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Abstract Human movements are characterized by their invariant spatiotemporal
features. The kinematic features and internal movement timing were accounted for
by the mixture of geometries model using a combination of Euclidean, affine and
equi-affine geometries. Each geometry defines a unique parametrization along a
given curve and the net tangential velocity arises from a weighted summation of
the logarithms of the geometric velocities. The model was also extended to deal
with geometrical singularities forcing unique constraints on the allowed geometric
mixture. Human movements were shown to optimize different costs. Specifically,
hand trajectories were found to maximize motion smoothness by minimizing jerk.
The minimum jerk model successfully accounted for a range of human end-effector
motions including unconstrained and path-constrained trajectories. The two mod-
eling approaches involving motion optimality and the geometries’ mixture model
are here further combined to form a joint model whereby specific compositions of
geometries can be selected to generate an optimal behavior. The optimization serves
to define the timing along a path. Additionally, new notions regarding the nature
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of movement primitives used for the construction of complex movements naturally
arise from the consideration of the two modelling approaches. In particular, we sug-
gest that motion primitives may consist of affine orbits; trajectories arising from
the group of full-affine transformations. Affine orbits define the movement’s shape.
Particular mixtures of geometries achieve the smoothest possible motions, defining
timing along each orbit. Finally, affine orbits can be extracted frommeasured human
paths, enabling movement segmentation and an affine-invariant representation of
hand trajectories.

1 Introduction

1.1 Organizing Principles of Human Task Space Kinematics

Manyof the fundamental ideas underlying our current understanding of humanmove-
ment generation arise already when examining how humans control their hand tra-
jectories, the hand being the end-effector of the upper limb. Despite the high dimen-
sionality and complex mechanics inherent in any human action, the movements of a
multi-degrees of freedom limb such as the upper arm, can be investigated by focusing
on themotions of a single disembodied pointmoving through space and time [7]. This
approach may seem simplistic at first. However, as has already been demonstrated
by many earlier studies, fundamental questions addressing different perspectives of
the problem of movement generation can be addressed and even resolved at the level
of the end-effector motion.

The first issue addressed here is that of overcoming or resolving the redundancy
existing at the task level; any end-effector movement can be performed in many
different ways. How does themotor system select distinct trajectories when the space
of all possible alternative movements is so high dimensional? Interestingly, even in
the case of two dimensional hand trajectories, redundancy issues arise. Moving the
tip of a pen from one point to another can be performed via an infinite-dimensional
set of possible paths. The temporal aspect of movement generation introduces an
additional dimension that the motor system has to deal with. Not only does the
movement duration have to be selected, but also does the instantaneous movement
speed. The selection or planning of a particular hand speed profile creates a specific
relation between path geometry and time. Thus, a closer inspection of the task of
controlling two-dimensional (2D) end-effector movements reveals the richness of
possible choices. Such choices are reflected in both the geometrical features and the
timing pattern chosen by the motor system when performing motor actions. When
inspecting higher dimensional movements from the perspectives of joint kinematics
and dynamics, the basic question of selecting a specific action out of the vast set of
possible ones essentially remains the same, but is even more complicated.

To select one possible movement among the very large set of possible ones, the
notion of optimality serves as a key concept. We do tend to think of human move-
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ment as being optimal, but in what sense? When examining end-effector kinematics,
evidence has accumulated indicating that human movements are first and foremost
kinematically optimal; that the hand trajectory, referring to both the hand path and its
velocity profile, maximizes smoothness. This objective was expressed by the mini-
mization of some integrated squared n-th order time derivative of hand position [23,
38, 51, 56]. The lowest order time derivative of position is velocity, then accelera-
tion, then jerk, snap, etc. Even for two-dimensional hand trajectories in the horizontal
plane, seemingly simple optimization cost functions yield a surprisingly rich set of
possible behaviors. Free reaching movements are predicted to follow straight hand
paths with single-peaked bell speed profiles [1, 42]. Obstacle avoidance or simple
curved movements were successfully modeled by introducing via-points, i.e., addi-
tional points through which the hand should pass [23]. Other similar approaches
were applied to model more complex behaviors, including drawing movements or
path tracking movements. Thus, applying additional task constraints can redefine the
optimal behavior and formmore andmore complex behaviors. Positions that must be
passed through [23], prescribed paths [51, 56], timing requirements [54] and online
trajectory corrections [21, 33, 38], may all be incorporated into the minimization of
some kinematic cost. Thus, the relatively simple notion that a movement is optimal
in some sense can be used to generate a diverse set of movements.

Inspecting the notion of optimization as a possible motion planning principle,
however, reveals some problems. Deriving an optimal solution cannot always be
carried out, especially online motion planning purposes or when time is pressing,
such as in the case of required online corrections [38, 57]. When the complexity of
the movement task increases, several additional difficulties arise. Computationally, it
becomes harder to find an optimal action. Moreover, storing in memory all possible
optimal paths and trajectories does not provide a satisfactory solution since it requires
a massive memory storage capacity.

Given these difficulties, another possible solution to the motion control problem
arises from another underlying notion, that of compositionality [10, 11, 2, 22, 43].
According to this notion, most movements result from the composition of elementary
building blocks, i.e. motion primitives. The problem, however, is how it is possible to
identify such discrete primitives from apparently continuous movements? Addition-
ally, what exactly is meant by the term motion primitive? For instance, can a large
space of different behaviors be spanned based only on the use of a smaller number
of motion templates?

Consider, for example, the simplest candidates, straight strokes. These strokes
are the first that come to mind given the relatively straight paths and the bell-shaped
velocity profiles characterizing reaching movements [1, 42]. These straight geomet-
ric paths are traversed with stereotypical bell shaped velocity profiles. However,
even in the case of simple straight hand motion primitives, the number of such pos-
sible strokes is huge. The stroke’s orientation, amplitude, and duration are three free
parameters. Hence, the space of possible stroke primitives is large. Is each stroke
represented by a separate motor plan? The similarity of the normalized speed profiles
of different strokes suggests that this option is less likely than the possibility that a
motion primitive exists; namely, given a generic motor template and the specific ori-
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entation, amplitude, and duration of the required movement, these are sufficient for
forming specific required strokes. Furthermore, it appears that movement durations
and amplitudes are correlated. Such coupling happens when it is required to move as
rapidly and as accurately as possible, i.e., when movement duration depends on its
amplitude and on the target’s width (Fitts’s law; [18]). Hence, in general, the task of
reaching between given end-points requires the specification of either three or only
two parameters out of the three possible ones.

The above observations concerning straight movement primitives should also be
considered from a different perspective. Straight strokes are inherently invariant;
irrespectively of their amplitude, duration and orientation. The normalized speed
profile of a straight stroke is bell-shaped and is roughly the same across different
movement end-point locations and durations, at least in the case of 2D movements
in the horizontal plane. In three-dimensional space the paths are less straight and
do depend on the end-point locations, which has led to the suggestion that different
motion planning strategies subserve 3D versus 2D movements [8, 9, 14].

