation is a vital element in learning music composition skills. It helps a practitioner to learn 
scales, chord progressions, and playing in a certain musical styles--e.g. blues, jazz, rock, folk. Once a 
player familiarizes oneself with the basic knowledge of music improvisation, the player often try to 
improvise with other musicians in order to share ones ideas and get some feedback. However, it is not 
always easy to find other musicians to play with and get together at a certain place. Therefore, it would be 
nice if we have a computer that acts as a musical companion who knows how to improvise. 

In this paper, we show a statistical model that automatically generates musical phrases to imitate music 
improvisation. The model extracts three types of information from parsed MIDI data--scales, chords, and 
rhythmic patterns-- and builds several bi-gram models based on the three features. Once the model is 
trained, it gets a MIDI file as an input, extract the three features from the song, improvise based on the 
extracted features with the bi-gram models, replace a melody track with an improvised track, and outputs 
a modified MIDI file. We show how we implemented each step in greater detail. Also, a link to some of 
the example songs is complemented along with this paper so that a reader can listen to the results. 

 

II. Steps 

II.1. Classification 

II.1.A. Data 

We chose to focus on the jazz genre for this project.  While our methods could be used on other genres, 
this limited the variation that comes with dealing with different styles of music.  Our data consists of 183 
midi files that contain well-know jazz recordings. 

In order to deal with differences in key signature between the pieces, we normalized all of the notes in the 
piece such that the root of the I chord is note number 0.  The remaining notes are numbered 1-11 starting 
at this root.  Our parsed MIDI files are stored using note names and key signatures, but starting with 
chord and scale extraction we use note numbers so that information learned from n-gram models is 
applicable across key signatures. 



 

Figure 1. High-level view of music improviser steps 

 

II.1.B. Parsing Midi Files 

The International MIDI Association defines the standard MIDI file format [3]. Three types of MIDI 
format are defined: type 0 file contains a single multi-channel track, type 1 file contains one or more 
simultaneous tracks (or MIDI outputs) of a sequence, and type 2 file contains one or more sequentially 
independent single-track patterns. Since comprehensive MIDI parsing was not our primary concern in this 
project, we picked a type 1 format which is relatively straightforward to parse each individual track. 
 

We assume that each song has one melody track and one background-chord track. The melody track is 
used for extracting scales and rhythmic patterns of a song, and the background-chord track is used for 
extracting chords of a song. Since a MIDI file does not indicate such track information, we hand-labeled 
the two track numbers of each MIDI file. Each of our team member used one of two MIDI software 
(Roland Cakewalk9 or Steinberg Cubase SX3) in order to determine the two tracks by visualizing each 
track information and selectively listening to an individual track. One that contains main melody of a 
song was selected as a melody track, and one that contains either base line or chord voicing was selected 
as a background-chord track. 

A type 1 format MIDI file contains one block of header data and several blocks of track data. A header 
block contains general information of a MIDI file (number of tracks, time signature, etc), and each track 
block contains a list of MIDI events. Each MIDI event consists of a delta-time event (when an event 
should be played relative to the track's last event), event type, and some event type specific data. Note 
events (NOTE_ON or NOTE_OFF) have time, pitch, and velocity information. In our parsed output files, 
the note events for both melody and background-chord tracks are recorded. 

There are many types of time signatures, but the most widely used time signature is 4/4 (common time). 
For simplicity, we assume all the songs have the same time signature. This allows us to divide each 
measure into 16 bins and record note events in a discretized manner. 



With the two assumptions (each song has a melody and a background-chord track, and all the songs have 
the same time signature), we parsed our dataset using an open source MIDI parser [2]. Here is an example 
of a note event: 

('note', (83, 5, 3), (52, 'E', 2, 88)) 

This event indicates that this is a note event that is occurred at third sixteenth of fifth measure (hence 83rd 
sixteenth), 'E' note with a second octave (hence pitch=52), and the velocity is 88. 

 

II.1.C. Extracting Chords 

The MIDI parser outputs two files- one with information from the melody track and the other with 
information from the background track.  Each file contains a list of notes in the track, including 
information about the note's timing, volume, and pitch.  Also included is information about key signatures 
as they change throughout the track.  The background file will be used to determine the  chord structure 
associated with the piece. 
Our approach to finding the underlying chord structure for the piece is to identify the chord in the 
background track for each measure.  This is done by looking at the notes that occur in the measure as well 
as an n-gram model that represents likely transitions between chords.   We first classified the measure 
chords of each piece using only the notes in the measure, scoring each piece based on how closely the 
identified chords matched expected notes in a chord.  Then, we used only the high-scoring pieces to 
create a bigram model of transition probabilities between chords.  Finally, we used a combination of these 
bigram probabilities and notes in each measure to improve the identification of chord structure. 

