
Mechanism Design: A New Algorithmic

Framework

by

Yang Cai

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 22, 2013

Certified by. .
Constantinos Daskalakis

Associate Professor of EECS
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Students

Mechanism Design: A New Algorithmic Framework

by

Yang Cai

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

A modern engineering system, e.g. the Internet, faces challenges from both the strate-
gic behavior of its self-interested participants and the inherent computational in-
tractability of large systems. Responding to this challenge, a new field, Algorithmic
Mechanism Design, has emerged. One of the most fundamental problems in this field
is How to optimize revenue in an auction?

In his seminal paper [Mye81], Myerson gives a partial solution to this problem
by providing a revenue-optimal auction for a seller who is looking to sell a single
item to multiple bidders. Extending this auction to simultaneously selling multiple
heterogeneous items has been one of the central open problems in Mathematical
Economics.

We provide such an extension that is also computationally efficient. Our solution
proposes a novel framework for mechanism design by reducing mechanism design
problems (where one optimizes an objective function on“rational inputs”) to algorithm
design problems (where one optimizes an objective function on“honest inputs”). Our
reduction is generic and provides a framework for many other mechanism design
problems.

Thesis Supervisor: Constantinos Daskalakis
Title: Associate Professor of EECS

Acknowledgments

First of all, I would like to thank my advisor, Costis Daskalakis, for all his guidance

and encouragement. My whole Ph.D. has been a wonderful experience largely because

of Costis. He has made himself available over these past four years whenever I want

to have a discussion. I want to thank him for all the wise advices he has given to me

on research, career and life. His enthusiasm and his taste in research problems have

deeply influenced me and helped me to develop as a better researcher.

I also want to thank the theory faculty at MIT for the friendly, collaborative and

stimulating atmosphere they have created for the group. In particular, I want to

express my gratitude to Silvio Micali and Andrew Lo for serving on my dissertation

committee and all their invaluable advices beyond this thesis.

I feel in debt to all my co-authors: Costis, Gagan Aggarwal, Zhiyi Huang, Fan

Long, Haifeng Luo, Mohammad Mahdian, Aranyak Mehta, George Pierrakos, Bo

Waggoner, Xi Wang, Matt Weinberg and Ting Zhang. Thanks for all the things they

taught me! Special thanks to Matt for being my closest collaborator. I deeply enjoyed

the days and nights we spent thinking, writing papers and rehearsing talks together!

Without him, all the results in this thesis might be impossible.

I want to express my sincere thanks to Yuval Peres at Microsoft Research Red-

mond, as well as Gagan Aggarwal and Aranyak Mehta at Google Mountain View, for

two very enjoyable summer internship. These experiences have greatly broadened my

research horizon.

Thanks to all my friends at MIT for making the last five years wonderful: Pablo

Azar, Haogang Chen, Jing Chen, Alan Deckelbaum, Shuo Deng, Mohsen Ghaf-

fari, Bernhard Haeupler, Tao Lei, Huijia Lin, Fan Long, Yuan Luo, Yandong Mao,

Krzysztof Onak, Yue Pan, Debmalya Panigrahi, Christoz Tzamos, Xi Wang, Matt

Weinberg, Ning Xie, Morteza Zadimoghaddam, Zeyuan Zhu and everyone.

I want to thank Yun for the unbelievable amount of love and support she has given

to me. Research can be frustrating, and stress is unavoidable from time to time. I am

deeply grateful for her tolerance of me during my depressing times of my graduate

study.

Last but not least, I am immensely grateful to my parents. I want to thank them

the most for always being supportive for all my choices, and offering wise advices

and selfless helps through my toughest time. I have no way to thank them for their

priceless love, care, inspiration, patience, and encouragement, but to dedicate this

thesis to them.

Contents

1 Introduction 11

1.1 Algorithmic Mechanism Design . 11

1.2 Fundamental Objectives . 13

1.3 Overview of Main Result and Techniques 16

1.4 Thesis Organization . 20

2 Background 23

2.1 Basic Concepts from Mechanism Design 23

2.2 The Optimal Mechanism Design Problem 25

2.3 Black-box Reduction from Revenue to Welfare 29

2.4 Related Work . 31

2.4.1 Structural Results . 31

2.4.2 Algorithmic Results . 33

2.4.3 Black-box Reduction in Mechanism Design 33

2.5 Preliminaries and notation . 34

2.6 Details from Preliminaries . 36

2.7 Input Model . 39

2.8 A Geometric Algorithm . 40

3 Feasibility of Single-Item Reduced Forms 45

3.1 Overview of Our Results . 46

3.2 Single-item, I.I.D. Bidders, Bidder-Symmetric Reduced Forms 52

3.3 Single-item, Independent Bidders . 61

7

3.4 Implementation of Single-item Reduced Forms via Hierarchical Mech-

anisms . 72

4 Feasibility of General Reduced Forms 78

4.1 Characterization of General Feasible Reduced Forms 79

4.2 Algorithms for Reduced Forms . 86

4.2.1 Separation Oracle . 86

4.2.2 Decomposition Algorithm via a Corner Oracle 88

4.3 Efficient Implementation of Algorithms for Reduced Forms 90

4.3.1 Exact Implementation . 90

4.3.2 Approximate Implementation 91

4.4 Details for Approximate Implementation 94

4.4.1 An Approximate Polytope . 94

4.4.2 Putting Everything Together 102

4.5 Characterization for Correlated Biddders 104

5 Revenue-Optimal Mechanisms 109

5.1 Revenue-Maximizing Mechanisms . 110

5.2 Discussion and Proofs from Section 5.1 112

5.3 Accommodating Budget Constraints 122

6 Approximately Optimal Mechanisms 124

6.1 Overview of Our Results . 124

6.1.1 Approach and Techniques. 127

6.1.2 Previous Work . 129

6.2 Preliminaries for Weird Separation Oracle 132

6.3 The Weird Separation Oracle (WSO) 133

6.3.1 Three Convex Regions. 133

6.3.2 WSO. 134

6.4 Approximately Maximizing Revenue using WSO 138

6.5 Runtime . 143

8

6.6 Formal Theorem Statements . 147

6.7 Extensions of Theorem 20 . 148

6.8 Omitted Proofs from Section 6.5 . 149

6.8.1 The Runtime of WSO . 149

6.8.2 Computing Reduced Forms of (Randomized) Allocation Rules. 152

6.8.3 The Runtime of the Revenue-Maximizing LP 154

6.9 Additive Dimension . 155

6.9.1 d-minded Combinatorial Auctions 156

6.9.2 Combinatorial Auctions with Symmetric Bidders. 157

7 Conclusion and Open Problems 159

A Omitted Details from Chapter 4 163

A.1 Omitted Details from Section 4.2 . 163

A.2 Proofs Omitted From Section 4.3.1: Exact Implementation 165

9

List of Figures

4-1 A Linear Program to minimize g~π(~w). 88

5-1 A linear programming formulation for MDMDP. 113

5-2 A linear programming formulation for MDMDP that accommodates

budget constraints. 122

6-1 A “weird” separation oracle. 135

10

Chapter 1

Introduction

Traditionally, engineering systems are centrally designed, and their various parts co-

operate with each other to produce the desired outcome (think of the Integrated

Circuit, for example). However, in modern engineering applications, systems have

started to deviate from this paradigm. One of the most well-known examples is the

Internet. It is not centrally designed, and its various components do not necessarily

cooperate to produce a result but may optimize their own strategic objectives, re-

sembling socio-economic behavior; e.g. a recent two-hour outage in global YouTube

access resulted from a BGP table update due to censorship in Pakistan [Sto]. Be-

cause of such socio-economic phenomena, it is crucial to use concepts and ideas from

Economics and Game Theory to understand the modern engineering systems.

The subfiled of Economics dedicated to the design and analysis of such complicated

systems is called Mechanism Design. The goal is the design of optimal institutions

and regulations even when the designer has limited information.

1.1 Algorithmic Mechanism Design

Mechanism Design: reverse game theory

Mechanism design is a unique branch of Game Theory and Economics: most of

Game Theory and Economics analyzes existing economic systems, so that we can

11

predict what will happen in these systems or explain why some outcome has actually

happened. In contrast, Mechanism design comes from a complete opposite direction.

It starts with identifying some desired outcome, and then asks if it is possible to

design a system such that when it is used by self-interested participants the desired

outcome will arise. If yes, how?

The main difficulty for designing the right system is the information asymmetry

between the designer and the participants: usually, how desirable an outcome is

depends on the interests of the participants in some aggregated sense. However,

the designer is usually ignorant about the participants. A participant’s interest for

some outcome is private information to the participant herself. Thus, it requires some

cooperation of the participants to achieve a desirable outcome, e.g. honestly reporting

how “valuable” an outcome is to each. Since the selected outcome depends on each

participant’s report, unless the system is designed carefully to properly incentivize

a participant, e.g. promising a favorable outcome for her, monetary compensation

or the combination of both, she may lie about her privately held information to

manipulate the outcome to maximize her own objective at the expense of the whole

system.

The Rise of Algorithmic Mechanism Design

Despite its difficulty, mechanism design has actually gained great success in both

theory and practice. It addresses the economic side of our system design problem.

However, in the context of the Internet, the number of participants is normally gi-

gantic and growing. To guarantee the performance of a system, we have to take

computational efficiency into consideration.

This is the mission of Algorithmic Mechanism Design (AMD), an area that aims

to handle both the strategic behavior of self-interested participants and the inherent

computational intractability of large systems. Primarily, AMD has roots in Algorithm

Design from Computer Science, which focuses on optimizing an objective as a func-

tion of “ honest” inputs with computational efficiency considerations. Inheriting the

theoretical framework of mechanism design, AMD targets on optimizing an objective

12

as a function of “rational” inputs with computational efficiency considerations. The

theory and concepts of AMD have been broadly and increasingly applied in the real

world, from online market places (such as eBay) and sponsored search (Google, Bing)

to spectrum auctions. For such applications, careful design might make a difference

on the scale of billions of dollars. Thus, finding optimal mechanisms is a particularly

meaningful topic not only in theory but also in the real world.

1.2 Fundamental Objectives

A mechanism design problem can be described by a set of feasible outcomes, and a

group of agents, each equipped with a private valuation function mapping an outcome

to a real number. The designer needs to choose an outcome that dependes on the

agents’ private valuation functions, and uses an objective function to “measures” the

quality of the outcome.

There are two fundamental objectives in mechanism design:

• Social Welfare – the happiness of the agents participating in the mechanism

• Revenue – the happiness of the designer

Usually, researchers consider optimizing these objectives in the more concrete

environment of multi-item auctions, because an auction is typically easier to describe

yet has strong expressive power. See Section 2.2 for examples. In fact, any mechanism

in which monetary transfers are allowed can be modeled as an auction.1

It is no surprise that the central problems in AMD are how to optimize these two

fundamental objectives. To discuss existing results for these problems, we need to

first explain how an auction is modeled.2 Informally, there is an auctioneer/seller who

has a limited supply of several items for sale, and there are many participants/bidders

who are interested in these items. An auction is some communication protocol (e.g.

1Basically, for every outcome, we can use an item to represent it. Also, we use the following
feasibility constraints on what allocations are legitimate: 1) every bidder can only receive one item;
2) every item can either be allocated to everyone or no one (similarly to a public object auction).
From now on, we will use the word auction and mechanism interchangeably.

2Formal definitions can be found in Section 2.1.

13

each bidder reports her values for the items to the auctioneer) after which, the seller

decides an allocation of the items and how much she wants to charge each bidder. If

all the bidders are asked to do is to report their values to the auctioneer, and they

are incentivized to do so honestly, the auction is called truthful.

Welfare Maximization

For social welfare, a beautiful mechanism was discovered in a sequence of works by

Vickrey, Clarke and Groves [Vic61, Cla71, Gro73]. This mechanism is now known

as the VCG mechanism, and it optimizes social welfare in all settings. This is an

extremely general result and, surprisingly, the mechanism is very simple: all par-

ticipants are asked to report how much they value each possible allocation3; then

the allocation which maximizes the sum of all participants’ values is chosen; in the

end, the seller will carefully charge the participants to make sure the mechanism is

truthful.

This completely solves the economic problem of designing welfare-maximizing

mechanisms. When computational complexity is taken into account, finding the al-

location which maximizes the sum of all participants value could be NP-hard. For

computer scientists, the most natural way to overcome such barrier is to look for effi-

cient approximations – a mechanism that approximately optimizes welfare. However,

it turns out that this is a non-trivial task. The main reason is that if the end allocation

is only approximately optimal, incentivizing the participants to tell the truth is very

difficult. There has been a long line of research addressing this issue [NR99, LOS02,

BKV05, DNS05, LS05, DNS06, BLP06, DN07, DD09, HL10, DR10, BH11, HKM11].

Recently in a sequence of works [HL10, BH11, HKM11], it is shown that in the

Bayesian setting4 if there is an algorithm for finding an approximately welfare op-

timal allocation, there is a generic way to turn it into a mechanism that optimizes

welfare achieving the same approximation ratio. In other words, there is a black-box

3The values are not necessarily represented as a list. For example they could be modeled as
an oracle that takes an allocation as input and outputs the value, if we care about computational
efficiency.

4This is the standard setting in Mathematical Economics and is also the setting we use in this
thesis. See Section 2.1 for a formal definition.

14

reduction from mechanism design to algorithm design for welfare optimization.

Revenue Maximization

Compared to welfare maximization, the progress for maximizing revenue has been

much slower. The most important result is Myerson’s Nobel-Prize winning work

from 1981, which showed that if there is a single item for sale, a simple auction can

achieve the optimal revenue [Mye81].

Myerson’s Auction (informal)

1. Each bidder reports her value for the item.

2. The seller transforms each bidder’s report to some “virtual”-report using

some bidder specific function.

3. Apply the VCG allocation rule on the “virtual”-reports.

This elegant result is considered one of the milestones in mechanism design. A

natural question raised by this result is, what if there are multiple items for sale?

More specifically,

• Are there simple, efficiently computable, revenue-optimal multi-item

multi-bidder auctions?

It is no surprise that this has become a central open problem in Mathematical

Economics attracting lots of attention from not only that community but also the

Theory of Computation community.

Despite continual effort of economists [MM88, Wil93, Arm96, RC98, Arm99,

Zhe00, Bas01, Kaz01, Tha04, MV06, MV07], no major progress has occurred for

over 30 years. Similarly, on the Computer Science side, although many works have

designed constant factor approximations for optimizing revenue [CHK07, CHMS10,

BGGM10, Ala11, HN12, KW12], all settings were heavily restricted, and no general

solution had been provided.

15

One of the main reasons for the slow progress was that the right tool for this

problem seemed to still be missing. In Myerson’s result, the proof is purely algebraic

and even seems magical. Many researchers have tried to understand and extend

his approach to the general setting, but no one was able to do so. To solve the

general case, a novel and drastically different approach is needed. Motivated by the

importance of this problem, we devote this thesis to the problem of revenue-optimal

mechanism design. Our result is not only a clear solution to this central open problem,

but also provides a novel and general framework that can be applied to many other

AMD problems.

1.3 Overview of Main Result and Techniques

Main result

We answer this open problem affirmatively under the technical assumption that the

bidders are additive5: there are simple, efficiently computable, revenue-optimal multi-

item auctions, even in the most general settings.

In particular, we provide a poly-time black box reduction from a mechanism design

problem of finding a revenue-optimal auction, to an algorithm design problem of

finding a welfare-maximizing allocation. More specifically, we reduce the problem

to implementing the VCG allocation on some “virtual” reports instead of the real

reports. The revenue-optimal auction we obtain looks like:

5See Section 2.1 for the formal definition. It basically means a bidder’s value for a bundle of
items equals to the sum of her value for each item.

16

The Revenue-optimal Auction (informal)

0. In a preprocessing step, the seller computes a distribution over virtual trans-

formations, where each transformation has a bidder-specific transformation

function for every bidder.