Hence, given the above arguments, we find that invariance is another fundamental
concept in trajectory formation, which goes hand in hand with the ability of the
system to generalize a motor plan designed for a specific task in order to accomplish
similar tasks. What types of invariants characterize the spatiotemporal features of
end-effector motions? The low dimensionality of task space offers a suitable ground
for carrying a geometric analysis ofmovements based on geometrical symmetries and
invariance theory. Note that geometrical principles for the planning and execution of
complex movements of different body segments were recently presented in a paper
by Bennequin and Berthoz [6].

The study of the action of a transformation group operating either in the plane
or in 3D space can provide insights into the geometrical principles guiding human
motor control. Affine transformations are the point-by-point correspondences send-
ing straight lines to straight-lines; the equi-affine transformations, in addition, are
respecting a unit of area in 2D (resp. volume in 3D). Humans move the hand through
2D task spacewith kinematics that indicate equi-affine invariance, following amotion
regularity called the two-thirds power law [34]. This law states that the movement
speed is proportional to the end-effector path curvature, raised to the power−1/3, thus
specifically slowing down along the curvier sections of the path [27, 46]. Isochrony,
the tendency ofmovement speed to bemodified such thatmovement durations are rel-
atively unaffected by the movement’s Euclidean extent is another invariance that can
furtherly be interpreted within the realm of full-affine invariance of motor behavior
[5].

In this chapter, we discuss a few different approaches to modeling human tra-
jectory formation. One approach involves optimization models. Another approach
involves using geometrically based descriptions.We show how these two approaches
can be combined to address both the spatial and temporal aspects of end-effector tra-
jectory planning. Regarding optimization models, we focus on the minimum jerk
model. We thoroughly discuss geometry–based models using non-Euclidean (in the
sense of groups, not in the sense of metrics) geometries. We first briefly review the
relation between equi-affine geometry based models and the two-thirds power law.
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We then proceed to review themixture of geometries model. This model is a unifying
model that suggests that movement is generated not only based on a single geometry
but on a multiplicative mixture (see below) of three geometries, namely Euclidean
geometry and the two non-Euclidean ones: affine and equi-affine geometries. Thus, it
was suggested that movement speed (tangential velocity) emerges from a mixture of
speeds, each being constant within its associated geometry. These geometric speeds
are combined, dictating the net speed and timing of the movement. The model also
assumes different possible combinations of the three geometrical speeds, character-
ized by the different weighted contributions of the three geometries to the actual
movement. The relation between the mixture weight parameters and task optimality
has not yet been sufficiently investigated but here we advance the possibility that both
optimization and geometric mixtures may explain the observed kinematic behavior.
One possibility is that the mixture of different geometries is formed to generate
the smoothest possible movement. To examine whether this indeed can be the case,
movements along several exemplary paths were examined, and their velocity profiles
were modeled.

We compare the properties of the mixed geometry model to simpler models; in
particular, a mixed geometric parameter allows moving through inflection points
without having a singularity [5]. Its free parameters (the weights of the three geome-
tries) are constrained to follow certain mathematically simple relationships at the
singularity points for the velocities not to become infinitely large. We use the mixed
geometry model to account for experimental data of both hand drawing and loco-
motion trajectories. The free weight parameters were selected among all possible
weight parameters in order to achieve the best fit of the predicted velocity profiles to
the experimental data as well as sufficient constancy of the weight parameters during
long enough temporal intervals [5]. Based on these calculations, several observa-
tions on the possible mixtures of geometries used to generate different trajectories
are discussed. Inspecting the free parameters (weights) that account for the experi-
mental data, we found that different alternative mixtures might result in quite similar
velocity profiles, which were practically indistinguishable across different mixtures.

Continuing our interest in geometric invariance, we also examine a set of plau-
sible candidate geometric motion primitives and describe how these primitives may
emerge based on the main notions of invariance and optimization. In particular, fol-
lowing Meirovitch [39] we propose that these primitives could geometrically corre-
spond to the affine orbits; geometric orbits resulting from the combined actions of the
Euclidean, equi-affine and full-affine transformation groups on points in the plane.
The speed profile along primitive affine orbits may satisfy both the mixed geometry
and the minimum jerk models, yielding motions that are both invariant and maxi-
mally smooth. We also discuss how affine orbits can be used for the segmentation of
experimentally recorded end-effector trajectories.
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2 Modeling Task Space Kinematics Using Optimization
Principles

2.1 The Minimum Jerk Model Defining the Smoothest
Trajectory

The optimality ofmovement based on theminimum jerkmodel states that a trajectory
r (t) � (x(t), y(t)) is optimal in the sense that the cumulative squared jerk, i.e., the
squared jerk cost integrated over the entire movement duration, is minimal:

J �
∫ T

0

(...
x 2 +

...
y 2

)
dt

The minimum jerk model enables to predict how the motor system operates
under different task requirements such as the generation of point-to-point reaching
or obstacle-avoidance movements [19, 23].

For point-to-point movements, given some boundary conditions, the two-
dimensional trajectory predicted by this jerkminimizationmodel is such that x(t) and
y(t) are fifth order time polynomials. In the simplest case of zero speed and accelera-
tion at the movement start-point and end-point, the resulting trajectories are straight
paths with symmetric bell-shaped velocity profiles, closely resembling stereotypical
human behavior.

To model curved trajectories, the movements were assumed to start at some initial
point, pass through one or several additional intermediate points (termed via-points),
and end at some specified end-point. For example, using the minimum jerk model,
the optimization process predicts the movement that should be generated between
the initial and final positions while passing through each via-point along the way at
an a priori unspecified time. The solution of this minimization problem defines the
movement between each pair of consecutive points as a 5th order time-dependent
polynomial, with equality position constraints obeyed by the movement segments on
both sides of each via-point. Themodel predicts the path geometry and full kinematic
profile including internal timing.

For various applications, it is sometimes more helpful to examine the jerk cost
after some normalization. For instance, if we assume a movement duration T and an
amplitude S to be specified, then a normalized version, the unit-less normalized jerk,
can be defined JN � T 6

S2 J as which makes it easier to compare and examine the jerk
costs across different movement shapes. Other approaches to normalize the jerk cost
were based, for example, on the spectral arc-length metric [3].

For a given path, path-constrained optimization deals with the problem of finding
the optimal speed profile along the prescribed path [51, 56]. The predicted speed
profile, the solution of the path-constrained optimization problem, is specifying the
dependency of the end-effector speed on the path shape (geometry).
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The relations between the predictions arising from optimization and those result-
ing from equi-affine invariance, whichwe discuss next, were examined fromdifferent
perspectives [24, 27, 39, 49, 51, 60]. It is interesting to mention that the equi-affine
parametrization (i.e. the two-thirds power law) corresponds to the case where the jerk
vector

(...
x (t),

...
y (t)

)
is proportional to the velocity vector (ẋ(t), ẏ(t)). Possible exten-

sions of the minimum jerk model naturally arise if one examines the time derivatives
of some order k being different from k � 3 which relates to the time derivative
of position, i.e., jerk used in the minimum jerk model. The minimum acceleration
model, with k � 2 was also used to model human behavior during reaching tasks
[4]. The minimum acceleration cost also appears to be a good candidate for describ-
ing human locomotion [41]. The minimum snap model with k � 4 was used as an
underlying optimization cost for the control algorithm of robotic quadcopter swarms
[40] as well as for object manipulation movements [16].