The first round of chord identification uses only the notes in the background track to find the  closest 
matching chord.  In order to find the chord for a given measure, we count the number of times each note 
occurs in the measure.  These notes are numbered 0-11 as described above (see  Data), and the count for 
each note is kept in a 1D array.  We then compare this array to pattern arrays that contain the notes 
present in known chords.  This method was inspired by the work of Bryan Pardo, more information in the 
works cited page.  A pattern array contains only 1s and 0s, while the measure array may contain higher 
numbers if more than one instance of a note is present.  The measure in question is compared with major, 
minor, dominant 7, major 7, and minor 7 chords for each of the 12 root notes.  A matching score is 
calculated as follows. 

1. For each note present in the measure that is 1 in the pattern, 1 is added to the score. 
2. For each note present in the measure and 0 in the pattern, 1 is subtracted from score. 
3. For each note not in the measure and 1 in the pattern, 1 is subtracted from the score. 

Example: [3 0 0 0 3 0 0 2 0 0 0 0] 

Looking at the above example, we can see that there are 3 instances of the 0th note for whichever  key 
signature the piece is in.  There are three instances of the 4th note, and 2 instances of the 7th.  The pattern 
that this measure most closely matches is [1 0 0 0 1 0 0 1 0 0 0 0], which represents a major  I chord.  The 
score would be 8, since every note in the measure is 1 in the pattern. 



Since some measures will contain more than one underlying chord, we allowed for the possibility that two 
chords could be present.  To do this, we classified the whole song using one chord per measure and again 
using two chords per measure.  To decide if each measure should contain one chord or two, we looked at 
whether the combined score of half-measures was better than the score of the entire measure using only 
one score.  We therefore ended up with the entire piece composed of some measures that contained one 
chord and others that contained two. 

After a score is calculated for each pattern, the chord with the highest score is assigned to that  measure.  
The score of a piece is the average of the scores of each of the measures.  We then filtered out only the 
pieces with average scores of 6 or higher to use to create our bigram model. In order to create the model, 
we simply counted the number of times that each chord follows each other chord.  Since our dataset is not 
all that large, we normalized with respect to key signature and used note number rather than name in the 
transition probabilities.  For example, a D->D transition in the key of D would be the same as a C->C 
transition in the key of C. 

Once this bigram model was complete, we reclassified all of the pieces using our new knowledge.  
Instead of relying only on pattern-matching scores, we also looked at transition counts to   determine 
which chord to assign to each measure.  We did this by looking at the top 3 scoring chords by pattern 
matching.  We then tried several different weightings for pattern match score and transition counts 
between the previous and current measure to choose between the three chords.  In most cases, the closest 
matching score was also the most likely chord to follow the previous chord.  However, there are some 
cases in which a strange chord (out of key signature for example) was the closest match, but the actual 
chord had a much higher transition probability and could be correctly classified by using the bigram 
model.  

Deciding on a weighting between chord pattern matching and bigram probabilities was difficult.                     
We decided that in cases where the chord matching scored very high, this should take precedence over 
any transition probabilities.  Therefore, our model can accept as a parameter a number representing the 
number of standard deviations above the mean to be used as a threshold.  The  threshold for the highest 
score in order for transition probabilities to NOT be taken into account is calculated as follows. 

1. Create a normalized set of all of the highest scores for chords in each measure 
2. The mean and standard deviation are calculated for this set 
3. The input parameter is multiplied by the standard deviation and added to the mean 

After listening to the resulting chord structures for several pieces, we decided that 0 was the best  
threshold to use.  This means that any measure whose highest scoring chord is above the average score for 
the piece will not use our bigram model.  Any measure whose score falls below this average will use a 
combination of bigrams and pattern matching to choose the best chord for the measure.  The formula that 
we used is pattern score + .1 * transition count, since the transition counts were about ten times higher 
than the pattern scores. 

Once each measure has a chord associated with it, these chords are output to be used in our                       
improvisation tool.  