1. Each bidder reports her values for all items.

2. The seller samples one virtual transformation from the distribution computed

in the preprocessing step.

3. The seller applies the sampled transformation to the real reports to get the

“virtual” reports.

4. Use the VCG allocation rule to allocate the items based on the “virtual”

reports.

So how does our solution compare to Myerson’s single-item result? In Myerson’s

optimal auction, the allocation rule is just the VCG allocation rule, but on virtual

reports instead of true reports. Then, he provides a closed-form description of the

virtual transformations as well as a closed-form description of the pricing rule that

makes the bidders report truthfully. However, in the general setting, it is known that

randomness is necessary to achieve optimal revenue, even with a single bidder and

two items [BCKW10, CMS10]. Hence, we cannot possibly hope for a solution as clean

as Myerson’s, but we have come quite close in a very general setting: Our allocation

rule is just a distribution over virtual VCG allocation rules. Instead of a closed form

for each virtual transformation and the pricing rule, we provide a computationally

efficient algorithm to find them.

The Framework

Our approach also gives a new framework for solving a mechanism design problem,

by reducing it to an algorithm design problem, that is, we reduce a problem with

incentives to a problem without incentives. Our reduction can be divided into two

17

main steps: 1) Reduce the revenue-optimal mechanism design problem to the problem

of checking feasibility of reduced form auctions. 2) Reduce the problem of checking

feasibility of reduced form auctions to the problem of finding welfare-optimal alloca-

tions.

For the first step, our reduction heavily relies on linear programming and the ellip-

soid method. In fact, several special cases of the revenue-optimal mechanism design

problem have been solved computationally efficiently by linear programming [CH13,

DW12]. Simply put, these algorithms explicitly store a variable for every possible bid-

der report profile denoting the probability that bidder i receives item j on that profile,

and write a linear program to maximize expected revenue subject to the constraint

that the auction must be feasible and the bidders must be truthful. Unfortunately,

the number of variables required for such a program is exponential in the number of

bidders, making such an explicit description prohibitive.

Our solution cleverly uses the reduced form of an auction to sidestep this dimen-

sionality issue. The reduced form of an auction, first introduced in [Bor91, MR84,

Mat84], is a succinct description of the auction. Intuitively, a reduced form auction

can be viewed as promises that the seller makes to the bidders about the probabilities

of receiving the items based on their own report. Using reduced form auctions as the

variables of our LP has two major advantages: 1) its total size is polynomial in the

number of bidders; 2) more importantly, it contains all the necessary information to

verify that the bidders are truthful. That is, we can guarantee the bidders are honest

by adding linear constraints to the LP.

The only obstacle for solving this LP is that we need to verify the feasibility of a

reduced form auction efficiently. More specifically, given a reduced form auction, we

need to verify if there is a feasible mechanism implementing it (i.e, whether it matches

these probabilities), if yes, can we also construct this mechanism efficiently? This is

the problem of checking feasibility of reduced form auctions. Hence, we successfully

reduced the revenue-optimal mechanism design problem to this algorithmic problem.

It turns out checking feasibility of reduced form auctions is an interesting al-

gorithmic problem by itself, and has already been studied by Border twenty years

18

ago [Bor91]. Unfortunately, Border only studied a special case when there is only

a single item and he did not gave any efficient algorithm even for this special case.

Our first contribution is to provide an efficient algorithm for this problem in Chap-

ter 3. However, to solve the multi-item revenue-optimal mechanism design problem,

we need to be able to check feasibility for general, i.e. multi-item, reduced form

auctions. We show that for arbitrary feasibility constraints6, we can construct an effi-

cient separation oracle for checking feasibility of general reduced form auctions using

only black-box calls to an algorithm that exactly maximizes welfare under the same

constraints (Chapter 4). In other words, we have black-box reduced the problem of

checking feasibility of reduced form auctions to the algorithmic problem of finding

an allocation that exactly maximizes welfare. This completes the second step of our

whole reduction.

However, this result requires the welfare-maximizing algorithm to be exact. For

many feasibility constraints, this problem is intractable unless P=NP. In Chapter 6,

we take one step further. We show that given any α approximation algorithm for max-

imizing welfare under some feasibility constraints, by making only black-box calls to

this algorithm we can still construct an “approximate” separation oracle for checking

feasibility. Using such an “approximate” separation oracle, we can design an auction

that achieves at least α-fraction of the optimal revenue. Hence, our reduction can

accommodate approximations.

In this thesis, we only study the objective of revenue, but clearly our framework

can accommodate any objective that is concave in the reduced form auctions, e.g. so-

cial welfare or any convex combination of revenue and social welfare. In a very high

level, our framework for mechanism design can be described as a two stage procedure.

First, find a succinct representation of auction, which still contains all necessary in-

formation to verify if the bidders are truthful. Write an LP using this representation

as the variables. This reduces the mechanism design problem to an algorithmic prob-

lem of checking feasibility for this succinct representation of auction. Second, design

6For example, bidders might be unit-demand, so an allocation is feasible iff it is a matching
between the items and bidders . See Section 2.2 for a formal definition and more discussion.

19

an efficient algorithm to check feasibility. Our framework has already been used. In

a recent unpublished manuscript [CDW13b], we introduced a new succinct descrip-

tion of auction, implicit forms, and extended our framework to accommodate new

mechanism design problems, for example maximizing fractional max-min fairness.

1.4 Thesis Organization

In Chapter 2, we first introduce all mechanism design concepts and definitions that are

needed to read this thesis. Next, we formally define the Revenue-Optimal Mechanism

Design problem, and provide a more in-depth discussion of our main result, the black-

box reduction from revenue to welfare. Then we overview the related work on the

revenue-optimal mechanism design problem. In the end, we introduce some further

notations and a few theorems and algorithms that will be repeatedly used in future

chapters.

In Chapter 3, we study the feasibility of single-item reduced form auctions. Our

result is enabled by a novel, constructive proof of Border’s theorem [Bor91], and a

new generalization of this theorem to independent (but not necessarily identically

distributed) bidders, improving upon the results of [Bor07, CKM11]. For a single

item and independent (but not necessarily identically distributed) bidders, we show

that any feasible reduced form auction can be implemented as a distribution over

hierarchical mechanisms. We also give a polynomial-time algorithm for determining

feasibility of a reduced form auction, or providing a separation hyperplane from the

set of feasible reduced forms. To complete the picture, we provide polynomial-time al-

gorithms to find and exactly sample from a distribution over hierarchical mechanisms

consistent with a given feasible reduced form.

In Chapter 4, we study the feasibility of general reduced forms auctions under

a arbitrary feasibility constraint. We first show a characterization result that every

feasible reduced form auction can be implemented as a distribution over virtual VCG

allocation rules. A virtual VCG allocation rule has the following simple form: Every

bidder’s valuation ti is transformed into a virtual valuation fi(ti), via a bidder-specific

20

function. Then, the allocation maximizing virtual welfare is chosen. We generalize

this result to arbitrarily correlated bidders, introducing the notion of a second-order

VCG allocation rule. Next, we give two algorithmic results on reduced form auctions

in settings with arbitrary feasibility and demand constraints. First, we provide a

separation oracle for determining feasibility of a reduced form auction. Second, we

provide a geometric algorithm to decompose any feasible reduced form into a dis-

tribution over virtual VCG allocation rules. In addition, we show how to efficiently

execute both algorithms given only black box access to an implementation of the

VCG allocation rule.

In Chapter 5, based on the separation oracle designed in Chapter 4, we provide

a reduction from revenue maximization to welfare maximization in multi-item auc-

tions with arbitrary (possibly combinatorial) feasibility constraints and independent

bidders with arbitrary (possibly combinatorial) demand constraints, appropriately

extending Myerson’s result [Mye81] to the general setting.

In Chapter 6, we extend the results in Chapter 4 and 5 to accommodate ap-

proximations. In Chapter 5, we show that revenue optimization can be computa-

tionally efficiently reduced to welfare optimization in all multi-item auctions with

arbitrary (possibly combinatorial) feasibility constraints and independent additive

bidders with arbitrary (possibly combinatorial) demand constraints. This reduction

provides a poly-time solution to the optimal mechanism design problem in all auc-

tion settings where welfare optimization can be solved efficiently, but it is fragile

to approximation and cannot provide solutions to settings where welfare maximiza-

tion can only be tractably approximated. In this chapter, we extend the reduction

to accommodate approximation algorithms, providing an approximation preserving

reduction from (truthful) revenue maximization to (not necessarily truthful) welfare

maximization. The mechanisms output by our reduction choose allocations via black-

box calls to welfare approximation on randomly selected inputs, thereby generalizing

also the earlier structural results on optimal mechanisms to approximately optimal

mechanisms. Unlike in Chapter 4, our results are obtained through novel uses of the

Ellipsoid algorithm and other optimization techniques over non-convex regions.

21

In Chapter 7, we give conclusions and open problems.

All results are based on joint work with Constantinos Daskalakis and S. Matthew

Weinberg. Chapter 3 is based on [CDW12a], Chapter 4 and 5 are based on [CDW12b]

and Chapter 6 is based on [CDW13a].

22

Chapter 2

Background

In this chapter, we first introduce all mechanism design concepts and definitions

that are needed to read this thesis. Next, we formally define the Revenue-Optimal

Mechanism Design problem, and provide a more in-depth discussion of our main result

– the black-box reduction from (truthful) revenue optimization to (not necessary

truthful) welfare optimization. Then we overview the related work on the revenue-

optimal mechanism design problem. In the end, we introduce the notations and a

few theorems and algorithms that will be repeatedly use in future chapters.

2.1 Basic Concepts from Mechanism Design

We provide the necessary mechanism design concepts in this section.

Basic Terms

Bidder’s type: A bidder’s type contains all information about the bidder that is

relevant to the decision of the mechanism. For example, in a single item auction. A

bidder’s type will simply be her value for this item. Throughout this thesis, we will

use ti to denote bidder i’s type and Ti be the set of possible types for bidder i.

Bayesian Setting: In a Bayesian setting, it is assumed that every bidder’s type is

drawn from a known distribution. By known, we mean the distribution is known to

23

the seller as well as the other bidders. Notice that only the distribution is known,

not the exact value of the sample. Throughout this thesis, we will use Di to denote

bidder i’s distribution, D−i to denote the joint distribution of all bidders except i and

D to denote the joint distribution of all bidders.

Utility Function: A utility function of a bidder is a function that maps an allocation,

a payment and the bidder’s type to a real value utility. We say the utility function

is quasi-linear if it equals the bidder’s value of the allocation minus her payment.

We say a bidder is risk-neutral if her value for a distribution over allocations is her

expected value for the sampled allocation.

(Direct Revelation) Mechanism: A mechanism is the following three-step proto-

col: (1) Each bidder submits her type, which is usually called her bid. (2) The seller

use the bid profile to decide some allocation, and finally (3) The seller charges each

bidder some monetary payment. The map from a bid profile to an allocation in step

(2) is called an allocation rule, and the map from a bid profile to payments in step

(3) is called a pricing rule.

Social Welfare and Revenue: Social welfare is the sum of every bidder’s value

for the allocation chosen by the mechanism. Revenue is the sum of every bidder’s

payment.

Essential Concepts

Truthfulness/Incentive compatibility: A mechanism is truthful/incentive com-

patible iff each bidder’s utility is maximized when they report her type honestly.

Formally, it is known as Bayesian Incentive Compatible (BIC).

• Bayesian Incentive Compatible (BIC): Truthfully reporting maximizes a bid-

der’s utility if other bidders are also truthfully reporting. That is, for any

bidder i, her expected utility is maximized when being truthful, where the ex-

pectation is taken over the randomness of the mechanism and the randomness

the other bidders’ bids (assuming they are sampled from D−i).

24

Individual Rationality (IR): We say a mechanism is individual rational iff each

bidder’s utility is non-negative when they report her type truthfully. A mechanism is

interim IR if each bidder’s utility is non-negative when being truthful in expectation

over other bidder’s types. A mechanism is ex-post IR if each bidder’s utility is non-

negative when being truthful under any profile of bids.

Revelation Principle: A mechanism can actually have a more complicated com-

munication protocol than a direct revelation one, which simply asks the bidders to

submit their types. Such a mechanism is usually modeled as a game of incomplete

information. However, the Revelation Principle states that for any outcome that can

be achieved in an equilibrium of a game of incomplete information, there is a truth-

ful direct revelation mechanism that achieves the same outcome and preserves every

bidder’s utility [Mye79]. In other words, it implies that for any mechanism design

problem, focusing on only truthful direct revelation mechanism is WLOG.

2.2 The Optimal Mechanism Design Problem

The revenue-optimal mechanism design problem has received much attention from the

Economics community, and recently the Computer Science community as well. The

problem description is simple: a seller has a limited supply of several heterogenous

items for sale and many interested buyers. The goal is for the seller to design an

auction for the buyers to play that will maximize her revenue.

In order to make this problem tractable (not just computationally, but at all1),

some assumptions must be made:

• First, we assume we are in a Bayesian setting.

• Second, the bidders will play any auction at a Bayes-Nash Equilibrium. We also

assume that all buyers are quasi-linear and risk-neutral.

1Indeed, even in the simpler case of a single buyer and a single item, how would the seller sell
the item to optimize her profit without any assumptions about the buyer who can, in principle, lie
about his willingness to pay?

25

• Finally, we say that the goal of the seller is to maximize her expected revenue

over all auctions when played at a Bayes-Nash Equilibrium.

All of these assumptions have become standard with regards to this problem. Indeed,

all were made in Myerson’s seminal paper on revenue-maximizing mechanism design

where this problem is solved for a single item and product distributions [Mye81].

In addition, Myerson introduces the revelation principle, showing that every auc-

tion played at a Bayes-Nash Equilibrium is strategically equivalent to a Bayesian

Incentive Compatible (BIC) direct revelation mechanism. In a direct revelation mech-

anism, each bidder reports a bid for each possible subset of items they may receive.

In essence, Myerson’s revelation principle says that one only needs to consider BIC

direct revelation mechanisms rather than arbitrary auctions played at a Bayes-Nash

Equilibrium to maximize revenue (or any other objective for that matter).

In Myerson’s result, a single real number suffices to represent a bidder’s type.

However, in multi-item auctions, we need multiple numbers to specify a bidder’s

type. For example, when a bidder’s valuation is additive, we need one number for

each item. That is why the Revenue-Optimal Mechanism Design problem is usually

called the multi-dimensional mechanism design problem.

As we depart from Myerson’s single-item setting, the issue of feasibility arises.

With only a single item for sale, it is clear that the right feasibility constraints are

simply that the item is always awarded to at most a single bidder, but it will be much

more complicated in multi-item cases. Imagine natural scenarios with heterogenous

items:

• Maybe the items are houses. In this case, a feasible allocation awards each

house to at most one bidder, and to each bidder at most one house.

• Maybe the items are appointment slots with doctors. In this case, a feasible

allocation does not award the same slot to more than one bidder, and does not

award a bidder more than one slot with the same doctor, or overlapping slots

with different doctors.

26

• Maybe the items are bridges built at different locations. In this case, if a bridge

is built, everyone will be able to use it, so a feasible allocation awards each

bridge to everyone or to no one.

...

Just like in the above cases, feasibility constraints can be all different. Sometimes,

feasibility constraints are imposed by the supply side of the problem: a doctor cannot

meet with two patients at once, and a bridge cannot be built for one bidder but not

another. Other times, feasibility constraints are imposed by the demand side of the

problem: no bidder wants two houses or two appointments with the same doctor.