A more general extension comes when the cost arising from Euclidean jerk or
acceleration is replaced with a cost arising from Riemannian metrics used on the
configurationmanifold describing the configuration of the human arm. This approach
was developed by Biess et al. [9]. In their study, the geodesics of the integrated
kinetic energy cost were used to predict the optimal geometric movement paths, and
the velocities along these geodesics were dictated based on the minimization of the
third derivative of the Euclidean distance with respect to time when moving along
the resulting optimal paths.

2.2 Invariance Achieved Through Power Laws and Isochrony

Asdescribed above, point-to-point reachingmovements are both spatially and tempo-
rally invariant. Invariance in movement generation applies to more than just reaching
movements. Other examples are curved and scribbling movements. In particular, we
consider the two-thirds power law describing how the geometry and timing of curved
human movements are related. The influence of path geometry on timing is modeled
by the two-thirds power law: ω � Cκ2/3, relating angular speed ω to curvature κ

[34]. An equivalent formulation of the two-thirds power law is:

v � γ κ−β

relating tangential velocity (speed) v with curvature κ , with exponent whose value
is: β � 1

3 , and with γ being the piecewise constant named the velocity gain factor.
This law captures the phenomenon that human movement speeds slow down during
more curved segments of the trajectories.

The two-thirds power law or similar power laws were found in smooth pursuit
eye movements [15], full body locomotion [29, 61], leg motions [31], speech [55]
visual perception of motion [36, 59] and motor imagery [32].

Other studies have shown that a generalized form of a power law holds for shapes
other than ellipses and those originally tested, and that the value of the power law
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exponent depends on the shape of the movement path. Maximization of smoothness
through the minimum jerk model or other minimum squared derivatives models
successfully predicted the power law values [51]. These predictions included the
power law exponent values, based on the order of the time derivative of position
used by the minimum squared derivatives model and the value of the curvature
modulation frequency [30].

Another approach initially used to account for the two-thirds power law was
based on a geometrical approach, specifically showing that the two-thirds power
law is equivalent to the movement having a constant equi-affine speed [27, 46].
Equi-affine speed designated the time derivative of equi-affine arc-length which is
mathematically defined as dσ/dt , the derivative of equi-affine arc-length distance
with respect to time, where the equi-affine arc-length distance is defined as: σ �∫

κ1/3ds, s being the Euclidean arc-length distance [20, 25, 27]. Differentiating both
sides of the last mathematical expression with respect to time and assuming that
the equi-affine speed is constant, corresponding to the velocity gain factor dσ

dt � γ ,
results in the two-thirds power law [20].

The importance of the equi-affine description lies not only in enabling to express
the two-thirds power law in geometrical terms but also in suggesting a geometri-
cal framework for the description of human motion. The formulation of the relation
between the two-thirds power lawand constant equi-affine speed enabled to formulate
the idea that a possiblemathematical framework for analyzingmovement similarities
and invariance might involve the introduction of group theory and the moving frame
method [5, 20]. The use of group theory enables to consider the movement along
a given trajectory by repeatedly applying some incremental transformation on the
end-effector position. Similarly, using one member of a group of transformations
it is possible to transform one motion into another and to compare among differ-
ent differential invariants. Mainly, the generalizations of arc-lengths and curvatures
according to each geometry should remain the same (invariant), when operated on
by a member of this specific group of transformations (seen as a symmetry of the
geometry, which is defined by the group).

Another important variable that characterizes movements is their total duration,
and a significant question in studying motor control is how the brain selects the
durations for different movements. In this context, it is pertinent to describe a second
important behavioral characteristic of human motion, namely global isochrony. The
total durations of human movements sub-linearly depend on movement amplitudes;
when two figural forms, differing only in their spatial scales, are drawn, they have
roughly equal durations [60, 62]. Related temporal regularities also appear in the
production of goal directed movements, such as movements constrained to pass
through via-points. In this case, the durations between the movement’s start and via-
point and between the via-point and end-point are nearly equal, a phenomenon that
was termed local isochrony [60, 62] and was successfully captured by the minimum
jerk model [23].
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3 Mixed Geometry as a Unifying Model of Task Space
Invariance

While the equi-affine description has accounted for the two-thirds power law, it does
not account for global isochrony.Moreover, no theory currently exists explaining how
movement duration is selected, even if it does follow the two-thirds power law.Hence,
to deal with these issues and to suggest a more comprehensive theory, the findings
presented here regarding invariance of motor actions were integrated into a unifying
model, the mixed geometry model [5]. This theory of movement generation is based
on movement invariance with respect to three families of geometric transformations;
the three classical transformation groups of full-affine, equi-affine, and Euclidean
transformations.

Full-affine transformations include translations, rotations, dilatations, stretching
and shearing. They do not preserve angles or distances but preserve only paral-
lelisms of lines and their incidence. Equi-affine transformations are a subgroup of
affine transformations that preserve area, and Euclidean transformations (also called
rigid transformations) include translations and rotations and preserve lengths and
angles. The importance of the three mixed geometries arises from their relations
to the observed features of human motion. The full-affine speed is of importance
because it provides a theoretical prediction of the isochrony principle; full-affine
transformations preserve the affine arc-length of curved segments, and if full-affine
speed is constant then it preserves the movement time across different affine trans-
formations. Hence it predicts global isochrony, namely the maintenance of global
duration [5]. The equi-affine geometry provides a theoretical formulation of the two-
thirds power law by stating that the equi-affine speed of a movement is constant,
which is equivalent to moving according to the two-thirds power law. The constancy
of Euclidean speed is natural because the Euclidean metrics of space have a physical
meaning since they correspond to the accepted notion of distance. The motor system
is not fully invariant to non-Euclidean full-affine and equi-affine transformations,
and it is not categorically invariant to Euclidean transformations since in many tasks
motion time sub-linearly scales with extent. Hence, these three geometries must be
combined through the mixture model, which allows accounting for the observed
phenomena across a broad variety of movements and tasks.

The mixed geometry model states that movement properties are best represented
by a mixture of the three geometries, full-affine, equi-affine, and Euclidean. Given
the strong dependency of movement time and local kinematics on geometry, it is
assumed that within each geometry the geometrical speed is constant. Hence, move-
ment duration is proportional to the canonical invariant parameter within that partic-
ular geometry. We then assume that the time differential arises from the mixture of
the three time differentials, each associated with its own geometry, with some fixed
weights, represented by a trio of weight parameters.