 



II.1.D. Extracting Scales 

The method used for extracting scales was very similar to the method used for extracting chords.  Instead 
of using the background track, we used the melody track to extract scales used in each measure.  Just as in 
chord extraction, we collected an array of all of the notes contained in each measure of the track.  Then, 
we compared these arrays to pattern arrays of major, minor, blues, and pentatonic scales.  The scoring of 
different scales was done in the same way as chord extraction, except that no bigrams were used in the 
classification stage.  The scale with the highest score was chosen, if that score was above a certain 
threshold.  If the score was below the threshold, we used the chord found in the background track as the 
measure's scale.  Our reasoning behind this is that if the melody line is not playing enough to determine 
the scale, we should use  information from the background track to determine which scale would fit well 
over the measure. 

Scale extraction results in a file that lists one or two scales for each measure of the piece.  These scales 
can be one of the four types of scales listed above, or one of the various chord types  addressed above if 
the scale scores were too low. 

 

II.1.E. Extracting Rhythmic Patterns 

When improvise, with the underlying chord progression, a player usually decide what scale to play with 
and what rhythmic pattern to use. There exists a limited number of scales, but the number of rhythmic 
patterns is almost infinite. This means that if we use a statistical model to automatically generate a 
rhythmic pattern, we will have the sparse data problem. In order to mimic the playing style of a song at 
best, we decided to extract rhythmic patterns of a song and then later pick a random pattern of a song to 
improvise. We used the melody track to extract rhythmic patterns because we wanted to mimic the 
rhythmic pattern of the melody line. 

Extracting rhythmic patterns is rather different from the methods for extracting chords and scales. While 
scales and chords are decided based on the pitch information, rhythmic patterns are decided based on the 
duration and the volume information. Also, while scales and chords are extracted from each measure, 
patterns are extracted from more than one measures because a rhythmic pattern usually spans over more 
than one measure. The current implementation uses two measures to make a pattern, but our method can 
make a pattern with any arbitrary number of measures. 

Here is an example pattern of two measures: 

[[0, 2, 0], [1, 1, 87], [1, 2, 85], [0, 1, 0], [1, 5, 89], [0, 1, 0], [1, 1, 74], [1, 1, 49], [1, 1, 47], [1, 1, 87], 
[0, 1, 0], [1, 1, 83], [1, 1, 76], [1, 1, 71], [1, 1, 49], [1, 1, 62], [1, 1, 86], [1, 2, 109], [1, 1, 81], [1, 1, 70], 
[1, 1, 82], [0, 1, 0], [1, 1, 74], [1, 2, 66]] 

Each element has three information: note on/off(1:on, 0:off), duration(in sixteenth scale), and 
volume(0~127). Note that there are 16 sixteenths in a measure. Since the pattern spans over two measures, 
if we sum up each duration value of each element in the pattern, it is equal to  32. 

 



II.1.F. Building Bigram Model 

The process of building our bigram model for chord transition probabilities was described briefly under 
Chord Extraction.  We used two bigram models in this project- the first for determining the underlying 
chord structure and the second for use in our improvising tool.  The model used for chord extraction is 
much simpler, since it is built by counting the transitions between chords in all files that achieved a 
particular score. 

The bigram model that was used for our improvisation tool has the job of providing transition 
probabilities between notes given a particular scale for a measure.  For example, if a measure is tagged 
with the C Blues scale, what is the probability that we will play a D if the previous note played was an F?  
In order to create this model, we used the original parsed XML files to obtain the notes in each measure 
as well as the scale listings that were generated by the scale extraction stage. 

To create the model, we looked at the set of notes in each measure of all of our songs.  For each transition 
between two notes, we record a count of how many times this transition occurs given  a particular 
underlying scale.  Therefore, our bigram model is more like a conditional bigram model conditioned on 
the underlying scale of the measure in which the transition occurs.  We also counted the number of times 
each note is the starting note of a measure given a particular underlying scale. 

The improvisation tool will be able to use this model to choose the notes to play in each measure. Given 
the scale that the measure needs to use, a random note can be chosen with higher weighting given to notes 
that are more likely to either start the measure or follow the previous note. 

 

II.2. Generation 

II.2.A. Improvising Melody 

The melody improviser uses pattern information and scale information to generate a sequence of notes. 
There are two main steps in the improvisation. First, the improviser groups several chords together so that 
the duration of each group is equal to the duration of a pattern. Next, looping through each group from the 
previous step, the improviser randomly selects a pattern of a song, determines how many notes were 
played in the pattern, and generates a sequence of notes according to the scales in the group. 
 