Without differentiating where feasibility constraints come from, we model them

in the following way: let A = [m]× [n] denote the space of assignments (where (i, j)

denotes that bidder i is assigned item j), and let F be a set system on A (that is,

a subset of 2A). Then in a setting with feasibility constraints F , it is possible for

the seller to simultaneously make any subset of assignments in F . F may be a truly

arbitrary set system, it need not even be downward-closed.2

As we leave the single-item setting, we also need to consider how a bidder values

a bundle of multiple items. In general, a bidder may have arbitrarily complicated

ways of evaluating bundles of items, and this information is encoded into the bid-

der’s type. For the problem to be computationally meaningful, however, one would

want to either assume that the auctioneer only has oracle access to a bidder’s val-

uation, or impose some structure on the bidders’ valuations allowing them to be

succinctly described. Indeed, virtually every recent result in revenue-maximizing

literature [AFH+12, BGGM10, CD11, CH13, CHK07, CHMS10, DW12, KW12] as-

sumes that bidders are capacitated-additive.3 In fact, most results are for unit-demand

bidders. It is easy to see that, if we are allowed to incorporate arbitrary demand con-

straints into the definition of F , such bidders can be described in our model as simply

additive. In fact, far more complex bidders can be modeled as well, as demand con-

2We say a set system F is downward-closed, if for any set S ∈ F all subsets of S are also in F .
3A bidder is capacitated-additive if for some constant C her value for any subset S of at most C

goods is equal to the sum of her values for each item in S, and her value for any subset S of more
than C goods is equal to her value for her favorite S′ ⊆ S of at most C goods.

27

straints could instead be some arbitrary set system. Because F is already an arbitrary

set system, we may model bidders as simply additive and still capture virtually every

bidder model studied in recent results, and more general ones as well. In fact, we note

that every multi-dimensional setting can be mapped to an additive one, albeit not

necessarily computationally efficiently.4 So while we focus our discussion to additive

bidders throughout this thesis, our results apply to every auction setting, without

need for any additivity assumption. In particular, our characterization result (Infor-

mal Theorem 2) of feasible allocation rules holds for any multi-dimensional setting,

and our reduction from revenue to welfare optimization (Informal Theorem 1) also

holds for any setting, and we show that it can be carried out computationally effi-

ciently for any additive setting. In Section 6.9, we generalize our result to settings

beyond additive and introduce a new concept called “additive dimension”. We show

that if a setting has “additive dimension” d, all results for additive setting still hold

after multiplying the runtime by only a poly(d) factor.

Optimal Multi-dimensional Mechanism Design. With the above motivation

in mind, we formally state the revenue optimization problem we solve. We remark that

virtually every known result in the multi-dimensional mechanism design literature

(see references above) tackles a special case of this problem, possibly with budget

constraints on the bidders (which can be easily incorporated in all results presented

in this thesis as discussed in Section 5.3), and possibly replacing BIC with DSIC.5

We explicitly assume in the definition of the problem that the bidders are additive,

recalling that this is not a restriction if computational considerations are not in place.

4The generic transformation is to introduce a meta-item for every possible subset of the items,
and have the feasibility constraints (which are allowed to be arbitrary) be such that an allocation is
feasible if and only if each bidder receives at most one meta-item, and the corresponding allocation
of real items (via replacing each meta-item with the subset of real items it represents) is feasi-
ble in the original setting. Many non-additive settings allow much more computationally efficient
transformations than the generic one.

5Dominant Strategy Incentive Compatible (DSIC) is another truthfulness definition, and is usu-
ally seen in the literature of welfare maximization. In particular, DSIC means truthfully bidding
maximizes a bidder’s utility no matter what the other bidders report.

28

Revenue-Maximizing Multi-Dimensional Mechanism Design Problem

(MDMDP): Given as input m distributions (possibly correlated across items)

D1, . . . ,Dm over valuation vectors for n heterogenous items and feasibility con-

straints F , output a BIC mechanism M whose allocation is in F with probability

1 and whose expected revenue is optimal relative to any other, possibly random-

ized, BIC mechanism when played by m additive bidders whose valuation vectors

are sampled from D = ×iDi.

2.3 Black-box Reduction from Revenue to Welfare

We provide a poly-time black box reduction from the MDMDP with feasibility con-

straints F to implementing VCG with feasibility constraints F by introducing the

notion of a virtual VCG allocation rule. A virtual VCG allocation rule is defined by a

collection of functions fi for each bidder i. fi takes as input bidder i’s reported bid vec-

tor and outputs a virtual bid vector. When the reported bids are t1, . . . , tm, the virtual

VCG allocation rule with functions {fi}i∈[m] simply implements the VCG allocation

rule (with feasibility constraints F) on the virtual bid vectors f1(t1), . . . , fm(tm). We

also note here that implementing VCG for additive bidders is in general much eas-

ier than implementing VCG for arbitrary bidders.6 Our solution to the MDMDP is

informally stated below, and is formally given as Theorem 17 of Section 5.1:

Informal Theorem 1. Let AF be an implementation of the VCG allocation rule

with respect to F (i.e. AF takes as input a profile of bid vectors and outputs the VCG

allocation). Then for all D1, . . . ,Dm with finite support and all F , given D1, . . . ,Dm
and black box access to AF (and without need of knowledge of F), there exists a fully

polynomial-time randomized approximation scheme7 for the MDMDP whose runtime

is polynomial in n, the number of bidder types (and not type profiles), and the runtime

of AF . Furthermore, the allocation rule of the output mechanism is a distribution over

6When bidders are additive, implementing VCG is simply solving the following problem, which is
very well understood for a large class of feasibility constraints: every element of A has a weight. The
weight of any subset of A is equal to the sum of the weights of its elements. Find the max-weight
subset of A that is in F .

7This is often abbreviated as FPRAS, and we provide its formal definition in Section 2.5.

29

virtual VCG allocation rules.

We remark that the functions defining a virtual VCG allocation rule may map a

bidder type to a vector with negative coordinates. Therefore, our given implementa-

tion of the VCG allocation rule should be able to handle negative weights. This is not

a restriction for arbitrary downwards-closed F as any implementation of VCG that

works for non-negative weights can easily be (in a black-box way) converted into an

implementation of VCG allowing arbitary (possibly negative) inputs.8 But this is not

necessarily true for non downwards-closed F ’s. If the given AF cannot accommodate

negative weights, we need to replace it with an algorithm that can in order for our

results to be applicable.

Several extensions are stated and discussed in Section 5.1, including solutions for

distributions of infinite support, and improved runtimes in certain cases that make

use of techniques from [DW12]. We also extend all our solutions to accommodate

strong budget constraints by the bidders in Section 5.3.

We further generalize Informal Theorem 1 in Chapter 6. Informal Theorem 1

implies that, for all F ’s such that maximizing social welfare can be solved efficiently,

MDMDP can also be solved efficiently. On the other hand, the reduction is geometric

and sensitive to having an exact algorithm for maximizing welfare, and this limits

the span of mechanism design settings that can be tackled. In Chapter 6 we extend

this reduction, making it robust to approximation. Namely, we reduce the problem

of approximating MDMDP to within a factor α to the problem of approximately

optimizing social welfare to within the same factor α.

Characterization of Feasible Reduced Form Auctions. In addition to our

solution of the MDMDP, we provide a characterization of feasible reduced forms of

multi-dimensional mechanisms in all (not necessarily additive) settings.9 We show the

8The following simple black-box transformation achieves this: first zero-out all negative coordi-
nates in the input vectors; then run VCG; in the VCG allocation, un-allocate item j from bidder i if
the corresponding coordinate is negative; this is still a feasible allocation as the setting is downwards-
closed.

9For non-additive settings, the characterization is more usable for the purposes of mechanism
design when applied to meta-items (see discussion above), although it still holds when directly
applied to items as well.

30

following informal theorem, which is stated formally as Theorem 10 in Section 4.1.

Recall that a virtual VCG allocation rule is associated with a collection of functions

fi that map types ti to virtual types fi(ti) for each bidder i, and allocates the items

as follows: for a given type vector (t1, ..., tm), the bidders’ types are transformed into

virtual types (f1(t1), . . . , fm(tm)); then the virtual welfare optimizing allocation is

chosen.

Informal Theorem 2. Let F be any set system of feasibility constraints, and D

any (possibly correlated) distribution over bidder types. Then the reduced form of any

feasible mechanism can be implemented as a distribution over virtual VCG allocation

rules.

2.4 Related Work

2.4.1 Structural Results

Some structural results are already known for special cases of the MDMDP and its

extension to correlated bidders. As we have already discussed, Myerson showed that

the revenue-optimal auction for selling a single item is a virtual Vickrey auction: bids

are transformed to virtual bids, and the item is awarded to the bidder with the highest

non-negative virtual value [Mye81]. It was later shown that this approach also applies

to all single-dimensional settings (i.e. when bidders can’t tell the difference between

different houses, appointment slots, bridges, etc) as long as bidders’ values are inde-

pendent. In this setting, bids are transformed to virtual bids (via Myerson’s trans-

formation), and the virtual-welfare-maximizing feasible allocation is chosen. These

structural results are indeed strong, but hold only in the single-dimensional setting

and are therefore of very limited applicability.

On the multi-dimensional front, it was recently shown that similar structure exists

in restricted settings. It is shown in [CDW12a] that when selling multiple heteroge-

nous items to additive bidders with no demand constraints (i.e. F only ensures that

each item is awarded to at most one bidder), the optimal auction randomly maps bids

31

to virtual bids (according to some function that depends on the distributions from

which bidders’ values are drawn), then separately allocates each item to the highest

virtual bidder.10 It is shown in [AFH+12] that when there are many copies of the same

customizable item and a matroid constraint on which bidders can simultaneously re-

ceive an item (i.e. F only ensures that at most k items are awarded, subject to a

matroid constraint on the served bidders), that the optimal auction randomly maps

bids to virtual bids (according to some function that depends on the distributions

from which bidders’ values are drawn), then allocates the items to maximize virtual

surplus (and customizes them after). We emphasize that both results, while quite

strong for their corresponding settings, are extemely limited in the settings where

they can be applied. In particular, neither says anything about the simple setting

of selling houses to unit-demand bidders (i.e. F ensures that each house is awarded

at most once and each bidder receives at most one house: Example 1, Section 2.2).

Selling houses to unit-demand bidders is on the easy side of the settings considered

in this thesis, as we provide a solution in multi-dimensional settings with arbitrary

feasibility constraints. We do not even assume that F is downward-closed.

For correlated bidders, the series of results by Cremer and McLean [CM85, CM88]

and McAfee and Reny [MR92] solve for arbitrary feasibility constraints subject to a

non-degeneracy condition on the bidder correlation (that is not met when bidders are

independent). Under this assumption, they show that the optimal auction extracts

full surplus (i.e. has expected revenue equal to expected welfare) and simply uses

the VCG allocation rule (the prices charged are not the VCG prices, but a specially

designed pricing menu based on the bidder correlation). Our structural results for

correlated bidders apply to arbitrary feasibility constraints as well as arbitrary bidder

correlation, removing the non-degeneracy assumption. Of course, the expected rev-

enue extracted by our mechanisms cannot possibly always be as high as the expected

maximum social welfare (as it happens in Cremer-McLean and McAfee-Reny) as they

10In fact, the allocation rule of [CDW12a] has even stronger structure in that each item is inde-
pendently allocated to the bidder whose virtual value for that item is the highest, and moreover
the random mapping defining virtual values for each item simply irons a total ordering of all bidder
types that depends on the underlying distribution. This result is also included in Chapter 3.

32

also apply to independent bidders, but our characterization is still quite simple: the

optimal auction randomly maps pairs of actual bids and possible alternative bids

to second-order bids. Then, the second-order bids are combined (based on the un-

derlying bidder correlation) to form virtual bids, and the virtual-welfare-maximizing

allocation is chosen.

2.4.2 Algorithmic Results

The computer science community has contributed computationally efficient solutions

to special cases of the MDMDP in recent years. Many are constant factor approx-

imations [Ala11, BGGM10, CHK07, CHMS10, KW12]. These results cover settings

where the bidders are unit-demand (or capacitated-additive) and the seller has ma-

troid or matroid-intersection constraints on which bidders can simultaneously receive

which items. All these settings are special cases of the MDMDP framework solved in

this thesis.11 In even more restricted cases near-optimal solutions have already been

provided. Tools are developed in [CD11, CH13, DW12] that yield solutions for simple

cases with one or few bidders. Cases with many asymmetric independent bidders is

considered in [AFH+12]. They studied the case where F ensures that at most k items

are awarded, subject to a matroid constraint on the served bidders is solved. Our

computational results push far beyond existing results, providing a computationally

efficient solution in multi-dimensional settings with arbitrary feasibility constraints.

2.4.3 Black-box Reduction in Mechanism Design

One appealing feature of our result is that our reduction from approximate revenue

optimization to non-truthful welfare approximation is black-box. Such reductions

have been a recurring theme in mechanism design literature but only for welfare,

where approximation-preserving reductions from truthful welfare maximization to

non-truthful welfare maximization have been provided [BKV05, BLP06, HL10, DR10,

11Again, in some of these results [Ala11, BGGM10] bidders may also have budget constraints,
which can be easily incorporated to the MDMDP framework without any loss, as is shown in Sec-
tion 5.3, and some replace BIC with DSIC [Ala11, CHK07, CHMS10, KW12].

33

BH11, HKM11]. The techniques used here are orthogonal to the main techniques of

these works. In the realm of black-box reductions in mechanism design, our work is

best viewed as “catching up” the field of revenue maximization to welfare maximiza-

tion, for the settings covered by the MDMDP framework.

2.5 Preliminaries and notation

We denote the number of bidders by m, the number of items by n. To ease notation,

we sometimes use A (B, C, etc.) to denote the type of a bidder, without emphasizing

whether it is a vector or a scalar. The elements of ×iTi are called type profiles,

and specify a type for every bidder. We assume type profiles are sampled from a

distribution D over ×iTi. For independent bidders, we use D−i to denote the marginal

of D over the types of all bidders, except bidder i. For correlated bidders, we use

D−i(~vi) to denote the conditional distribution over the types of all bidders except for i,

conditioned on bidder i’s type being ~vi. We use ti for the random variable representing

the type of bidder i. So when we write Pr[ti = A], we mean the probability that bidder

i’s type is A. In Section 2.7, we discuss how our algorithms access distribution D.

We let A = [m] × [n] denote the set of possible assignments (i.e. the element

(i, j) denotes that bidder i was awarded item j). We call (distributions over) sub-

sets of A (randomized) allocations, and functions mapping type profiles to (possibly

randomized) allocations allocation rules. We call an allocation combined with a price

charged to each bidder an outcome, and an allocation rule combined with a pricing

rule a (direct revelation) mechanism. As discussed in Section 2.2, we may also have a

set system F on A (that is, a subset of 2A), encoding constraints on what assignments

can be made simultaneously by the mechanism. F may be incorporating arbitrary

demand constraints imposed by each bidder, and supply constraints imposed by the

seller, and will be referred to as our feasibility constraints. In this case, we restrict all

allocation rules to be supported on F .

The reduced form of an allocation rule (also called the interim allocation rule) is

a vector function π(·), specifying values πij(A), for all items j, bidders i and types

34

A ∈ Ti. πij(A) is the probability that bidder i receives item j when truthfully

reporting type A, where the probability is over the randomness of all other bidders’

types (drawn from D−i in the case of independent bidders, and D−i(A) in the case of

correlated bidders) and the internal randomness of the allocation rule, assuming that

the other bidders report truthfully their types. For single-item reduced forms, we

omit the subscript j for convenience. When bidders are i.i.d., we say a reduced form

is bidder-symmetric if πi(A) = πi′(A) for all i, i′ ∈ [n] and any type A. Sometimes, we

will want to think of the reduced form as a n
∑m

i=1 |Ti|-dimensional vector, and may

write ~π to emphasize this view. To ease notation we will also denote by T := n
∑

i |Ti|.

Given a reduced form π, we will be interested in whether the form is “feasible”,

or can be “implemented.” By this we mean designing a feasible allocation rule M

(i.e. one that respects feasibility constraints F on every type profile with probability

1 over the randomness of the allocation rule) such that the probability Mij(A) that

bidder i receives item j when truthfully reporting type A is exactly πij(A), where the

probability is computed with respect to the randomness in the allocation rule and the

randomness in the types of the other bidders, assuming that the other bidders report

truthfully. While viewing reduced forms as vectors, we will denote by F (F ,D) the

set of feasible reduced forms when the feasibility constraints are F and consumers

are sampled from D.