A graphical way to imagine this would be of three different length differentials
which are combined by the motor system using some constant weights to form a
combined new length differential. With a slight abuse of notation, we denote this
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new mixture length by z which represents a mixture of arc lengths arising naturally
from the three transformation groups. For ρ the full-affine arc length, σ the equi-
affine arc-length and s the Euclidean (standard) arc length, z is some mixture of their
values:

dz � dρβ0dσβ1dsβ2

The combination of the β ′s coefficients form a convex sum; their sum is 1 (to be
compatible with the division by the time differential dt) and they are all non-negative.
We will denote the trio β0, β1, β2, corresponding to the full-affine, equi-affine and
Euclidean weight parameters by β̄, termed the mixture trio weights parameter. The
mixed geometry model goes beyond the geometric description and states that the
movement speed corresponding to the time derivative of the mixed geometry length
parameter is proportional to dt is constant. Given that each of the arc-lengths depends
on its own curvature we obtain:

v0 � C0κ
− 1

3 |k1|
v1 � C1κ

− 1
3

v2 � C2

; where the total sum of the three exponents is equal to 1.

where v0 is theEuclidean velocity under constant full-affine speed, v1 is theEuclidean
velocity under constant equi-affine speed and v2 is constant Euclidean velocity. The
Euclidean and equi-affine curvatures are marked by κ and k1, respectively, and the
different Ci -s are the constant geometrical speeds, each associated with its own
geometry while the βi -s are the corresponding weights. Using the expressions above
which define each of the speeds as a function of the specific geometric curvature,
the mathematical expression for the motion speed according to the mixed geometry
is then:

v � v
β0
0 v

β1
1 v

β2
2

where the three non-negative exponents sum to one.

3.1 The Geometric Singularities

The two-thirds power law has one main drawback as a generative model for motion
speed along arbitrary paths. Inflections points, having zero Euclidean curvature κ �
0, are not traceable using the two-thirds power law; the zero curvature yields infinite
speed when passing through an inflection point. Thus, the model is limited to the
generation of movements that only wind in one direction, namely, movements that
may not turn back and wind to the opposite direction (e.g., from the anti-clockwise to
the clockwise directions). Augmenting the mixed geometry model with singularity
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analysis leads to specific mixture weights, β̄, which are required to guarantee finite
nonzero speeds through singularities [5]. To traverse inflection points with κ � 0,
the trio β̄, must satisfy the relation:

β1 � 3β0.

Parabolic points, defined as points of zero equi-affine curvature can be traversed
with any mixing parameter that has no full-affine component:

β0 � 0.

This ability of the mixed geometry model to enable travelling through singu-
larity points suggests a new interpretation of the role these points play in forming
human movement. Rather than being break points of the motor plan, as suggested,
for instance, by Viviani and Cenzato [58], the singularity points are best considered
as some sort of via-points; points that the system must travel through with specific
constraints on its parameters [5, 39], but without stopping nor re-planning. This type
of via-points, however, assumes a different constraint than the one assumed at via-
points by the minimum jerk model. Such constraints go hand in hand with the idea
that continuity is guaranteed when moving through some intermediate points and
that the segmented appearance of movements may not necessarily imply segmented
control [52]. To summarise, the geometric singularities discussed here play a dif-
ferent role compared to cusps and movement end-points, when it comes to human
motor control.

3.2 Motion Primitives Predicted by the Mixture
of Geometries Model

The two candidate geometric movement primitives discussed so far were straight
and parabolic segments [20, 27, 49]. Movement primitives, however, may have addi-
tional predefined geometric shapes, which might be accompanied by a kinematic
rule prescribing the speed of movement along these geometric paths.

Straight movements are known to be the default mode of executing point-to-point
movements. The nearly straight paths are traveled with a bell shaped speed profile,
which could result from jerkminimization [23]. Thus, they serve as natural kinematic
movement primitives. Interestingly, some curved movements, e.g., in target switch-
ing tasks, may be generated from the superposition of straight kinematic motion
primitives [21, 28]. Hence, rather than having a concatenation of one stroke after the
other, a second movement primitive could be executed while the first one has not yet
been completed.

Parabolas, which are equi-affine geodesics [27], are the next set of possible geo-
metric movement primitives. Affine transformations can be used to generate any
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parabolic stroke from the canonical parabolic template, y � x2, and in order to
compactly form a complicated path, a few parabolic strokes can be concatenated.
The kinematically defined speed along a parabola reveals an interesting principle.
Handzel and Flash [20, 26, 27] have shown that moving at a constant equi-affine
speed is equivalent to obeying the two-thirds power law. Following this observation,
Polyakov et al. [47, 48] found that the paths of trajectories that obey the two-thirds
power law, minimize jerk, and are invariant under equi-affine transformations are
parabolic paths.

Interestingly, analysis of monkeys’ well-practiced scribbling trajectories has
revealed that they are well approximated by long parabolic strokes. Unsupervised
segmentation of simultaneously recorded multiple neuron activities using a Hidden
Markov model yielded discrete states which when projected on the movement data
gave distinct parabolic elements [48, 49]. Moreover, based on the analysis of firing
rates of motor cortical neuronal activities recorded from monkeys it was found that
the firing of part of the cells is better tuned to equi-affine rather than to Euclidean
speed. Thus, the evidence from neurophysiological studies supported the suggestion
that parabolas are promising candidates for serving as kinematic motor primitives.

3.3 Mixture of Geometries for Describing Human Behavior

The works of Bennequin et al. [5] and Fuchs [24] included a comparison of the
predictions of the mixed geometry model to measured human drawing and walk-
ing trajectories, including movements along several predesignated paths. The human
paths were segmented according to the kinematic fit given by the trio of mixed geom-
etry parameters. Bennequin et al. [5] compared the human drawings and locomotion
trajectories for several shapes against the kinematic predictions of the mixed geom-
etry model. The end-effector trajectories of these movements were segmented by
fitting within each segment three constant weights; β0, β1, and β2.

These weights represent the mixture of geometries, i.e. the involvement of the
full-affine, equi-affine and Euclidean geometries in the produced kinematics (see
Introduction andBennequin et al. [5]. Theweights, thatwere assumed to be piecewise
constant, were derived for various figural forms (cloverleaf, limaçon and lemniscate)
and modalities (drawing, locomotion) and then compared according to the distribu-
tion of the constant weights (the β̄ values. Figure 1 depicts the results of fitting a
mixture model and the segments that result, based on the notion that within each seg-
ment we have constant β values. Figure 1 additionally depicts comparisons between
predicted and measured paths and velocity profiles for both drawing (left panel)
and locomotion (right panel) trajectories. Figure 2 displays the β values derived for
the drawing and locomotion movements. We also present the distribution of the β

values derived for the different shapes and tasks (drawing, locomotion). These are
presented by the points in the triangles, which are color-coded based on the number
of trials optimally fitted by the respective values. A detailed description can be found
in Bennequin et al. [5].
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Fig. 2 Representation of the values of the threeβ weights during the different trials. The distribution
of the β weights aggregated over all trials of the same figural form. A point within the triangle gives
the values of the β0, β1 and β2 weight parameters where β0 +β1 +β2 � 1. The values of β2 weight
function for such a point are equal to the area delineated by the small triangle created by passing
lines between this specific point and the two bottom vertices. The values of β1 are equal to the area
delineated by the small triangle created by passing lines between this specific point and the left
bottom and top vertices. The values of the β0 weight function are equal to the area delineated by
the small triangle created be passing lines between this point and the right bottom and top vertices.
For example, a point on the triangle’s edge marked by β1 is a point where of β1 � 1. For a point
located at the top vertex, β2 � 1 and β0 � β1 � 0. In the center of the triangle β0 � β1 � β2 � 1