In order to choose the notes that should be used for the melody, we used the bigram model created in the 
previous stage.  If we need the first note of a measure, then we look at the starting  probabilities in our 
model for the scale that we are in.  In order to choose a starting note, an array  was created with the 
number of instances of each note equal to the number of times this note occurred as the starting note in a 
measure of the given scale.  When a random index of this array was chosen, it was more likely to choose 
a starting note that is commonly a starting note in our training data.  The same procedure was used to find 
the next note to play given a previous note, and therefore our improvisation tool favored note 
combinations that were found in the training data. 

 



II.2.B. Writing MIDI Files 

As a final step, we generate a MIDI file. First, we encode a sequence of notes from the previous stage to a 
sequence of MIDI events. Next, we overwrite the sequence of MIDI events to the original melody track. 
This is done by going backward as we have done in the parsing step. 

 

III. Results 

III.1. Improvising Tool 

Our tool is composed of several modular parts, which can be run as python scripts separately.  The              
first of these parses all MIDI files in a given folder and stores output in a 'parsed' folder as text files. Then 
we have several scripts that take these parsed files and create text files listing the patterns, chords, and 
scales for each measure.  The scripts that create our bigram models use information from the chord and 
scale files.  We have a script that takes in the patterns, chords, and scales and creates a new track.  Finally, 
another script combines this improvised track with the original background to create a new MIDI file. 

  

III.2. Music Samples 

We have provided several music samples generated using our tool.  The background tracks are maintained 
as from the original piece, but the melody track has been replaced with our  new improvised track.  This 
track is played by the piano. Some of the result songs can be found at  

http://people.csail.mit.edu/yalesong/6.863-Music.Improviser 

  

IV. Future Work 

IV.1. Extending Rhythmic Pattern Selection 

At this stage of development, we selected patterns from each piece and used these same patterns in the 
generated improvised track.  These patterns were used in random order, but were extremely limited in 
variety especially for the shorter pieces.  One extension to our work would be  to use rhythmic patterns 
from different pieces in the piece we are working on.  We would have to develop a method of sorting the 
pieces based on factors such as style and tempo, so that rhythmic patterns would 'fit' into the mood of the 
piece. 

 

IV.2. Adding Dependency/Causality 

When choosing the notes and the patterns for each measure, we did not consider previous notes or 
patterns.  This is a large simplification, since music often builds on itself from the beginning to the end.  



Certain phrases are repeated or altered slightly to form a refrain, rather than each measure being 
independent of all other measures.  Adding this dependency to our framework  would be difficult, but our 
program is modular enough that the change could be made.  Instead of randomly choosing a pattern, we 
could choose a pattern that was already played a few measures early.  When adding pitches to the patterns, 
we could have a higher probability of choosing the same notes that were already used in the pattern.  This 
way, there would be some exact  repetition.  This repetition is often what listeners remember of the song. 

 

IV.3. Improving Scale/Chord Classification 

Our chord and scale classification methods are far from perfect.  For example, in order to choose the 
threshold for use of the bigram model we listened to the resulting chords chosen by models with different 
thresholds.  We chose to use a threshold of 0, because the chords chosen sounded the most like the 
original piece.  Zero in this case means that about half of the chords were chosen because the measure 
notes matched a chord template very closely and the other half were chosen based on a combination of 
this template-matching and the bigram model.  There is of course a much more scientific way to choose 
the threshold if time allows.  All of the songs would have to be hand-parsed and then a program would try 
lots of thresholds and choose the one that has the highest percent accuracy. 

For choosing scales, our model would improve if we included more of the many types of scales  that exist.  
We choose to limit our scales to five types, because the others are more obscure and often caused 
dissonance if not used correctly.  For example, improvising using a half-diminished chord is dangerous 
unless the correct notes of the chord are emphasized.  Major, minor, blues, and pentatonic are much more 
likely to sound good with the background chords given our simple chord parser and semi-random choice 
of notes. 

 

IV.4. Increasing Database 

Like any classification problem, increasing the size of our dataset would increase the accuracy of our 
results.  Our bigram model in particular would benefit from more data, because we would  have a more 
accurate model of transition probabilities between notes given particular key signatures.  At this point, 
some transitions are not even represented in the model. 

 

IV.5. Extending to Other Genres 

We chose to work in the jazz genre for this project, because improvisation is most commonly used in jazz 
pieces.  However, the work could certainly be extended to other genres.  New bigram models would have 
to be built for each genre, since what differentiates types of music is the patterns used and note transitions. 

 

 



V. Contributions 

1. Developed and implemented method for parsing and writing MIDI files 
2. Implemented scale and chord Classification 
3. Created Improvisation Tool 
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