A bidder is additive if her value for a bundle of items is the sum of her values for

the items in that bundle. If bidders are additive, to specify the preferences of bidder

i, we can provide a valuation vector ~vi, with the convention that vij represents her

value for item j. Even in the presence of arbitrary demand constraints, the value

of additive bidder i of type ~vi for a randomized allocation that respects the bidder’s

demand constraints with probability 1, and whose expected probability of allocating

item j to the bidder is πij, is just the bidder’s expected value, namely
∑

j vij ·πij. The

utility of bidder i for the same allocation when paying price pi is just
∑

j vij ·πij − pi.

Throughout this thesis, we denote by OPT the expected revenue of an optimal

solution to MDMDP. Also, most of our results for this problem construct a fully

polynomial-time randomized approximation scheme, or FPRAS. This is an algorithm

35

that takes as input two additional parameters ε, η > 0 and outputs a mechanism (or

succinct description thereof) whose revenue is at least OPT − ε, with probability at

least 1−η (over the coin tosses of the algorithm), in time polynomial in n
∑

i |Ti|, 1/ε,

and log(1/η).

Some arguments will involve reasoning about the bit complexity of a rational

number. We say that a rational number has bit complexity b if it can be written with

a binary numerator and denominator that each have at most b bits. We also take the

bit complexity of a rational vector to be the total number of bits required to describe

its coordinates. Similarly, the bit complexity of an explicit distribution supported on

rational numbers with rational probabilities is the total number of bits required to

describe the points in the support of the distribution and the probabilities assigned to

each point in the support. For our purposes the bidder distributions D1, . . . ,Dm are

given explicitly, while D = ×iDi is described implicitly as the product of D1, . . . ,Dm.

Also, for completeness, we formally define in Section 2.6 the standard notion of

Bayesian Incentive Compatibility (BIC) and Individual Rationality (IR) of mech-

anisms for independent bidders, and state a well-known property of the Ellipsoid

Algorithm for linear programs.

2.6 Details from Preliminaries

We provide a formal definition of Bayesian Incentive Compatibility and Individual

Rationality of a mechanism for independent bidders and state a well-known property

of the Ellipsoid Algorithm. For completeness, we provide an additional proposition

showing a standard trick that can force the Ellipsoid algorithm to always output a

corner.

Definition 1. [DW12](BIC/ε-BIC Mechanism) A mechanism M is called ε-BIC iff

the following inequality holds for all bidders i and types τi, τ
′
i ∈ Ti:

Et−i∼D−i [Ui(τi,Mi(τi ; t−i))] ≥ Et−i∼D−i [Ui(τi,Mi(τ
′
i ; t−i))]−εvmax·max

{
1,
∑
j

πMij (τ ′i)

}
,

36

where:

• Ui(A,Mi(B ; t−i)) denotes the utility of bidder i for the outcome of mechanism

M if his true type is A, he reports B to the mechanism, and the other bidders

report t−i;

• vmax is the maximum possible value of any bidder for any item in the support

of the value distribution; and

• πMij (A) is the probability that item j is allocated to bidder i by mechanism M if

bidder i reports type A to the mechanism, in expectation over the types of the

other bidders, assuming they report truthfully, and the mechanism’s internal

randomness.

In other words, M is ε-BIC iff when a bidder i lies by reporting τ ′i instead of his true

type τi, she does not expect to gain more than εvmax times the maximum of 1 and the

expected number of items that τ ′i receives. A mechanism is called BIC iff it is 0-BIC.12

We also define individual rationality of BIC/ε-BIC mechanisms:

Definition 2. A BIC/ε-BIC mechanism M is called interim individually rational

(interim IR) iff for all bidders i and types τi ∈ Ti:

Et−i∼D−i [Ui(τi,Mi(τi ; t−i))] ≥ 0,

where Ui(A,Mi(B ; t−i)) denotes the utility of bidder i for the outcome of mechanism

M if his true type is A, he reports B to the mechanism, and the other bidders report

t−i. The mechanism is called ex-post individually rational (ex-post IR) iff for all

i, τi and t−i, Ui(τi,Mi(τi ; t−i) ≥ 0 with probability 1 (over the randomness in the

mechanism).

12Strictly speaking, the definition of BIC in [DW12] is the same but without taking a max with
1. We are still correct in applying their results with this definition because any mechanism that is
considered ε-BIC by [DW12] is certainly considered ε-BIC by this definition. We basically call a mech-
anism ε-BIC if either the definition in [BH11, HKM11, HL10] (εvmax) or [DW12] (εvmax

∑
j πij(~wi))

holds.

37

Theorem 1. [Ellipsoid Algorithm for Linear Programming] Let P be a convex poly-

tope in Rd specified via a separation oracle SO, and ~c ·~x be a linear function. Assume

that all coordinates of ~a and b, for all separation hyperplanes ~a · ~x ≤ b possibly output

by SO, and all coordinates of ~c are rational numbers of bit complexity `. Then we

can run the ellipsoid algorithm to optimize ~c · ~x over P , maintaining the following

properties:

1. The algorithm will only query SO on rational points with bit complexity poly(d, `).

2. The ellipsoid algorithm will solve the Linear Program in time polynomial in d, `

and the runtime of SO when the input query is a rational point of bit complexity

poly(d, `).

3. The output optimal solution is a corner of P .13

Proposition 1. Let ~a be a d-dimensional vector, whose coordinates are rational num-

bers of bit complexity `1, P be a d-dimensional convex polytope, in which all coordi-

nates of all corners are rational numbers of bit complexity `2. Then we can transform

~a into a new d-dimensional vector ~b, whose coordinates are all rational numbers of

bit complexity d(`1 + 1) + (2d2 + 1)`2 + 1, such that ~x∗ = argmax~x∈P ~b · ~x is unique.

Furthermore,

Proof. Let ai = pi/qi, where both pi and qi are integers with at most `1 bits. Now

change the ai’s to have the same denominator Q = Πiqi. So ai = p′i/Q, where p′i =

piΠj 6=iqj. Both Q and p′i have at most d`1 bits. Let now bi = (p′i+2−(1+`2+(2d`2+1)·i)/Q.

So bi can be described with d(`1 + 1) + (2d2 + 1)`2 + 1 bits.

Now we will argue that, for any rational vector ~z 6= ~0, whose coordinates can

be described with at most 2`2 bits, ~b · ~z 6= 0. Let zi = ri/si, where both ri and si

are integers with at most 2`2 bits. Now modify zi to be r′i/S, where S = Πisi and

r′i = riΠj 6=isi. Both S and r′i have at most 2d`2 bits. Now consider the fractional

13This is well-known, but also proved in Proposition 1 for completeness.

38

parts of Q · S · (~b · ~z), which is

d∑
i=1

2−(1+`2+(2d`2+1)·i) · r′i.

But this equals to 0 only when ri = 0 for all i. Thus, if ~z 6= ~0, ~b · ~z 6= 0.

Next, we argue that, if ~x and ~y are two different vectors, whose coordinates can

be described with `2 bits, ~b · ~x 6= ~b · ~y. This is implied by the above argument, since

all coordinates of ~x− ~y can be described with at most 2`2 bits. So there is a unique

optimal solution to max~x∈P ~b · ~x. Call that solution ~x∗.

Now we show that ~x∗ is also an optimal solution for max~x∈P ~a · ~x. We only need

to argue that if corner ~x is not optimal for ~a, it will not be optimal for ~b. First, it is

not hard to see that for corners ~x and ~y, if ~a · (~x−~y) 6= 0, ~a · (~x−~y) ≥ 1
22d`2Q

. Second,

for any corner ~x,

|(~b− ~a) · ~x| ≤
d∑
i=1

∣∣∣∣2−(1+`2+(2d`2+1)·i)

Q

∣∣∣∣ · 2`2 < 1

21+2d`2Q
.

So if ~a · ~x > ~a · ~y, ~b · ~x is still strictly greater than ~b · ~y. Thus, ~x∗ must be an optimal

solution for max~x∈P ~a · ~x.

2.7 Input Model

We discuss two models for accessing a value distribution D, as well as what modifi-

cations are necessary, if any, to our algorithms to work with each model:

• Exact Access: We are given access to a sampling oracle as well as an oracle

that exactly integrates the pdf of the distribution over a specified region.

• Sample-Only Access: We are given access to a sampling oracle and nothing

else.

The presentation of this thesis focuses on the first model. In this case, we can exactly

evaluate the probabilities of events without any special care. If we have sample-only

39

access to the distribution, some care is required. Contained in Appendix A of [DW12]

is a sketch of the modifications necessary for all our results to apply with sample-

only access. The sketch is given for the item-symmetric case, but the same approach

will work in the asymmetric case. Simply put, repeated sampling will yield some

distribution D′ that is very close to D with high probability. If the distributions are

close enough, then a solution to the MDMDP for D′ is an approximate solution for

D. The error in approximating D is absorbed into the additive error in both revenue

and truthfulness.

2.8 A Geometric Algorithm

Carathéodory’s theorem states that every point ~x inside an n-dimensional polytope

P can be written as a convex combination of at most n + 1 corners of P . In this

section, we provide an efficient algorithm for coming up with such a combination.14

We will consider polytopes that are described as an intersection of half-spaces. Each

half-space is defined by a hyperplane h together with a choice of a side. We use B(P)

to denote the set of half-spaces, but overload notation using B(P) to also denote the

set of boundary hyperplanes of the polytope P . We reserve the symbol h to denote

hyperplanes. In addition, we consider cases where |B(P)| may be exponentially large,

and we only have an implicit description of B(P). That is, we have access to a

boundary oracle BO that outputs yes on input h if h ∈ B(P), and no otherwise. We

also have access to a separation oracle, SO, that outputs yes on input ~x if ~x ∈ P ,

and outputs some h ∈ B(P) if ~x is on the wrong side of h (and therefore not in P).

We will talk about one more algorithm related to P :

Definition 3. CO is a corner oracle for P if it has the following behavior. Given as

input a set of hyperplanes B, CO outputs no if B 6⊆ B(P), or
(⋂

h∈B h
)⋂

P = ∅ (i.e.

the hyperplanes are not boundary hyperplanes of P , or they are boundary hyperplanes,

but do not intersect inside P). Otherwise, CO outputs a corner of P inside
⋂
h∈B h.

14Such an algorithm is in fact quite standard, given a separation oracle. We include it just for
completeness.

40

It is clear that CO has well-defined behavior on all inputs. If B contains only

boundary hyperplanes of P , and the intersection of these hyperplanes with P is non-

empty, this region must contain a corner of P . Now we describe our algorithmic

problem in terms of these algorithms:

Question 1. Given as input a boundary oracle, BO, separation oracle SO, and

corner oracle CO for some n-dimensional polytope P , and a point ~x, output no if

~x /∈ P . Otherwise, output c1, . . . , cn+1, ~a1, . . . ,~an+1 such that ~ai is a corner of P for

all i,
∑

i ci = 1, and
∑

i ci~ai = ~x.

It follows from Carathéodory’s theorem that such ci,~ai exist whenever ~x ∈ P . We

provide an algorithm to find such a solution whenever it exists. At a high level, we

begin with the input ~x and maintain at all times two points ~y ∈ P , ~z ∈ P , such that

~x = c~y + (1− c)~z, for some c ∈ [0, 1]. After step t of the algorithm is completed, ~y is

the convex combination of at most t corners of P , and ~z lies in the (n−t)-dimensional

intersection of t hyperplanes of B(P). Hence, after at most n steps, ~z will lie in a

0-dimensional space, and therefore must be a corner, so the algorithm will terminate

after at most n+ 1 steps.

To go from step t to step t + 1, we pick an arbitrary corner, ~at, that lies in the

intersection of the t hyperplanes where ~z lies. Then, we let ct be as large as possible

without pushing the point
(1−

P
j<t cj)~z−ct·~at

1−ct−
P
j<t cj

outside of P . We update ~z to ~znew =
(1−

P
j<t cj)~zold−ct·~at

1−ct−
P
j<t cj

and update ~y appropriately to include ~at in its convex combination

of corners. The new ~z must lie at the intersection of the original t hyperplanes where

the old ~z lied, as well as a new h ∈ B(P) that stopped us from further increasing

ct. Below is a formal description of the algorithm. In the description, E denotes the

set of hyperplanes whose intersection contains ~z (the empty intersection is the entire

space).

Theorem 2. Let P be a n-dimensional polytope with corner oracle CO and separation

oracle SO such that each coefficient of every hyperplane ever output by SO is a

rational number of bit complexity b. Then Algorithm 1 decomposes any point ~x ∈ P

into a convex combination of at most n + 1 corners of P . Furthermore, if ` is the

41

Algorithm 1 Algorithm for writing ~x as a convex combination of at most n + 1
corners

1: Initialize: i := 1, ~y := ~0, ~z := ~x, E := ∅, ci := 0,~ai := ~0 ∀i ∈ [n+ 1].
2: Invariants: c :=

∑
i ci, ~y := 1

c

∑
i ci~ai, or ~0 if c = 0, c~y + (1− c)~z = ~x.

3: if SO(~x) 6= yes then
4: Output no.
5: end if
6: while c < 1 do
7: Set ~ai := CO(E).
8: if ~ai = ~z then
9: Set ci := 1− c.

10: Output c1, . . . , cn+1, ~a1, . . . ,~an+1.
11: else
12: Set D := max{d (1 + d)~z − d~ai ∈ P}.
13: Set Ei = SO((1 + D + ε)~z − (D + ε)~ai) for sufficiently small ε > 0. /* the

appropriate choice of ε is explained in the proof of Theorem 2*/
14: Update: ci := (1− 1

1+D
)(1− c), ~z := 1−c

1−c−ci~z −
ci

1−c−ci~ai, ~y := c
c+ci

~y + ci
c+ci

~ai,
c := c+ ci, E := E ∪ Ei, i := i+ 1.

15: end if
16: end while

maximum number of bits needed to represent a coordinate of ~x, then the runtime

is polynomial in d, b, ` and the runtimes of SO and CO on inputs of bit complexity

poly(n, b, `).

Proof. First, we describe how to execute Steps 12 and 13 of the algorithm, as it is

clear how to execute every other step. Step 12 can be done by solving a linear program

using SO. Explicitly, maximize d subject to (1 + d)~z − d~ai ∈ P . For Step 13, we

will explain later in the proof how to choose an ε small enough so that the following

property is satisfied:

(P): for all h ∈ B(P) and for whatever D is computed in Step 12 of the algorithm,

if (1 +D)~z −D~ai is not contained in h, then (1 +D + ε)~z − (D + ε)~ai is on the

same side of h as (1 +D)~z −D~ai.

We will explain later why (P) suffices for the correctness of the algorithm, how to

choose an ε so that (P) holds, and why its description complexity is polynomial in n

and b.

We start with justifying the algorithm’s correctness, assuming that ε is chosen so

42

that (P) holds. We observe first that
∑

i ci ≤ 1 always. If the algorithm ever increases

c, it is because ~z 6= ~ai. If this is the case, then D from Step 12 will have some finite

positive value. So (1 − 1
1+D

)(1 − c) < 1 − c, and adding ci to c will not increase c

past 1. We also observe that all the invariants declared in Step 2 hold throughout the

course of the algorithm. This can be verified by simply checking each update rule in

Step 14. Finally, we argue that every time the algorithm updates E, the dimension of⋂
h∈E h decreases by 1, and (

⋂
h∈E h)

⋂
P 6= ∅ is maintained. Because ~ai and ~z both

lie in
⋂
h∈E when Step 13 is executed, none of the hyperplanes in this intersection can

possibly be violated at (1 +D+ ε)~z− (D+ ε)~ai. Therefore, the hyperplane output by

SO((1 +D+ ε)~z− (D+ ε)~ai) must reduce the dimension of
⋂
h∈E h by 1 when added

to E at Step 14. Furthermore, because Ei is violated at (1 +D+ ε)~z− (D+ ε)~ai, but

not at (1 +D)~z−D~ai, it must be the case that (1 +D)~z−D~ai lies in the hyperplane

Ei. (This holds because we will guarantee that our ε satisfies Property (P), described

above.) Because this point is clearly in P , in the hyperplane Ei, and in all of the

hyperplanes in E, it bears witness that we maintain (
⋂
h∈E h)

⋂
P 6= ∅ always. Hence

after at most n iterations of the while loop, the dimension of the remaining space is

0, and we must enter the case where ~ai = ~z. The algorithm then exits outputting a

convex combination of corners equaling ~x.