3 .
The color of any point within the large triangle indicates the number of times that that specific
combination of β weight values was found. A white point shows a combination that did not appear
in any of the trials. A dark blue point represents a combination occurring many times. Panel (A)
contains all the trials of the drawing of cloverleaves. Panel (B) contains all the trials of the drawing
of oblate limaçon. Panel (C) contains all the trials of the drawing of asymmetric lemniscate. Panel
(D) contains all the trials of the locomotion of cloverleaves. Panel (E) contains all the trials of the
locomotion of oblate limaçon. Panel (F) contains all the trials of the locomotion of asymmetric
lemniscate

3.4 The Geometrical Redundancy in the Mixed Geometry
Model

A reexamination of the speed profiles generated by different geometrical mixtures
revealed that the mixed geometry model exhibits statistical redundancies [39]; for
various paths, it was found that different values of β̄ trios yield highly similar speed
profiles.

For the cloverleaf template, a set of β̄ trios was found to provide equally good
matches (R2 > 0.98) between the mixed geometry model predictions and the exper-
imental data. All these β̄ trios, which were statistically indistinguishable, obeyed
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Fig. 3 Redundancy of the mixed geometry model for cloverleafs and limaçons. For each template,
the mixed geometry triangle in the top-left panel is colored according to the statistical equivalence
of parametrizations of the limaçon, the template is drawn on the top right panel and the bottom
panel depicts the different speed profiles that match the different sets of speed profiles. A set of
different possible mixtures following a linear relation between β0 and β1 yield highly similar results

linear relations between the β0 and β1 values, as depicted in Fig. 3. The redundancy
map appearing in the upper left panel was calculated by using the following algo-
rithm. The parameter space was quantized by obtaining a discrete set of possible β

values that represent distinct, statistically distinguishable speed profiles. The speed
profile corresponding to β1 � 1 (equi-affine parametrization, or the two-third power
law), was calculated and was referred to as the representative profile of the first
equivalence group of parameters. Then, all β̄ weight trios whose speed profiles were
statistically indistinguishable from this representative profileweremarked as belong-
ing to the first group. A representative for the next equivalence group was chosen as
the one giving the best agreement, in terms of R2, with the previous representative.
The process was iterated until all β̄ weights were examined. Each of the groups for
an analytic cloverleaf and the analytic limaçon are shown in Fig. 3, using different
patches of color for different equivalent sets.

Thus, the distribution of values appearing in Fig. 2 (taken from [5]) for cloverleaf
drawings can be explained by the redundancy map (Fig. 3). We suggest that the
control procedure must be invariant with respect to the profiles belonging to the same
equivalence class. In particular, the profiles represented in Fig. 3 are all similar from
the kinematic output point of view. This suggests that humans may select a straight
line in the β̄ parameters space rather than a unique point. To elucidate whether the
redundancy also appears for the real data, the above statistical grouping was also
carried out on the actual measured paths. The same statistical tendency as detected
for the analytical curves was also seen for the human data, as is shown in Fig. 4.
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Fig. 4 The variance of the human data presented in the rightmost panel for the cloverleaf is mostly
explained by one equivalence set in the second panel from right. Similar results are shown for the
limaçon data (the two next panels) which suggests that the different segments in the human data
employed mixed geometry weights that are statistically indistinguishable

3.5 Analysis of the Jerk Cost of Mixed Geometry Profiles

While in the above section, we showed that different geometrical mixtures can give
rise to required paths; human data show that not all possible β̄ mixtures within the
triangle are used. Notice, however that in the above analysis we did not demand of
the resulting velocity profiles to match those observed in human movements. We
have shown that when the mixture of geometries model was used to account for the
human data, only a subset of possible β̄ trios was selected. Is it possible that the
specific mixtures of geometries being generated are those that optimize behavior?

We inspected which mixtures of geometric speeds yield optimal speed profiles
for each predefined movement path [24]. For each geometrical shape, we looked for
the unique best geometric mixture describing a full cycle of movement, that yields
minimal normalized jerk JN or normalized acceleration, AN . We looked for a β̄

trio that minimizes these costs, but without allowing it to have different segments
within a single cycle (one trio accounts for the mixture along the entire path). For
this purpose, we calculated JN for each constant β̄ trio, for a dense set of β̄ trios;
selecting βi ∈ {0, 0.01, 0.02, , ..0.99, 1}. The calculations were made for eight ana-
lytically described shapes: one ellipse with eccentricity of 0.97, one cloverleaf, three
lemniscates with loop length ratios of 1: 1, 1: 2 and 1: 3 and three limac ons with
loop length ratios 1: 3, 1: 5, and 1: 7. We examined the predictions of jerk minimiza-
tion in explaining the observed parameters of the mixed geometry model. For each
movement template we studied what β̄ trio produces the minimal normalized jerk
JN .

For the ellipse, the JN minimizing geometrical mixtures had β2 � 0 which means
that the contribution of the Euclidean geometry had to vanish for this trajectory.
Additionally, along an ellipse, the equi-affine curvature is constant. Hence, both
full-affine and equi-affine parameterizations result in a v � γ κ− 1

3 power law speed
profile, and so is the speed profile of their mixture. Hence, analytically the value of
the normalized jerk, JN , is identical for all β̄ with β2 � 0. This case replicates the
theoretical predictions of Richardson and Flash [51].

For the lemniscates which have two inflection points and four parabolic points,
the set of candidate β̄ trios for JN minimization is restricted, because, as was shown
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above, a parabolic point must have a mixture with β0 � 0 and an inflection point
must have a mixture with β1 � 3β0 [5]. Therefore, we obtain only one feasible β̄ trio
for the entire path (i.e., without segmentation); constant Euclidean velocity, β2 � 1.

For the cloverleaf, we found that the optimal geometrical mixture is a linear
combination of the geometries, where β2 � 0.39 − 0.5β1 in agreement with the
prediction of linear combinations from the above statistical analysis of the mixed
geometry predictions byMeirovitch [39]. For the limaçon, we found that the optimal
geometrical mixture is another linear relation.

These results show that the geometric mixtures yielding the minimal normalized
jerk also yield a good description of the geometric mixtures that subjects use for
drawing shapes, as long as there are no singularities in the template path. The latter
case is likely to require a segmentation of the path into segments according to those
singularities.

3.6 Human Data Analysis: Jerk Costs of Movements Arising
from Different Geometrical Mixtures

Do the jerk minimizing mixtures match the mixtures selected by the human motor
system? For each movement template we looked for the mixture parameter trio β̄

that minimizes the jerk. The inferred mixtures of geometries derived for different
trajectories are shown in Fig. 5 presented in barycentric coordinates. Each panel
shows themixture β̄ of the different geometries using barycenter positive coordinates
β0, β1, β2 that produce the minimal normalized jerk JN for the measured human
movement paths. For all movement templates except for the lemniscates, the jerk
minimizing parameterization matched human data in drawing them. For the ellipse,
the two-thirds power law behavior predicted by jerk minimization is well known to
be a good representation of human movement. For the cloverleaf and limaçon the JN
values of subjects’ drawings again resembled those obtained from jerkminimization.
For the lemniscates, the constant Euclidean speed profile differs significantly from
the human speed profiles. This suggests that lemniscates are better represented using
some segmentation allowing a change in the β̄ parameters between consecutive
segments. Together, these results show that human movements minimize jerk and
that the β̄ trios, inferred from jerk minimization, are quite similar to those derived
from the mixed geometry model, and are showing very similar linear trends between
the values of the different β parameters to those observed through the statistical
redundancy analysis presented above.
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Fig. 5 The triangles show the trios of β parameters obtained from jerk minimization. The color of
each point gives the value of the normalized jerk of the velocity profile created by moving along
the analytic curve with the geometrical combination that the point represents. The darker a point,
the lower the jerk. Red points are those with the lowest jerk

4 Affine Orbits as Geometric Motion Primitives

The suggestion that movements are stereotypical and are constructed through a
sequential composition of simple building blocks is a fundamental idea in the study
of motor control [22, 23, 35, 43]. The very nature of these building blocks is under
debate. Kinematic motion primitives, spatio-temporal building blocks that specify
an end-effector movement in time and space, are one possibility of such components.
The manner in which the motor system specifies and composes kinematic motion
primitives is currently being investigated.

FollowingMeirovitch [39], we suggest a family of prototypic geometric templates
that may serve as motion primitives: affine orbits, which we use in the representation
and segmentation of complex human end-effector trajectories. We first describe the
properties of affine orbits, then their parameterizations, which provide maximally
smooth trajectories, and finally present an algorithm for the segmentation of recorded
movement data into geometric affine orbit primitives.
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4.1 The Definition and Classification of Affine Orbits

Following Meirovitch [39], we now examine affine orbits, defined as the Lie 1-
parameter group orbits of the affine group acting on Euclidean space, Thus each
orbit corresponds to a 1-dimensional vector space of the of 2 × 2 sized matrices,
with a single generating matrix

A ∈ gl2(R),

where A �
[
a b
c d

]
is a constant matrix, termed the generator matrix.

In general, the Lie algebra of a Lie sub-group of the group of invertible matrices
is its tangent space at the Identity matrix; if the sub-group is given by a set of
equations, its Lie algebra is defined by taking the common zeros of the differential
of these equations. The subspaces V of gl2(R) that are Lie algebras of some Lie
sub-group are characterized by the fact that the bracket XY − Y X of any pair of
elements X,Y of V also belongs to V . Then, in particular, any sub-vector space of
dimension 1 is the Lie algebra of a sub-group, because in this case, X and Y are
proportional and the bracket is zero. This subgroup is obtained by exponentiation.

Thus, the resulting trajectory of the affine orbit, r (ζ ) is represented by:

r (ζ ) � exp (Aζ )p0,

where p0 is some fixed point in Euclidean space.
The parameter ζ is the orbit’s natural arc-length parameter that is specified by

the selection of the matrix A. We next examine the relation between this parameter
and the geometric canonical parameter and other geometric properties of the curve.
The shape of each orbit is dependent on the structure of its generating matrix A. The
relation between the structure of A being the group generator and the type of orbit
is the following. The Euclidean orbits consist of points, straight lines and circles. A
point is the trivial orbit, which is associated with the matrix A being a matrix with 0
values for all its entries (and then its exponent is the identity element of the respective
Lie group). Straight lines can be generated by any matrix A with real and identical
eigenvalues. Circles are generated by any skew-symmetric matrix A.

Equi-affine orbits generalize the Euclidean ones and include the conic sections:
ellipses, hyperboles and parabolas. Ellipses are generated by any matrix A for which
trace(A) � 0 and det(A) > 0. Hyperboles are generated by any matrix A for which
trace (A) � 0 and det (A) < 0. Parabolas are characterized by an equation defining
their eigenvalues; α � 0 for α defined as: α � det(A)− 2

9 trace
2(A). The parameter

α is a useful shorthand, and we term it the parabolicity of the affine orbit.
Full-affine orbits are best sorted based on the value of the eigenvalues ofA, denoted

byλ1, λ2. For real eigenvalues, if thematrix is diagonalizable, either both eigenvalues
are the same, and the orbit is a straight line or if the eigenvalues are real and different
then the orbit can be represented by y � xλ, in some x, y coordinate system which
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is achieved by an affine transformation of the canonical coordinate frame. The latter
type of orbit we call here amonomial, although this does not precisely fit this function
type. If the eigenvalues are real and the matrix is not diagonalizable, then both
eigenvalues are equal, λ1 � λ2 and up to a similarity transformation the matrix A
is upper triangular with nonzeros above the diagonal). Then the geometric form of
the orbit is exceptional; y � x log(x) for some coordinate frame that results from an
affine transformation of the canonical frame. Last, if the two eigenvalues are not real,
then they are conjugate and the orbit is an elliptic logarithmic spiral (affine transform
of the classical logarithmic spiral).

The different orbits derived in the manner described above are the ones having
constant curvatures in their respective geometries; straight lines and circles are the
orbits of the Euclidean geometry having constant Euclidean curvatures. Conic sec-
tions (parabolas, hyperbolas and ellipses) are the orbits of the equi-affine geometry
and have constant equi-affine curvatures, which are 0, negative and positive for these
three types of conic sections, respectively (see [20]). All affine orbits have a constant
full-affine curvature (for a definition see [5]). The differential properties of an orbit,
defined by the geometry, are always continuous functions of the canonical parameter,
and on all the orbit’s points, the geometric structure is the same up to a transformation
by a member of the group.

Olver et al. [44] and Calabi et al. [13] have shown the usefulness of fundamental
osculating curves of a given path. They noted that the point-wise geometric properties
of the target curve are captured by the respective properties of the osculating one.

Therefore, in each of these geometries: Euclidean, equi-affine and affine, studying
the osculating orbits of a general path provides us with the invariants describing the
path for the associated geometry.

5 The Geometric Properties of Affine Orbits

5.1 Geometric Curvatures Along Affine Orbits

The affine orbits, being specific paths, enable to represent movement geometry and
kinematics in a somewhat simplified form. Their geometric properties, represented
by their curvatures, take thus the following form.