It remains to argue that a choice of ε satisfying Property (P) is possible. Assuming

the correctness of our algorithm, we show first that all the coefficients ci computed

by the algorithm have low bit complexity. Indeed, let ~bi = (~ai, 1) for all i. Once we

know the algorithm is correct, the ci’s satisfy

∑
i

ci~bi = (~x, 1), (2.1)

where ci and ~ai are outputs of our algorithm. We will argue that, for these ~ais, the

above system of linear equations has a unique solution. If not, let ~c and ~c ′ be two

different solutions, and di = ci − c′i. We will show by induction on i that di = 0 for

all i. In the base case, consider the hyperplane in E1. We can write a corresponding

(n+1) dimensional vector ~t1, such that for all ~x′ ∈ P , (~x′, 1) ·~t1 ≤ 0, and for all i > 1,

43

~bi ·~t1 = 0. But ~b1 ·~t1 6= 0, otherwise, for any D, (1 +D)~z −D~a1 does not violate the

constraint in E1. On the other hand,
∑

i di
~bi · ~t1 = 0, therefore d1 = 0. Now assume

when i < k, di = 0, we will argue that dk = 0. Let ~tk be the corresponding vector for

the hyperplane in Ek. For any j > k, ~bk ·~tk = 0, and by the Inductive Hypothesis, for

any i < k, di = 0, therefore dk~bk · ~tk = 0. But we know ~bk · ~tk 6= 0, otherwise, for any

D, (1 +D)~z−D~ak does not violate the constraint in Ek. So dk = 0. Thus, di = 0 for

all i.

So we have argued that the cis are in fact the unique solution to the above linear

system. We also know that the corners ~ai (in fact all corners of the polytope) have

poly(n, b) bit complexity. Applying the theory of Gaussian elimination, we deduce

that each ci can be described using no more than poly(n, b) bits, so the coefficients

output by our algorithm have low bit complexity. Hence the ~z maintained by the

algorithm has poly(n, b) bit complexity. So the intersections dh of the ray R(d) =

{(1 + d)~z − d~ai} with the hyperplanes h ∈ B(P) that do not contain both ~z and ~ai

(and hence the whole ray) also have poly(n, b) bit complexity. This guarantees that

we can chose ε to be 2−poly(n,b) to satisfy Property (P).

The above reasoning justifies the correctness of the algorithm. It is also now clear

that every step runs in time polynomial in b, n, the runtime of SO and the runtime

of CO, and each step is executed at most n + 1 times. So the entire algorithm runs

in polynomial time.

44

Chapter 3

Feasibility of Single-Item Reduced

Forms

In this chapter, we study the feasibility of single-item reduced form auctions. For a

single item and independent (but not necessarily identically distributed) bidders, we

show that any feasible reduced form auction can be implemented as a distribution over

hierarchical mechanisms. We also give a polynomial-time algorithm for determining

feasibility of a reduced form auction, or providing a separation hyperplane from the

set of feasible reduced forms.

We overview our results in Section 3.1. We start with the special case when

bidders are i.i.d., and the reduced form is bidder-symmetric. Then, we generalize

our result to the case when bidders are independent but not identical. In the end,

we provide a stronger characterization result for implementing a single-item feasible

reduced form auction. We show that any single-item feasible reduced form auction

can be implemented as a distribution over hierarchical mechanisms which respect the

same ordering of types. Section 3.2 provides the full proof for the special case when

bidders are i.i.d., and the reduced form is bidder-symmetric. Section 3.3 provides

details for the case that bidders are independent. Section 3.4 provides the full proof

for the strong characterization result for implementing single-item reduced forms.

45

3.1 Overview of Our Results

Single-item, Bidder-Symmetric Reduced Forms, i.i.d. Bidders

In the case of a single item and i.i.d. bidders, Border provided a necessary and

sufficient condition for a bidder-symmetric reduced form to be feasible, generalizing

prior partial results of Maskin-Riley [MR84] and Matthews [Mat84]. Let us review

Border’s theorem.

Theorem 3 ([Bor91]). Suppose that the bidder’s types are i.i.d. distributed according

to some measure µ over T . Then a bidder-symmetric reduced form π is feasible if an

only if

∀S ⊆ T : m ·
∫
S

π(t)dµ(t) ≤ 1− (1− µ(S))m. (3.1)

Simply put, a reduced form is feasible if and only if the probability that the item is

awarded to a type in some set S (as computed by the reduced form) is at most the

probability that someone with type from S shows up to the auction (as computed by

the type distribution), for all subsets of types S ⊆ T . We call a set that violates this

condition a constricting set. Clearly, the existence of a constricting set bears witness

that the reduced form is infeasible, as the auctioneer cannot possibly award the item

to someone in S if no one in S shows up. Border’s theorem states that this is in fact

a sufficient condition.

Border’s original paper considered continuous type spaces (hence the integral

in (3.1)), and the proof was based on measure theory. The following extension of

the theorem was also shown: If there exists a constricting set S, then there is also a

constricting set of the form Sx, where Sx = {A|π(A) > x}, for some x. In the case of

finite type spaces, we can determine the feasibility of a reduced form auction in time

O(c log c+c ·m), where c = |T |, as after sorting the type space in decreasing π’s there

are only c different subsets of the form Sx, and a dynamic program can find us if any

of them violates (3.1) in time O(c · m). In other words, determining the feasibility

of a bidder-symmetric reduced form, for a single item, and many i.i.d. bidders is

46

easy. However, the following important question was left unanswered: Given a fea-

sible reduced form, can we efficiently obtain a mechanism implementing the reduced

form? Notice that answering this question in the affirmative is absolutely necessary

to be able to run the auction specified by the reduced form. Our first contribution is

solving this problem.

Theorem 4. Under the same assumptions as Theorem 3, given a bidder-symmetric

single-item reduced form we can determine if it is feasible, or find a hyperplane sepa-

rating it from the set of feasible bidder-symmetric reduced forms, in time O(c · (log c+

m)), where c = |T |. If the reduced form is feasible, we provide a succinct description

of a mechanism implementing the reduced form, in time polynomial in c · m. The

description of the mechanism is just (at most) c + 1 probabilities and an equal num-

ber of orderings of T . 1 The mechanism itself runs as follows: given the reported

type profile, the mechanism samples a random subset of bidders in time polynomial in

O(cm), and the item is allocated uniformly at random to some bidder in that subset,

or the item is thrown away.

We prove Theorem 4 in Section 3.2, as a corollary of Proposition 2 and Theorem 2

of Section 3.2 and 2.8 respectively. In proving our result, we consider the following

type of mechanisms:

Definition 4. A hierarchical mechanism consists of a function H : T → [c] ∪

{LOSE}; one should interpret LOSE as a value larger than c. On bid vector (A1, . . . , Am),

the mechanism has the following behavior: If H(Ai) = LOSE for all i, the mecha-

nism throws the item away. Otherwise, the item is awarded uniformly at random to

a bidder in argminiH(Ai).

In other words, a hierarchical mechanism breaks down the type space into a hierarchy.

When the bidders arrive and submit their types, the mechanism finds the highest-

priority level of the hierarchy that is populated by the submitted types, and gives the

item uniformly at random to a bidder whose type falls in that level of the hierarchy

(unless every bidder is a loser, in which case the mechanism throws the item away).

1An ordering may have equalities, but must be total (compare every pair of elements in T).

47

We say that a hierarchical mechanism H is well-ordered w.r.t. π if: π(A) ≥ π(A′)⇒

H(A) ≤ H(A′). We prove the following characterization result about feasible bidder-

symmetric reduced forms:

Theorem 5. When bidders are i.i.d., every feasible bidder-symmetric single-item

reduced form π can be exactly implemented as a distribution over at most c+ 1 well-

ordered with respect to π hierarchical mechanisms.

Theorem 5 alone is not enough to allow us to implement a given bidder-symmetric

reduced form. Indeed, if π(·) takes θ (can be as large as c) distinct values, there are

2θ different well-ordered w.r.t. π hierarchical mechanisms. From here, we switch to

our vector-view of reduced forms (as vectors ~π in [0, 1]|T |) and study the geometry

of the space of feasible mechanisms respecting the order on the type-space induced

by a given reduced form ~π, which we will call P . We show that, in fact, P is a

θ-dimensional polytope whose corners are exactly the 2θ different well-ordered w.r.t.

~π hierarchical mechanisms. Using the geometric algorithm in Section 2.8 we can

decompose ~π into a convex combination of at most c+ 1 corners of P in polynomial

time. This convex combination is exactly a distribution over well-ordered w.r.t. ~π

hierarchical mechanisms that implements ~π. The geometric algorithm runs in time

poly(m, c), and sampling from the distribution output by our algorithm takes time

O(c). We provide the details of our approach and proofs of the relevant claims in

Section 3.2 and 2.8.

Single-item Reduced Forms, Non-i.i.d. Bidders

Recently, an alternative proof of Border’s theorem for distributions with finite support

was discovered in [Bor07] and again in [CKM11], the latter using a clean network-flow

interpretation. These proofs extend Theorem 3 to independent, but not necessarily

identical, bidders and non-symmetric reduced forms. In this case, (3.1) is replaced

by the following necessary and sufficient condition:

∀S1 ⊆ T1, . . . , Sm ⊆ Tm :
∑
i

∑
A∈Si

πi(A) Pr[ti = A] ≤ 1−
∏
i

(1− Pr[ti ∈ Si]). (3.2)

48

The interpretation of the LHS and RHS of the above inequality is the same as the

one given above for (3.1) except generalized to the non-iid non-symmetric setting. In

addition to the above condition, [CKM11] proves a generalization of Border’s extended

result: If there is a constricting S = (S1, . . . , Sm), then there is also a constricting

set of the form S ′ = (S
(1)
x1 , . . . , S

(m)
xm), where S

(i)
xi = {A ∈ Ti|πi(A) > xi}. In other

words, each bidder has a different threshold xi, and S
(i)
xi contains all types of bidder i

with πi above xi. Unfortunately, despite this simplification, there are still
∏

i(|Ti|+1)

possible constricting sets, and testing each of them would take time exponential in

the number of bidders.

One might hope to obtain a stronger theorem that would only require testing a

number of sets polynomial in c and m. We prove such a theorem by introducing a

notion of a virtual π, defined next. We name it such not because the equation involves

hazard rates or looks anything like that for virtual valuations [Mye81], but because

the spirit of the transformation is the same. Myerson observed that he could make

the most revenue not from the bidder with the highest valuation, but from the bidder

with the highest virtual valuation. Likewise, in our setting, the most difficult types

to satisfy are not the types with the highest π, but the types with the highest virtual

π. The definition of virtual π, which we denote π̂, is actually quite simple.

Definition 5. If π is a reduced form, we define its corresponding virtual reduced

form π̂ as follows: for all i and type A ∈ Ti, π̂i(A) := Pr[πi(ti) ≤ πi(A)]πi(A).

It turns out that this definition exactly captures which types of different bidders are

harder to satisfy. In the bidder-symmetric case of Section 3.1, we were able to compare

a pair of types A and B submitted by bidders i 6= k based only on their corresponding

πi(A) and πk(B). This is no longer the case in the non-iid case, resulting in the more

complicated constricting sets defined above. Nevertheless, we show that A and B can

be compared at face value of π̂i(A) and π̂k(B):

Theorem 6. Suppose that the bidders are independent and there is a single item for

sale. A reduced form π is feasible if and only if: for all x, the sets S
(i)
x = {A ∈

49

Ti|π̂i(A) > x} satisfy:

∑
i

∑
A∈S(i)

x

πi(A) Pr[ti = A] ≤ 1−
∏
i

(1− Pr[ti ∈ S(i)
x]). (3.3)

In particular, we can test the feasibility of a reduced form, or obtain a hyperplane

separating the reduced form from the set of feasible reduced forms, in time linear in∑
i |Ti| · (log (

∑
i |Ti|) +m).

Details of the proof can be found in Section 3.3. We also prove there two analogues

of Theorem 5 in this setting: Theorem 7, which is used for our algorithmic results,

and Theorem 9, which provides a much stronger characterization. The analog of

Definition 4 is the following:

Definition 6. A hierarchical mechanism consists of a function H :
⋃
i(Ti ×

{i})→ [
∑

i |Ti|]∪{LOSE}; one should interpret LOSE as a value larger than
∑

i |Ti|.

On bid vector (A1, . . . , Am), if H(Ai, i) = LOSE for all i, the mechanism throws

the item away. Otherwise, the item is awarded uniformly at random to a bidder in

argminiH(Ai, i).

We say that a hierarchical mechanism H for non-identical bidders is partially-

ordered w.r.t. π if for all i and A,A′ ∈ Ti, πi(A) ≥ πi(A
′)⇒ H(A, i) ≤ H(A′, i). We

say that a hierarchical mechanism is strict if for all bidders i, j and types A ∈ Ti, B ∈

Tj: i 6= j ⇒ (H(A, i) 6= H(B, j) ∨H(A, i) = H(B, j) = LOSE) (i.e. there is always

a unique winner in argminiH(Ai, i) if one exists, because each level (except possibly

for LOSE) contains types from only a single bidder). Our algorithmic extension of

Theorem 5 is the following:

Theorem 7. When bidders are independent, but not necessarily identically distributed,

every feasible single-item reduced form π can be exactly implemented as a distribution

over at most
∑

i |Ti|+ 1 strict, partially-ordered w.r.t. π hierarchical mechanisms.

From here, we take the same geometric approach as in Section 3.1 and study the

geometry of the set of feasible reduced forms that respect the partial-ordering of types

50

induced by a given reduced-form π. Again we show that this is a (
∑

i di)-dimensional

polytope, P , where di (could be as large as |Ti|) is the number of distinct values

that πi(·) takes on input from Ti, and that the corners of P are exactly the strict,

partially-ordered w.r.t. π hierarchical mechanisms. Writing a point in P as a convex

combination of
∑

i |Ti| + 1 corners is no longer an easy procedure. Not only does P

have an exponential number of corners, but there are also exponentially many hyper-

planes defining the boundary of P (where there were only 2 ·c such hyperplanes in the

i.i.d. case). Luckily, Theorem 6 provides an efficient separation oracle for membership

in P . By making use of this separation oracle instead of checking the exponentially-

many boundary equations one by one, the geometric algorithm of Section 2.8 outputs

a representation of a given π as a convex combination of at most
∑

i |Ti| + 1 cor-

ners of P , which is exactly a distribution over the corresponding
∑

i |Ti| + 1 strict,

partially-ordered w.r.t. π hierarchical mechanisms. Putting this approach together

with Theorems 6 and 7, we obtain in Section 3.3 the algorithmic result of this section:

Theorem 8. When bidders are independent, given a single-item reduced form we

can determine if it is feasible, or find a hyperplane separating it from the set of

feasible reduced forms, in time linear in
∑

i |Ti| · (log (
∑

i |Ti|) +m). If the reduced

form is feasible, we can compute a succinct description of a mechanism implementing

the reduced form, in time polynomial in
∑

i |Ti|. The description of the mechanism

is just (at most)
∑

i |Ti| + 1 probabilities and the same number of total orderings of⋃
i(Ti×{i}). The mechanism itself runs as follows: given the reported type profile, the

mechanism samples a random total ordering of all bidders’ types in time O(
∑

i |Ti|),

and allocates the item to the bidder whose reported type is highest in that ordering,

or throws the item away.