The Euclidean, equi-affine, and full-affine curvatures along the orbit at some point
p on the orbit are represented by:

κ �
∣∣Ap × A2 p

∣∣
|Ap|3 , k1 � α∣∣Ap × A2 p

∣∣ 2
3

, k0 � ∓2

3

trace(A)

|α| 1
2

,

where κ , k1 and k0 are the Euclidean, equi-affine and full-affine curvatures, respec-
tively (the parabolicity of the affine orbit, α, was defined in the previous section).
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The relation between the full-affine parameter of the orbit ρ and the parameter of the
orbit ζ is ρ � ζ|α|1/2.

An exception is the case of a parabola, for which the full-affine curvature is not
defined. It can be traversed with equi-affine speed but not with full-affine speed.

5.2 Geometric Speeds Along Affine Orbits

The equi-affine speed along an affine orbit (see definition in Sect. “4.1”) is

σ̇ � exp

(
trace(A)

ζ

3

)
ζ̇
∣∣Ap0 × A2 p0

∣∣1/3.

If trace(A) � 0 then the parameter ζ is defining a constant equi-affine speed.
Otherwise, the equi-affine speed along an orbit is dσ/dt � 0. Hence, a constant
equi-affine speed along the affine orbit is satisfied by the parameter.

ζ � C1 ln|Ap0 × A2p0|(− 1
3 )σ + C2.

Here C1 is a geometric constant depending on A and C2 is an arbitrary integration
constant.

The parameterization of an affine orbit (as in Sect. “4.1”) with a mixed geometry
parameter z, defined for a given mixture trio β̄ is:

dz � C(β̄)aβ1ebβ1ζ |exp(Aζ )Ap0|β2αβ0/2dζ.

Here C(β̄) is a constant depending on the mixture trio β̄, and α is the parabolicity
constant defined in the previous section, a � ∣∣Ap0 × A2 p0

∣∣1/3, and b � 1
3 trace(A).

5.3 Mixed Geometry Parameterizations of Affine Orbits
that Minimize Jerk

We now search for examples for how, using a constant mixture of geometries, one
may generate speed profiles and trajectories that are extrema of jerk optimization.
We show this for affine orbits.

Bright [12] and Polyakov [47] found analytic expressions for paths along which,
when themovement has a constant equi-affine speed, it also yields aminimal jerk cost.
Polyakov found that traversing a parabola with constant equi-affine speed yields a
minimal jerk trajectory. Bright found a specific spiral for which constant equi-affine
speed yields minimal jerk and other spirals for which constant Euclidean or full-
affine speed profiles yield minimal jerk trajectories. Because Euclidean, equi-affine
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and full-affine parameterizations are special cases of the mixed geometry model, our
results generalize these previous findings.

5.3.1 Monomials with a Mixed Geometry Parameterization
that Minimizes Jerk

We examine monomials, generally defined as affine transformations of the standard
Cartesian equation Y n � Xm , for some constant integer exponents n and m. This
definition includes as specific examples all parabolic and hyperbolic conic sections.
We examine a specific set of monomials, whose generating matrix A is:

A �
[
1 b
0 d

]
,

where b and d are any real numbers.
We provide a set of mixed geometry parameterizations of monomials that are

candidates for yielding jerk extrema. For some finite set of values of the entry d,
a mixed geometry solution that minimizes the jerk cost exists. Solutions for the
jerk minimizing mixed geometry parameters impose that d satisfies d � m, n ∈
{1, . . . , 5}. These correspond, up to affine transformations, to the free minimum
jerk solutions of Flash and Hogan [23]. Y n � Xm , where n,m ∈ {1, . . . , 5}. Each
specific solution has a mixed geometry parameterization β̄ that is a candidate for
optimizing jerk along it. As a particular case, this derivation predicts that parabolas
should be traversed with equi-affine parameterization in order to minimize jerk. In
all of the mixtures derived above, there is no Euclidean contribution (so β2 � 0)
and the speed profiles are represented by a composition of equi-affine and full-affine
parametrizations.

5.3.2 Non-elliptic Logarithmic Spirals, General Mixed Geometry
Solutions

If the generator matrix is of the form:

A �
[

1 b
−b 1

]
,

where b is any real number. Then, any mixture parameter β̄, (depending on the value
of b, the inverse of the orbit rate-of-growth parameter ) satisfying:
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β1 +
2

3
β2 � 1

160
(117 +

√
3C2 +

(
3858 + 36000b2 − 120C1 − 226800

C1
b2

−8760

C1
− 96300

C1
b4 + 378000

√
3

C2
b2 + 374222

√
3

C2

)1/2

),

where C1 and C2 are constants depending on the parameter b in the above matrix
representation of the generating matrix A (defined in [39]) and additionally 1 ≥ βi ≥
0 for all i, is a candidate parametrization for jerk minimization along an affine orbit.

5.3.3 A Mixed Geometry Solution that Is a Candidate on All
Non-elliptic Orbits

We now seek a specific mixture parameter that is valid for each non-elliptic orbit that
has a generating matrix of the form

A �
[

a b
−b a

]
,

where a and b are any real numbers.
The specific trio β̄, defined by β0 � β1 � 1

2 , is a mixed geometry parameter
which guarantees that the first variation of the minimum jerk cost is zero.

5.4 Data Segmentation with Osculating Affine Orbits

We suggest that affine orbits are plausible natural building blocks for the description
of trajectories of human movements. We describe here the segmentation algorithm
developed by Meirovitch [39] that allows trajectory segmentation using the affine
invariant local geometric properties of the trajectory. We examine a set of candidate
affine orbits, truncated to form possible movement primitives, whose respective dis-
tances from the trajectory are calculated. An optimality criterion is used to select
subsets of these primitives that reliably represent the parameterised trajectories [21].
Figure 6 depicts an example of this segmentation for the original and an affine trans-
formed lemniscates.

The following description assumes a sampled trajectory, r (n) ∈ R2, n �
1, . . . , N .

For each data point i:

1. We calculate ψi (v), the osculating affine orbit.
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Fig. 6 In the left panel, the osculating affine orbits were calculated for every 20th point on one
lemniscate, The osculating curves were restricted by a largeHausdorff threshold. Since thismetric is
not affine invariant the restricted osculating orbit of L1 and L2 differ according to their extent. Each
osculation point divided the osculating curve into two branches before and after the point, referred
to as “left” (blue) and “right” (red) branches. In the right panel, the osculating orbits were calculated
and subsequently restricted using a relatively small Hausdorff distance on a scaled lemniscate

2. We then find the maximal boundaries v1 < v2 such that the one-sided Housdorff
distance between the osculating orbit and the curve (taking into account only
the distances of points on the orbit from the sampled trajectory) is bounded by a
small number ε0

Housdor f f
({ψi (v)}v2v�v1

, r (n)Nn�1

)
< ε0.

3. We then project the boundaries ψi (v1) and ψi (v2) on the data points (n1), r (n2).
4. Next, we store the value Si � (n1, n2) (overall we will repeat and collect Si for

each of the points on the sampled trajectory r (n)).
5. We then use dynamic programming to choose a subset of {Si }Ni�1 with segments

that are compatible with each other (allowing no overlaps of the segments Si ),
while maximizing the number of samples in each Si [37].

The segmentation process is affine invariant, in the sense that the osculating orbits
matching an affine transformation of a path are the affine transformations of the
osculating orbits matching the original path. This is true except for a minute detail
that the trimming of the orbits is based on Euclidean Hausdorff distance which is not
affine invariant. Based, however, on numerical simulations, we could conclude that
the affine invariance seems to hold, and the segmentation of the affine transformed
lemniscate is the affine transformation of the segments of the original lemniscate
(Fig. 7).
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Fig. 7 An optimal segmentation method was adapted and used to select a subset of osculating
segments, where for each osculation point three segments were generated according to “left”,
“right” and “left-right” branches of the osculating curve, where “left-right” included both the “left”
and “right” sides of the osculating orbit (see Fig. 6). Triangles, diamonds and squares mark the
osculation points in correspondence to whether the selected segments were “left”, “right” or “left-
right”, respectively. The similarity between the segmentations in the two leminscates with respect
to the geometry stems from the affine invariance of the osculating orbit. It should be noted that the
trimming according to the Hausdorff distance is not an affine invariant, but still under the threshold
of the algorithm the difference seems negligible. The colors of the segments are given for the sake
of illustration

6 Discussion

In this chapter, we discussed how the concepts of invariance and optimization play
different yet complementary roles in the description of how the human motor system
plans movement. We examined the mixed geometry model in theory and practice,
showing that for some templates a redundancy appears; entirely different mixture
parameters produce highly similar speed profiles. Following the results of the mixed
geometrymodel for drawingdata,we considered the theoretical aspects of the specific
selection of geometric mixtures. First, we noticed that some conditions constrain
the space of possible mixtures; singularity points dictate specific mixtures. Next,
we reexamined the practical implications of the variety of geometric mixtures. For
specific templates, we see that not all mixtures are distinguishable from each other
and that different mixtures may yield a similar behavior. We examined the idea that
the mixture of geometries may be selected to account for an optimality criterion.
Testing various templates reveals that humans select mixtures of geometries that
minimize jerk.

We discussed a new theory of motion primitives based on the composition of the
classical Euclidean, equi-affine and full-affine geometries [39]. The shapes of these
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primitives are orbits of 1-parameter subgroups acting on the points in the task space.
The non-trivial orbits are straight lines and circles (Euclidean geometry), parabo-
las, ellipses and hyperbolas (equi-affine geometry), and elliptic logarithmic spirals
and monomials (full-affine geometry). After examining the geometric properties and
descriptions of the affine orbits, we provide examples of mixed geometry parameter-
izations of some of these affine orbits that may allow optimal movement along them
with respect to jerk minimization.

6.1 Affine Orbits as Motion Primitives

Representing complex movements as a composition of affine orbits that serve as
geometrical primitives, is plausible and useful for several reasons.

First, from a theoretical point of view, the geometrical simplicity of orbits makes
them attractive candidates for serving as primitives. The symmetry properties of
orbits are not only the Euclidean ones obeyed by circles and straight lines, but addi-
tionally the non-Euclidean symmetries, that proved to be highly useful in describing
the visual properties of shapes in computer vision research [13, 17, 44]. The orbits
transform among themselves by specific transformations. Affine mappings permute
the set of affine orbits. Any two points along a given orbit can be affinely mapped one
upon the other such that the orbit maps to itself. The affine orbits generalize previ-
ously suggested movement primitives; straight movement primitives and parabolic
movement primitives [23, 48]. Note that a positive direct test of affine invariance
reflected in the duration of hand drawings was presented in Pham and Bennequin
[45].

Second, we demonstrated some simple mixed geometry parameterizations of
affine orbits that may satisfy constrained jerk minimization. This is a generaliza-
tion of the fact that obeying the two-thirds power law by moving with a constant
equi-affine speed along parabolas, automatically minimizes the jerk of the move-
ment [20, 27]. Thus some subsets of geometric primitives are easily assigned with
kinematics that are optimal. Additionally, for each affine orbit that is a circular log-
arithmic spiral, there exists a special mixture of geometries that may minimize the
jerk along that orbit.

Third, a movement representation using affine orbits is compact, in the sense that
full-affine invariants such as full-affine curvature and arc-length are preserved under
affine transformations. The same movement plan, a canonical orbit, can yield differ-
ent actual paths, according to the affine mapping used in transforming the canonical
orbit. Once the shape of primitives is decided upon, the manner of segmenting a
movement and extracting these primitives is important. The segmentation algorithm
we suggested identifies locally osculating affine orbits and temporally concatenates
them as building blocks. The identified set of primitives describing a complex move-
ment is inherently affine invariant. Not only is each primitive by itself affine invariant,
but more importantly, a set of concatenated affine orbits describing a path is mapped
to a set of affine orbits describing the mapped path. This occurs because osculating
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affine orbits are mapped to other osculating orbits by affine transformations, unlike
best fitting primitives, which are not necessarily mapped to best fitting primitives
under affine transformations.

6.2 The Nature of Kinematic Motion Primitives

We now speculate regarding the nature of the motion primitives used by the human
motor system.

First, the relation between timing and geometry is unclear. Does the primitive
entail a kinematic pattern, or is it just dictating the geometric form? In case that the
primitive’s description provides only the geometric form, it could be that the timing
ofmotion is dictated at another level, and is possibly selected for the entire composite
movement rather than for its primitive components.

Second, the variability of neural patterns and actual movement execution may
prove to be an inherent part, dictated by the motion primitives being selected. Per-
haps a noisy statistical representation is an essential part of motor execution to the
extent that it makes little sense to debate regarding the mean behavior without pay-
ing attention to the statistical properties of motor noise. Recently, new statistical
frameworks were developed (e.g. [50]) allowing to determine systematic patterns
and differences across experimental conditions, participants and repetitions. Such
methods are important, since unlike in robotic systems, the physiology of biological
systems generates highly variable outputs due to inherent noise in biological sensing
of the body and the environment and in the neural commands andmuscles’ activation
patterns underlying motor execution.

Third, a question arises whether human movements are discrete or continuous,
i.e. whether they are planned as a whole or by composing together several segments.
The notion of a primitive by itself is suggestive of the existence of a set of discrete
components that are performed one after the other, or in the case of co-articulation,
each starting after the previous one has begun but not necessarily been completed.

Fourth, even if the basic primitives indeed are centrally represented, the man-
ner according to which they are generated may make a large difference. As the
human motor system is capable of learning, it is possible that new motion primitives
arise when a movement that was previously generated as a concatenation of simpler
primitives becomes a single new motion primitive [11, 53]. A process where new
primitives emerge out of preexisting ones may also be accompanied by primitive
refinement according to some optimality criteria. Thus, a set of previous primitives,
first concatenated over time and then adjusted to bemolded together and smooth,may
form a new motion primitive. This process is interesting when examining movement
kinematics but even more so when examining the underlying neural processes.
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