While Theorem 7 does provide some structure to the otherwise unknown set of

feasible mechanisms for independent bidders, the result is not as compelling as that

of Theorem 5. One might have hoped that every feasible reduced form can be im-

plemented as a distribution over virtually-ordered hierarchical mechanisms (that is,

hierarchical mechanisms such that π̂i(A) ≥ π̂j(B) ⇒ H(A, i) ≤ H(B, j)). Unfortu-

51

nately, this is not true, as is shown in Section 3.3. Despite this, we show that a strong

generalization of Theorem 5 holds in this setting. Let σ be a total ordering on the

elements of
⋃
i(Ti × {i}) (i.e. a mapping σ :

⋃
i(Ti × {i}) → [

∑
i |Ti|]). We say that

σ respects π if πi(A) > πi(B) ⇒ σ(A, i) < σ(B, i). We also say that a hierachical

mechanism H is σ-ordered if σ(A, i) < σ(B, j) ⇒ H(A, i) ≤ H(B, j). We prove the

following theorem:

Theorem 9. If a single-item reduced form π is feasible, there exists a total ordering

σ on the elements of
⋃
i(Ti × {i}) that respects π such that π can be implemented as

a distribution over σ-ordered hierarchical mechanisms.

We provide the proof of Theorem 9 in Section 3.4.

3.2 Single-item, I.I.D. Bidders, Bidder-Symmetric

Reduced Forms

We provide the details and proofs of the techniques discussed in Section 3.1 for single-

item, i.i.d. bidders, and bidder-symmetric reduced forms, beginning with some tech-

nical lemmas.

Lemma 1. Every feasible bidder-symmetric reduced form auction π for i.i.d. bidders

and a single item can be implemented (not necessarily exactly implemented) as a

distribution over well-ordered w.r.t. π hierarchical mechanisms.

Proof. Our proof is by induction on the number of distinct non-zero values in {π(A)}A∈T .

Base Case: There is a single non-zero value in this set, equal to some x ≤ 1. The

mechanism that gives the item uniformly at random to a bidder whose reported type

A satisfies π(A) = x (if such bidder shows up) implements this reduced form as long

as it is feasible.

Inductive Hypothesis: For all 0 < k < θ, every feasible reduced form with k distinct

non-zero values in {π(A)}A∈T can be implemented as a distribution over well-ordered

w.r.t. π hierarchical mechanisms.

52

Inductive Step: We show that the inductive hypothesis extends to the case where

there are exactly θ distinct non-zero values in {π(A)}A∈T . Let X denote the set of

all distributions over well-ordered w.r.t. π hierarchical mechanisms. Then X can

be interpreted as a closed, bounded subset of R2θ , where each coordinate denotes

the probability of using one of the 2θ well-ordered w.r.t. π hierarchical mechanisms.

Therefore, X is compact. For a distribution over hierarchical mechanisms M ∈ X,

denote by M(A) the probability that a bidder reporting type A receives the item

under M . Define the function F : X → R as:

F (M) = max
A
{π(A)−M(A)}.

Let us use the Euclidean distance in X as a subset of R2θ . As X is a compact space,

and F is a continuous function, F attains its minimum in X. Let M denote one such

minimizer of F . Then if F (M) ≤ 0, M implements the reduced form. If F (M) > 0, we

will show a contradiction. Let S denote the subset of types argmaxA{π(A)−M(A)},

i.e. the subset of types who are the most unsatisfied by M .

We show first that, if S contains every non-zero type, then the reduced form is

infeasible. We may, w.l.o.g., assume that M always awards the item to a non-zero

type if one shows up, as this will not decrease M(A) for any non-zero A. Therefore,

we know that ∑
A:π(A)6=0

Pr[A]M(A) = Pr[see a non-zero type].

However, if π(A)−M(A) > 0 for all non-zero types, then we must have

∑
A:π(A)6=0

Pr[A]π(A) > Pr[see a non-zero type]

and the reduced form is infeasible. So if the reduced form is feasible, S must be

missing at least one non-zero type.

Now let s = |{π(A)}A∈S| be the number of distinct non-zero values assigned by π

to types in S. We argue that s < θ. To see this, it suffices to observe the following:

for all types B and B′, π(B) = π(B′) implies that M(B) = M(B′) (this is because, by

53

definition, all hierarchical mechanisms H in the support of M satisfy H(B) = H(B′)).

So in particular either B,B′ ∈ S or B,B′ /∈ S, but it cannot be that one of B,B′ is

in S and the other is not. And because S is missing at least one non-zero type, s < θ.

To show a contradiction to F (M) > 0, let us define a new reduced form π′ as

follows. For all A ∈ S, set π′(A) = π(A). For all A /∈ S, set

π′(A) = max
B∈S|π(B)<π(A)

{π(B)},

unless {B | B ∈ S ∧ π(B) < π(A)} is empty in which case we set π′(A) = 0. Observe

that the number of distinct non-zero values in {π′(A)}A∈T is exactly s < θ. So it

follows by our inductive hypothesis that π′ can be implemented by a distribution over

well-ordered (with respect to π′) hierarchical mechanisms. In fact, as π(A) ≥ π(A′)⇒

π′(A) ≥ π′(A′), every hierarchical mechanism that is well-ordered with respect to π′

is also well-ordered with respect to π. Call M ′ the distribution over well-ordered

hierarchical mechanisms implementing π′. Now, set ε = (F (M)− argmaxA/∈S{π(A)−

M(A)})/2, and consider the distribution M ′′ = (1 − ε)M + εM ′ (with probability

(1− ε) sample from M , with probability ε sample from M ′).

What is M ′′(A)? If A ∈ S, then M ′(A) = π(A), so M ′′(A) = (1−ε)M(A)+επ(A).

So for all A ∈ S, M ′′(A) > M(A), hence π(A)−M ′′(A) < F (M).

If A /∈ S, then M ′(A) ≥ 0, so M ′′(A) ≥ (1 − ε)M(A) ≥ M(A) − ε, so we get

π(A)−M ′′(A) ≤ π(A)−M(A) + ε < F (M). Putting both observations together, we

see that F (M ′′) < F (M), a contradiction.

So we must have F (M) ≤ 0, meaning M implements the reduced form, completing

the inductive step and the proof of the lemma.

Corollary 1. Every feasible bidder-symmetric reduced form π can be exactly imple-

mented as a distribution over well-ordered w.r.t. π hierarchical mechanisms.

Proof. It follows from Lemma 1 that π can be implemented as a distribution over well-

ordered w.r.t. π hierarchical mechanisms. Let then X denote the set of distributions

over well-ordered w.r.t. π hierarchical mechanisms that implement π. As in Lemma 1

the set X, viewed as a subset of R2θ , where θ is the number of distinct non-zero values

54

in π, is compact. We can also define the function G : X → R as:

G(M) = max
A
{M(A)− π(A)}.

Equipping X with the Euclidean distance of R2θ , G is a continuous function on X.

As X is compact and G continuous, G attains its minimum in X.

We show that the minimum of G is exactly 0 (i.e. that a minimizer of G exactly

implements π), following an induction similar to the one used in Lemma 1 in terms

of the number of distinct non-zero values in {π(A)}A∈T . We sketch the steps involved

for the inductive step. Take any minimizer M of G. If G(M) ≤ 0, then because

M has to implement π, M must exactly implement π. If G(M) > 0, then let S =

T − argmaxA{M(A) − π(A)}. Then, for all A ∈ S, define π′(A) = π(A). For all

A /∈ S, define π′(A) = maxB∈S|π(B)≤π(A){π(B)}, unless {B : B ∈ S ∧ π(B) ≤ π(A)}

is empty, in which case set π′(A) = 0. As argmax{M(A) − π(A)} can’t possibly be

empty the number of distinct non-zero values in {π′(A)}A∈T is smaller than that in

{π(A)}A∈T . (We still use the observation that, for all types B and B′, π(B) = π(B′)

implies that M(B) = M(B′)). The rest of the inductive step proceeds identically

with that in the proof of Lemma 1, resulting in a contradiction. Hence, it can’t be

that the minimizer of G satisfies G(M) > 0.

To proceed we need a definition. Let >:= A1 > A2 > . . . > Ak be a total ordering

of a set Tk := {A1, . . . , Ak} of k types, and consider a setting where we have m

bidders whose types are distributed i.i.d. over Tk. We say that a bidder-symmetric

reduced form π : Tk → [0, 1] respects > iff π(A1) ≥ π(A2) ≥ . . . ≥ π(Ak). We also

say that an hierarchical mechanism H on Tk is well-ordered with respect to > iff

H(A1) ≤ H(A2) ≤ . . . ≤ H(Ak).
2 With respect to these definitions we show the

following proposition.

2Notice that this definition of well-ordered hierarchical mechanism (with respect to >) is very
similar to its counterpart in the main body (with respect to π), but different. Being well-ordered
with respect to π certainly imposes the same constraints as being well ordered with respect to any
> that π respects. The difference is that being well-ordered with respect to π may also impose some
equality constraints, if π(A) = π(B) for types A 6= B.

55

Proposition 2. Consider m bidders whose types are distributed i.i.d. over Tk :=

{A1, . . . , Ak} and a total ordering >:= A1 > A2 > . . . > Ak of Tk. The set of

feasible bidder-symmetric reduced forms that respect > is a k-dimensional polytope

whose corners are exactly the 2k hierarchical mechanisms that are well-ordered with

respect to >.

Proof. As a corollary of Theorem 3, a reduced form respects > and is feasible if and

only if

π(Ai) ≥ π(Ai+1) ∀i ∈ [k]; (3.4)∑
j≤i

m · Pr[Aj]π(Aj) ≤ 1−

(
1−

∑
j≤i

Pr[Aj]

)m

∀i ∈ [k]; (3.5)

where for notational convenience we denote π(Ak+1) = 0. We have hence shown that

the set of feasible bidder-symmetric reduced forms that respect > is a k-dimensional

polytope.

We proceed to show that each well-ordered w.r.t. > hierarchical mechanism is

a corner. Let H be such a mechanism and π be the reduced form that it induces.

Then, for all i (including i = k, denoting H(Ak+1) = LOSE) we either have H(Ai) =

H(Ai+1), in which case π(Ai) = π(Ai+1), or H(Ai) < H(Ai+1), in which case
∑

j≤im ·

Pr[Aj]π(Aj) = 1 − (1 −
∑

j≤i Pr[Aj])
m, because the item is always awarded to one

of the top i types whenever one is present. Therefore, at least k of the inequalities

defining the polytope are tight. And it is easy to see that there is a unique reduced

form making these inequalities tight. It is also clear that every well-ordered w.r.t.

> hierarchical mechanism is inside the polytope. So every well-ordered w.r.t. >

hierarchical mechanism is a corner of the polytope.

Finally, we show that there are no other corners. Assume for contradiction that

there was a corner π of the polytope that is not a well-ordered w.r.t. > hierarchi-

cal mechanism. Then by Corollary 1, we know that π can be written as a convex

combination of well-ordered w.r.t. π hierarchical mechanisms, and hence as a convex

combination of well-ordered w.r.t. > hierarchical mechanisms. (As π respects > a

56

hierarchical mechanism that is well-ordered w.r.t. π will also be well-ordered w.r.t.

>). As every well-ordered w.r.t. > hierarchical mechanism is a corner of the polytope,

and π is not one of them, this means that π can be written as a convex combination

of other corners of the polytope, which contradicts that π is itself a corner.

Therefore we have shown that every feasible bidder-symmetric reduced form re-

specting > lies inside the afore-described polytope, every well-ordered w.r.t. > hier-

archical mechanism is a corner of this polytope, and there are no other corners. This

establishes the proposition.

Now we can put everything together to prove Theorems 5 and 4.

Proof of Theorem 5: Suppose that the bidders’ types are sampled i.i.d. from T

according to D1, and let π be a feasible bidder-symmetric reduced form. We do the

following preprocessing operation on the set of types T :

TypeMerge: Find a maximal set of types A1, . . . , A` ∈ T such that π(A1) =

. . . = π(A`). Then remove types A1, . . . , A` from T and add super-type 〈A1, . . . , A`〉

into T ; change D1 to never sample any of A1, . . . , A` and sample the super-type

〈A1, . . . , A`〉 with probability
∑

i Pr[Ai]; and set π(〈A1, . . . , A`〉) = π(A1). Repeat

this procedure until every type in T has different π value, i.e. until the set {π(A)}A∈T
has cardinality |T |.

Let T ′, π′, D′1 be the type-set, reduced-form, type-distribution resulting from the

TypeMerge operation on input π. We claim that:

1. π′ is a feasible bidder-symmetric reduced form for bidders sampled i.i.d. from

D′1. This follows immediately from the feasibility of π. Indeed it follows from

Theorem 3 and our discussion in Section 3.1 that a sufficient condition for the

feasibility of π′ is for it to satisfy Eq. (3.1) for all subsets of types of the form

{A | A ∈ T ′ ∧ π′(A) ≥ x}. On the other hand the feasibility of π implies that π

satisfies Eq. (3.1) for all subsets of types of the form {A | A ∈ T ∧ π(A) ≥ x}.

This together with the nature of our TypeMerge operation implies that π′

satisfies the afore-mentioned sufficient conditions for feasibility.

57

2. A mechanism that exactly implements π′ immediately gives a mechanism ex-

actly implementing π. Indeed, to implement π we just run the mechanism

implementing π′ after replacing in the reported type vector every type A that

was removed from T by TypeMerge by its corresponding super-type.

3. A hierarchical mechanism H ′ that is well-ordered w.r.t. π′ can be expanded into

a hierarchical mechanism H that is well-ordered w.r.t. π. Indeed, if super-type

〈A1, . . . , A`〉 replaced types A1, . . . , A` during the TypeMerge operation we

set H(Ai) := H ′(〈A1, . . . , A`〉), for all i = 1, . . . , `. On the other hand, if a type

A belongs in both T and T ′, we set H(A) := H ′(A). Moreover, if πH′ , πH are

respectively the reduced forms induced by H ′ and H, the following property

is satisfied. If super-type 〈A1, . . . , A`〉 replaced types A1, . . . , A` during the

TypeMerge operation, then πH(Ai) := πH′(〈A1, . . . , A`〉), for all i = 1, . . . , `.

On the other hand, if a type A belongs in both T and T ′, then πH(A) := πH′(A).

Now, suppose that the cardinality of T ′ is k. Given that π′ assigns a distinct

probability to every type in T ′, it induces a total ordering on T ′. In particular, suppose

that T ′ := {A1, . . . , Ak}, where π′(A1) > π′(A2) > . . . > π′(Ak). By Proposition 2,

π′ lies inside a k-dimensional polytope whose corners are exactly the 2k hierarchical

mechanisms that are well-ordered with respect to the order >:= A1 > . . . > Ak. By

Carathéodory’s Theorem, every point in the polytope can be written as a convex

combination of at most k + 1 corners. As a convex combination of corners is exactly

a distribution over well-ordered hierarchical mechanisms w.r.t. >, we get that π′ can

be written as a distribution over hierarchical mechanisms that are well-ordered w.r.t.

>, and hence also w.r.t. π′. Now we can expand all hierarchical mechanisms in the

support of the distribution, according to the procedure described in Step 3 above, to

obtain that π can be written as a distribution over hierarchical mechanisms that are

well-ordered w.r.t. π. �

Proof of Theorem 4: It follows from our discussion in Section 3.1 that a bidder-

symmetric reduced form π̃ is infeasible if and only if it violates Eq. (3.1) for a subset

58

of types of the form {A | A ∈ T ∧ π̃(A) ≥ x}. Since there are at most c ≡ |T | such

sets we can efficiently determine feasibility of a given reduced from π̃ or provide a

hyperplane separating it from the set of feasible reduced forms.

We now need to describe how to efficiently find a mechanism implementing a

reduced form π̃ that is feasible. In view of the TypeMerge operation defined in the

proof of Theorem 5, we can w.l.o.g. assume that π̃ assigns a distinct probability to

every type in T . (Otherwise we can always run TypeMerge to merge types sharing

the same π̃-probability to super-types and apply the procedure outlined below to the

output of the TypeMerge operation, and then go back to the original π̃). Under

the assumption that π̃ assigns distinct probabilities to all types in T , Proposition 2

implies that π̃ lies inside a c-dimensional polytope, P , whose corners are the well-

ordered w.r.t. π̃ hierarchical mechanisms. Therefore we can directly apply Theorem 2

of Section 2.8 to write π̃ as a convex combination of such hierarchical mechanisms,

as long as we can describe the boundary oracle BO, corner oracle CO and separation

oracle SO that are needed for Theorem 2. BO is trivial to implement, as we just

have to include in the set of halfspaces defining the boundary of P those inequalities

described in the proof of Proposition 2. For CO, on input B, we first check that

every hyperplane h ∈ B satisfies BO(h) = yes. If not, output no. Otherwise we

need to check if
⋂
h∈B h contains a corner of P . We know that the corners of P are

exactly the well-ordered w.r.t. π̃ hierarchical mechanisms. So none of the corners lies

in the intersection of the hyperplanes π(Ai) = π(Ai+1) and
∑

j≤im · Pr[Aj]π(Aj) =

1 − (1 −
∑

j≤i Pr[Aj])
m, for any i. (Indeed, for a hierarchical mechanism H and

its induced reduced form π, π(Ai) = π(Ai+1) implies that H(Ai) = H(Ai+1), yet∑
j≤im · Pr[Aj]π(Aj) = 1− (1−

∑
j≤i Pr[Aj])

m implies H(Ai) > H(Ai+1)). So, if B

contains any pair of hyperplanes of this form, output no. Otherwise, for all i such

that π(Ai) = π(Ai+1) ∈ B, set H(Ai) = H(Ai+1), otherwise set H(Ai) = H(Ai+1)−1.

This defines a well-ordered w.r.t. π̃ hierarchical mechanism that is in
⋂
h∈B h, so have

CO output H. Finally, SO is easy to implement as we can just check each of the 2 · c

inequalities written in the proof of Proposition 2 one by one.

So because we can implement BO,CO, SO in polynomial time, we can apply

59

Theorem 2 to write π̃ as a convex combination of at most c + 1 corners, which is

exactly a distribution over at most c+1 well-ordered w.r.t. π̃ hierarchical mechanisms

in polynomial time. �

60

3.3 Single-item, Independent Bidders

Here we provide details of Section 3.1 for the case of single-item independent bid-

ders, and the proofs of Theorems 6, 7 and 8, postponing the proof of Theorem 9 to

Section 3.4. Before proving our theorems, we show that the concept of virtual πs is

necessary. As in, Theorem 6 would be false if we tried to replace π̂ with π.

Proposition 3. There exist reduced forms that are infeasible, yet for all Six of the

form Six = {A | πi(A) > x, ∀i}:

∑
i

∑
A∈Six

πi(A) Pr[ti = A] ≤ 1−
m∏
i=1

(1−
∑
A∈Six

Pr[ti = A]).

Proof. Consider the case with two bidders. Bidder 1 has two types, with Pr[t1 =

A] = 1/8, Pr[t1 = B] = 7/8, π1(A) = 5/8, π1(B) = 0. Bidder 2 has two types, with

Pr[t2 = C] = 1/2, Pr[t2 = D] = 1/2, π2(C) = 1, π2(D) = 3/4.

Then this reduced form is infeasible. Indeed, observe that C must always receive

the item whenever t2 = C, which happens with probability 1/2. So if se have π2(C) =

1, we cannot also have π1(A) > 1/2. So the set {A,C} forms a constricting set.

However, the sets of the form Six are {C}, {C,D}, {C,D,A}, {C,D,A,B}, and they

all satisfy the above inequality.

Proposition 3 shows us that ordering the types of all bidders by decreasing π

doesn’t allow us to correctly determine the feasibility of a reduced form. Similarly,

a partial ordering of the types that only orders a single bidder’s types by decreasing

π doesn’t give enough structure to efficiently determine the feasibility of the reduced

form. What we need is a correct total ordering of the types of all bidders, and we can

obtain it using virtual πs. Here is a quick observation about the virtual πs, followed

by a proof of Theorem 6.

Observation 1. For two types A,B ∈ Ti, π̂i(A) ≥ π̂i(B)⇔ πi(A) ≥ πi(B).

Proof. If πi(A) ≥ πi(B), then Pr[πi(ti) ≤ πi(A)] ≥ Pr[πi(ti) ≤ πi(B)]. Therefore,

π̂i(A) ≥ π̂i(B). The other direction is identical.

61

Proof of Theorem 6: We know from [Bor07, CKM11], that if a reduced form mecha-

nism is infeasible, then there is some constricting set of the form S =
⋃m
i=1 Sxi , where

Sxi = {A | πi(A) ≥ xi, A ∈ Ti}. (Forgive the abuse of notation here. Formally, S is

a collection of m sets of types, one for each bidder. To avoid cumbersome notation

and take union casually in this proof, let us assume that a type A ∈ Ti carries the

name of bidder i, for all i.) Now consider any minimal constricting set of this form,

i.e. a choice of x1, . . . , xm such that replacing Sxi with Sxi −{A} (A ∈ Sxi) results in

S no longer being a constricting set. 3 Now let (i, A) ∈ argmini, A∈Sxi π̂i(A). Then by

Observation 1 and by our choice of S, S − {A} is not a constricting set. Therefore,

adding A to S−{A} must increase the left-hand bound by more than it increases the

right-hand bound:

Pr[ti = A]πi(A) > Pr[ti = A]
∏
j 6=i

Pr[πj(tj) < xj]

=⇒ πi(A)∏
j 6=i Pr[πj(tj) < xj]

> 1.

Now consider any other A′ ∈ Tk, A′ /∈ S and π̂k(A
′) ≥ π̂i(A). Observe first that

we must have A′ from some bidder k 6= i, as every A′′ ∈ Ti with π̂i(A
′′) ≥ π̂i(A) has

πi(A
′′) ≥ πi(A) ≥ xi, so we would have A′′ ∈ S. So for this A′, we have:

πk(A
′) Pr[πk(tk) ≤ πk(A

′)] ≥ πi(A) Pr[πi(ti) ≤ πi(A)]

=⇒πk(A′) Pr[πk(tk) < xk] ≥ πi(A) Pr[πi(ti) < πi(A)]

=⇒πk(A′) Pr[πk(tk) < xk] ≥ πi(A) Pr[πi(ti) < xi]

=⇒πk(A′)
∏
j 6=i

Pr[πj(tj) < xj] ≥ πi(A)
∏
j 6=k

Pr[πj(tj) < xj]

=⇒ πk(A
′)∏

j 6=k Pr[πj(tj) < xj]
≥ πi(A)∏

j 6=i Pr[πj(tj) < xj]
.

3For a minimal set S, there could be many possible choices of x1, . . . , xm. We simply use any of
them.

62

And by our choice of A and the work above, we obtain:

πk(A
′)∏

j 6=k Pr[πj(tj) < xj]
> 1

=⇒ Pr[tk = A′]πk(A
′) > Pr[tk = A′]

∏
j 6=k

Pr[πj(tj) < xj].

This equation tells us directly that we could add A′ to S and still get a constricting

set. In fact, it tells us something stronger. If S ′ =
⋃
j S
′
j, where S ′j ⊆ Tj, is any

constricting set containing S, then we could add A′ to S ′ and still have a constricting

set. This is because the change to the left-hand side of the inequality is the same,

no matter what set we are adding A′ to. It is always Pr[tk = A′]πk(A
′). And the

change to the right-hand side is exactly Pr[tk = A′] times the probability that none

of the types in ∪j 6=kS ′j show up. As we add more types to S, the probability that

none of the types in ∪j 6=kS ′j show up will never increase. So for any constricting set

S ′ containing S, we can add A′ to S ′k and still get a constricting set.

So starting from a constricting set S and a type A ∈ Ti as above we can add every

B ∈ Tj with π̂j(B) ≥ π̂i(A) to S in order to obtain a constricting set of the form

Sx = {B|B ∈ Tj ∧ π̂j(B) ≥ x}, where x = π̂i(A). So every infeasible reduced form

has a constricting set of this form. Taking the contrapositive proves the theorem. �

We say that a hierarchical mechanism H is virtually-ordered if π̂i(A) ≥ π̂j(A
′)⇒

H(A, i) ≤ H(A′, j). While the virtual πs give us a nice structural theorem about

feasible reduced forms and a linear time separation oracle for determining feasibil-

ity (see proof of Theorem 8), the following observation shows that distributions over

virtually-ordered hierarchical mechanisms are not sufficient to implement every fea-

sible reduced form when the bidders are non-i.i.d.

Observation 2. There exist feasible reduced forms that are not implementable as

distributions over virtually-ordered hierarchical mechanisms.

Proof. Consider the following example with two bidders. Bidder one has a single

type, A. Bidder two has two types, B and C and is each with probability 1/2. Then

63

π1(A) = 1/3, π2(B) = 2/3 + ε, π2(C) = 2/3− ε is a feasible reduced form. However,

π̂1(A) > π̂2(C), so no distribution over virtually-ordered hierarchical mechanisms can

possibly have π2(C) > 1/2.

Now that we have motivated Theorems 7 and 8, we proceed to prove them, after

providing the key steps as technical lemmas.

Lemma 2. Every feasible reduced form π for independent bidders and a single item

can be implemented (not necessarily exactly implemented) as a distribution over strict,

partially-ordered w.r.t. π hierarchical mechanisms.

Proof. The proof is almost identical to that of Lemma 1. Here are the main differ-

ences: We do induction on
∑

i di, where di is the number of distinct non-zero values

in {πi(A)}A∈Ti . For the inductive step, X is now taken to be the set of distributions

over strict, partially-ordered hierarchical mechanisms, and it is still compact, viewed

as a subset of the Euclidean space. The function F : X → R is now defined as

F (M) = max
i,A∈Ti

{πi(A)−Mi(A)}.

Again, if we use the Euclidean distance on X, as a subset of the Euclidean space,

F is continuous. Since F is continuous and X is compact, F achieves its minimum

inside X. Let M be a minimizer. For all i, we define Si = {A ∈ Ti|πi(A)−Mi(A) =

F (M)}. In terms of the sets {Si}i we can define an alternative reduced form π′

as follows. For all i, A ∈ Ti: if A ∈ Si, then set π′i(A) = πi(A); otherwise, set

π′i(A) = maxB∈Si|πi(A)≥πi(B){π(B)}, unless {B ∈ Si|πi(A) ≥ πi(B)} is empty in which

case set π′i(A) equal to 0. With these changes, the proof is truly identical to that of

Lemma 1, and we avoid repeating the steps for brevity.

Corollary 2. Every feasible reduced form π for independent bidders and a single

item can be exactly implemented as a distribution over strict, partially-ordered w.r.t.

π hierarchical mechanisms.

Proof. The proof is identical to that of Corollary 1 after making the same modifica-

tions going from Lemma 1 to Lemma 2.

64

We proceed to prove an analog of Proposition 2 in this setting. We need a def-

inition. For all i, let >i:= Ai,1 >
i Ai,2 >

i . . . >i Ai,ki be a total ordering of the set

Ti := {Ai,1, . . . , Ai,ki} of bidder i’s types. We say that a reduced form π respects >i iff

πi(Ai,1) ≥ πi(Ai,2) ≥ . . . ≥ πi(Ai,ki). We also say that an hierarchical mechanism H

is partially-ordered with respect to >i iff H(Ai,1, i) ≤ H(Ai,2, i) ≤ . . . ≤ H(Ai,ki , i).
4

With respect to these definitions we show the following proposition.

Proposition 4. For all i, let >i:= Ai,1 >
i Ai,2 >

i . . . >i Ai,ki be a total ordering of

the set Ti := {Ai,1, . . . , Ai,ki} of bidder i’s types. The set of feasible reduced forms

that respect >1, . . . , >m is a (
∑

i ki)-dimensional polytope whose corners are exactly

the strict, partially-ordered w.r.t. >1, . . . , >m hierarchical mechanisms.

Proof. We know from [Bor07, CKM11] that a reduced form π respects >1, . . . , >m

and is feasible iff

πi(Ai,j) ≥ πi(Ai,j+1) ∀i ∈ [m], j ∈ [ki]

(3.6)∑
i

∑
j≤xi

Pr[ti = Ai,j]πi(Ai,j) ≤ 1−
∏
i

(
1−

∑
j≤xi

Pr[ti = Ai,j]

)
∀x1 ∈ [k1], . . . , xm ∈ [km]

(3.7)

where for notational convenience we denote πi(Ai,ki+1) = 0. In fact, to make our lives

easier in a later proof, we will actually replace (3.7) with:

∑
i

∑
j≤xi

Pr[ti = Ai,j]πi(Ai,j) ≤ 1−
∏
i

(
1−

∑
j≤xi

Pr[ti = Ai,j]

)
∀x1 ∈ [k1 − 1], . . . , xm ∈ [km − 1]

(3.8)∑
i

∑
j≤ki

Pr[ti = Ai,j]πi(Ai,j) ≤ 1 (3.9)

4Notice that this definition of partially-ordered hierarchical mechanism (with respect to {>i}i) is
similar to its counterpart in the main body (with respect to π), but different. Being partially-ordered
with respect to π certainly imposes the same constraints as being partially-ordered with respect to
any {>i}i that π respects. The difference is that being partially-ordered with respect to π may also
impose some equality constraints, if πi(A) = πi(B) for types A 6= B.

65

In the above above replacement, we are basically observing that if (3.9) holds, then

so does (3.7) for any case where at least one i has xi = ki. In addition, (3.8) covers all

other cases. We have hence shown that the set of feasible reduced forms that respect

>1, . . . , >m is a
∑

i ki-dimensional polytope.

We proceed to show that any strict, partially-ordered w.r.t. >1, . . . , >m hierarchi-

cal mechanism H whose reduced-form is π is a corner. For convenience in the proof

assume that Ti∩Tk = ∅, for all i 6= k. This is easy to achieve by having every type of

bidder i carry the name of bidder i, for all i. Let now y = minx Pr[∃i,H(ti, i) ≤ x] = 1,

i.e. the minimum y so that with probability 1 some bidder i will report a type Ai,j

such that H(Ai,j, i) ≤ y. In terms of this y we define y∗ as follows: y∗ := y, if

y 6= LOSE (case 1), and y∗ := y − 1, if y = LOSE (case 2). We observe then that

a type Ai,j ∈ Ti with H(Ai,j, i) > y∗ cannot possibly win the item, as we are either

guaranteed to see some bidder whose type lies on a higher level of the hierarchy (case

1) or the type is mapped to LOSE and is hence given no item (case 2). For all such

i, Ai,j ∈ Ti, we therefore have πi(Ai,j) = πi(Ai,j+1) = · · · = πi(Ai,ki+1) = 0.

We say that a set of types S = ∪i{Ai,1, . . . , Ai,xi} for some x1, . . . , xm is near-

constricting, if the corresponding Inequality (3.7) is tight for x1, . . . , xm. Then, for any

i, Ai,j ∈ Ti with H(Ai,j, i) ≤ y∗, we know that H−1([H(Ai,j, i)]) is a near-constricting

set, because the item is always awarded to a type in H−1([H(Ai,j, i)]) whenever at

least one type from this set is reported. Moreover, if H(Ai,j1 , i) = . . . = H(Ai,j` , i),

for some types Ai,j1 , . . . , Ai,j` ∈ Ti, then πi(Ai,j1) = . . . = πi(Ai,j`). Finally, because

H is strict, if some i, Ai,j ∈ Ti satisfy H(Ai,j, i) ≤ y∗, then H−1(H(Ai,j, i)) ∩ Tk = ∅,

for all k 6= i.

Let us now define the following mapping from types to tight inequalities:

• If a type Ai,j ∈ Ti satisfies H(Ai,j, i) > y∗, then we map Ai,j to the constraint

πi(Ai,j) = πi(Ai,j+1), i.e. the tightness of inequality πi(Ai,j) ≥ πi(Ai,j+1).

• If a type Ai,j ∈ Ti satisfies H(Ai,j, i) ≤ y∗, then:

– if H(Ai,j, i) = H(Ai,j+1, i), we map Ai,j to the constraint πi(Ai,j) =

πi(Ai,j+1), i.e. the tightness of inequality πi(Ai,j) ≥ πi(Ai,j+1);

66

– otherwise, we map Ai,j to the tightness of Inequality (3.7) for the set of

types H−1([H(Ai,j, i)]).

The above discussion ensures that our mapping is injective. Hence π makes at least∑
i ki of the inequalities defining our polytope tight. And it is not hard to see that

there is a unique feasible reduced form making these inequalities tight. So π is a corner

of the polytope. Thus, every strict, partially-ordered w.r.t. >1, . . . , >m hierarchical

mechanism is a corner of the polytope.

We now make the same observation as in Proposition 2 to argue that there are

no other corners. Corollary 2 implies that every point in the polytope can be written

as a convex combination of strict, partially-ordered w.r.t. >1, . . . , >m hierarchical

mechanisms, all of which are corners of the polytope. As no corner of the polytope

can be written as a convex combination of other corners of the polytope, there must

not be any other corners.

And now we are ready to prove Theorems 7 and 8.

Proof of Theorem 7: Using a similar argument as in the proof of Theorem 5 we can

assume without loss of generality that, for all i, π assigns a distinct probability to every

type in Ti. (Otherwise we can define a similar TypeMerge operation, like the one

defined in the proof of Theorem 5, whereby types in Ti that receive the same π value

are merged into super-types.) Under this assumption, Proposition 4 implies that π

lies inside a (
∑

i |Ti|)-dimensional polytope, P , whose corners are the strict, partially-

ordered w.r.t. π hierarchical mechanisms. By Carathéodory’s Theorem, every point

in the polytope can be written as a convex combination of at most (
∑

i |Ti|) + 1

corners. As a convex combination of corners is exactly a distribution over strict,

partially-ordered w.r.t. π hierarchical mechanisms, this proves the theorem. �

Proof of Theorem 8: The first part of the theorem follows immediately as a corollary

of Theorem 6.

We now need to describe how to efficiently find a mechanism implementing a

reduced form π̃ that is feasible. Using a similar argument as in the proof of Theorem 4

we can assume without loss of generality that, for all i, π̃ assigns a distinct probability

67

to every type in Ti. (Otherwise we can merge types in Ti that receive the same π̃

value into super-types, like we did in the proof of Theorem 4, then run the procedure

outlined below, and finally un-merge types.) Under this assumption, Proposition 4

implies that π̃ lies inside a (
∑

i |Ti|)-dimensional polytope, P , whose corners are the

strict, partially-ordered w.r.t. π̃ hierarchical mechanisms. Therefore we can directly

apply Theorem 2 of Section 2.8 to write π̃ as a convex combination of such hierarchical

mechanisms, as long as we can describe the boundary oracle BO, corner oracle CO

and separation oracle SO that are needed for Theorem 2. BO is trivial to implement,

as we just have to include in the set of halfspaces defining the boundary of P those

inequalities described in the proof of Proposition 4. In particular, for convenience in

the remaining of the proof, we include the inequalities of the form (3.6), (3.8) and

(3.9). For CO, on input B, we first check that every hyperplane h ∈ B satisfies

BO(h) = yes. If not, output no. Otherwise, we need to check if
⋂
h∈B h contains a

corner of P . We know that the corners of P are exactly the strict, partially-ordered

w.r.t. π̃ hierarchical mechanisms. To check if there is such a corner in
⋂
h∈B h we

need to do some work.

First, let us use the same notation as in Proposition 4, denoting Ti = {Ai,1, . . . , Ai,ki},

where ki = |Ti| and π̃i(Ai,1) > . . . > π̃i(Ai,ki). Also, let us call a set of types S near-

constricting if either S = ∪i{Ai,1, . . . , Ai,xi} for some x1 ≤ k1 − 1, . . . , xm ≤ km − 1

and Inequality (3.8) is tight for x1, . . . , xm, or if S = ∪iTi and Inequality (3.9) is

tight.

Now given a set B of hyperplanes, if B contains a near-constricting set hyperplane

for the sets of types S1, . . . , Sk, we check first whether these sets satisfy S1 ⊂ S2 . . . ⊂

Sk (possibly after renaming). If not, then there are some two near-constricting sets

Si, Sj with A ∈ Si − Sj, B ∈ Sj − Si for some types A 6= B. Because Si and Sj are

different than ∪iTi and they are near-constricting they must be of the form making

Inequality (3.8) tight. Hence, both Si and Sj miss at least one type of every bidder, so

that the right-hand side of the inequality for Si must be < 1 and similarly the right-

hand side of the inequality for Sj must be < 1. In addition, we cannot have A and B

be types of the same bidder, as we only consider near-constricting sets that respect

68

the partial ordering within every bidder’s type-set. Therefore, A and B belong to

different bidders, and because the probability of seeing a type in Si is < 1 (and the

same holds for Sj), there is a non-zero probability that A and B are both present, but

no other type of Si or Sj is present. Then the near-constricting set equation for set

Si requires that we must give the item to A, 5 and the near-constricting set equation

for Sj requires that we must give the item to B, which is impossible. So if we do not

have S1 ⊂ S2 . . . ⊂ Sk, the hyperplanes do not intersect in a feasible mechanism, and

therefore CO should output no.

Otherwise, CO looks at the other hyperplanes (of the form πi(Ai,j) = πi(Ai,j+1))

that belong to B, and chooses an arbitrary strict, partially-ordered w.r.t. π̃ hierar-

chical mechanism that satisfies the following constraints:

1. H(A, i) < H(A′, i′) for all (A, i) ∈ Sj, (A′, i′) ∈ Sj+1 − Sj, for all j.

2. H(A, i) < H(A′, i′) for all (A, i) ∈ Sk, (A′, i′) /∈ Sk.

3. For all i, Ai,j ∈ Ti:

(a) if the hyperplanes πi(Ai,j) = πi(Ai,j+1), πi(Ai,j+1) = πi(Ai,j+2), . . ., πi(Ai,ki)

= 0(= πi(Ai,ki+1)) are all in B, then H(Ai,j, i) = LOSE;

(b) otherwise, if πi(Ai,j) = πi(Ai,j+1) is inB, then eitherH(Ai,j) = H(Ai,j+1) =

LOSE or H(Ai,j) ≥ H(Ai,j+1)− 1.

We claim that an H satisfying the above constraints exists if and only if
⋂
h∈B h∩

P 6= ∅. By Proposition 4, we know that if there is a corner π in
⋂
h∈B h ∩ P , there

is a strict, partially-ordered w.r.t. π̃ hierarchical mechanism H that implements it.

Without loss of generality we can make two simplifying assumptions about H: (i) For

all t 6= LOSE, |H−1(t)| ≤ 1. Indeed, suppose that |H−1(t)| > 1 for some t 6= LOSE.

Then because H is strict, location t of the hierarchy defined by H only contains types

belonging to the same bidder i. And because H is partially ordered w.r.t. π̃ these

types are consecutive in Ti. So we can changeH to “expand” cell t of the hierarchy into

5Recall that a way to interpret a near-constricting set equation for set S is the following: whenever
at least one bidder reports a type in S to the mechanism, the mechanism gives the item to a bidder
who reported a type in S, with probability 1.

69

consecutive cells containing a single type each in the right order. This has no effect in

the mechanism defined by H. (ii) If H awards the item to bidder i of type Ai,j with

probability 0, we can assume that H(Ai,j, i) = LOSE. Now given (i) and the nature

of S1, . . . , Sk,
6 for H to have the sets S1, . . . , Sk near-constricting it must satisfy the

first two constraints above. Indeed for these constraints not to be satisfied there must

exist `, i, Ai,j, i
′, Ai′,j′ , i 6= i′ such that H(Ai,j, i) < H(Ai′,j′ , i

′) and Ai,j /∈ S` while

Ai′,j′ ∈ S`. But then it must be π(Ai,j) > 0 (because of assumption (ii)), so there is a

positive probability that bidder i of type Ai,j is the highest in the hierarchy when every

bidder except for i′ has declared a type. Still, given that H(Ai,j, i) < H(Ai′,j′ , i
′), even

if i′ declares Ai′,j′ , i will get the item, contradicting that S` is near-constricting. We

argue next that H also needs to satisfy the third constraint above. That constraint

3(a) is satisfied follows immediately from assumption (ii). We argue next that 3(b)

needs to be satisfied. Indeed, suppose there exist Ai,j, Ai,j+1 ∈ Ti and Ai′,j′ ∈ Ti′

such that πi(Ai,j) = πi(Ai,j+1) > 0 and H(Ai,j, i) < H(Ai′,j′ , i
′) < H(Ai,j+1, i). As

πi(Ai,j+1) > 0, it follows that H(Ai,j+1, i) < LOSE, so H(Ai′,j′ , i
′) < LOSE, which

implies that πi′(Ai′,j′) > 0 (otherwise it would be that H(Ai′,j′ , i
′) = LOSE given

(ii)). Now, because bidder i′ wins the item with non-zero probability as type Ai′,j′ ,

there is a non-zero probability that Ai′,j′ is on the highest level of the hierarchy

after sampling from all bidders except for i. In this case, i will win the item by

reporting Ai,j, and lose by reporting Ai,j+1. In all other cases, i is at least as likely

to win the item by reporting Ai,j as Ai,j+1, and therefore we see that bidder i gets

the item strictly more often when reporting Ai,j than Ai,j+1, violating the constraint

πi(Ai,j) = πi(Ai,j+1). So if there is a corner π in
⋂
h∈B h ∩ P it can be implemented

by a strict, partially-ordered w.r.t. π̃ hierarchical mechanism H satisfying the above

constraints. The other direction of our claim is even simpler. If a strict, partially-

ordered w.r.t. π̃ hierarchical mechanism H satisfies all constraints above, then its

induced reduced-form π will immediately satisfy all equalities in B.

Hence to implement CO one just needs to check if there is a strict, partially-

6in particular, the fact that the sets S1, . . . , Sk respect the ordering of the type sets as follows:
For all `, Ai,j ∈ S` implies Ai,j′ ∈ S`, for all j′ ≤ j.

70

ordered w.r.t. π̃ hierarchical mechanism H satisfying the four constraints above.

This task is easy to do efficiently. If a mechanism is found it satisfies all equalities in

B and it is a corner of the polytope by Proposition 4.

SO is also simple to implement. On input ~π, we first check that Inequalities (3.6)

are satisfied (i.e. that ~π respects the total orderings on the bidders’ type-spaces

induced by π̃). Then we use the separation oracle provided by Theorem 6 to verify that

~π is feasible. As all three oracles BO,CO, SO run in polynomial time, we can apply

Theorem 2 to write π̃ as a convex combination of at most
∑

i |Ti|+ 1 corners, which

is exactly a distribution over at most
∑

i |Ti|+ 1 strict, partially-ordered hierarchical

mechanisms in polynomial time. �

71

3.4 Implementation of Single-item Reduced Forms

via Hierarchical Mechanisms

Here we provide the proof of Theorem 9.

Proof of Theorem 9: Let σ be a total ordering over all possible types, σ : ∪i(Ti×{i})→

[
∑

i |Ti|]. Define the unhappiness Fσ(M) of a distribution over σ-ordered hierarchical

mechanisms, M , as follows:

Fσ(M) = max
i,A∈Ti

(πi(A)−Mi(A)).

As we argued formally in earlier sections Fσ can be viewed as a continuous func-

tion over a compact set. Hence it achieves its minimum inside the set. Let then

Mσ ∈ argminM Fσ(M) (where the minimization is over all distributions over σ-

ordered hierarchical mechanisms) and define the set Sσ to be the set of maximally

unhappy types under Mσ; formally, Sσ = argmaxi,A{πi(A)−Mσ
i (A)}. If for some σ

there are several minimizers Mσ, choose one that minimizes |Sσ|. Now, let MO be

the set of the orderings σ that minimize Fσ(Mσ). Further refine MO to only contain

σ’s minimizing |Sσ|. Formally, we first set MO = argminσ{Fσ(Mσ)} and then refine

MO as MOnew = argminσ∈MO{|Sσ|}. We drop the subscript “new” for the rest of

the proof.

From now on, we call a type (A, i) happy if Mi(A) ≥ πi(A), otherwise we call

(A, i) unhappy. Intuitively, here is what we have already done: For every ordering

σ, we have found a distribution over σ-ordered hierarchical mechanisms Mσ that

minimizes the maximal unhappiness and subject to this, the number of maximally

unhappy types. We then choose from these (σ,Mσ) pairs those that minimize the

maximal unhappiness, and subject to this, the number of maximally unhappy types.

We have made these definitions because we want to eventually show that there is an

ordering σ, such that Fσ(Mσ) ≤ 0, and it is natural to start with the ordering that

is “closest” to satisfying this property. We are one step away from completing the

proof. What we will show next is that, if τ ∈ MO does not make every type happy,

72

then we can find some other ordering τ ′, such that Fτ ′(M
τ ′) = Fτ (M

τ), |Sτ ′ | = |Sτ |,

and Sτ ′ = {τ−1(1), . . . , τ−1(|Sτ ′ |)}. In other words, only the top |Sτ ′ | types in τ are

maximally unhappy. From here, we will show that because τ ′ ∈ MO, that Sτ ′ is a

constricting set and get a contradiction.

First, if the maximally unhappy types in Sτ are not the top |Sτ | ones, let i be the

smallest i such that τ−1(i + 1) ∈ Sτ but τ−1(i) /∈ Sτ . We proceed to show that by

changing either the distribution M or the ordering τ , we can always move τ−1(i) into

Sτ and τ−1(i+ 1) out without changing |Sτ | or the value Fτ (M). Then by repeating

this procedure iteratively, we will get the τ ′ we want.

Before we describe the procedure, we introduce some terminology. We say there

is a cut between τ−1(i) and τ−1(i + 1) in a fixed τ -ordered hierarchical mechanism

H if H(τ−1(i)) < H(τ−1(i + 1)), i.e. if τ−1(i) and τ−1(i + 1) are on different levels

of the hierarchy. For the remainder of the proof, we will let l be the level of τ−1(i)

(H(τ−1(i))). When we talk about adding or removing a cut below i, we mean increas-

ing or decreasing H(τ−1(j)) by 1 for all j > i. We now proceed with a case analysis,

for fixed τ−1(i) /∈ Sτ , τ−1(i+ 1) ∈ Sτ . We let (A, j) = τ−1(i) and (B, k) = τ−1(i+ 1).

• Case 1: j = k.

Since τ is a linear extension of the bidder’s own ordering, then πj(A) ≥ πj(B),

but we know that

πj(A)−M τ
j (A) < πj(B)−M τ

j (B),

thus M τ
j (A) > M τ

j (B) ≥ 0. Because A and B are types for the same bidder j,

when A and B are in the same level, they get the item with equal probability.

Therefore, there must exist some H ∈ supp(M τ) with a cut below A, and in

which A gets the item with non-zero probability. We modify M τ by modifying

the mechanisms H in its support as follows.

Let H be a hierarchical mechanism in the support of M τ . If there is no cut below

A, we do nothing. If all of the types on level l and level l+ 1 are from bidder j,

we remove the cut below A. This does not affect Hq(C) (the probability that

73

(C, q) gets the item under H) for any q, C ∈ Tq, because it was impossible for

two types in the combined level to show up together anyway. As we have not

changed Hq(C) for any q, C in the mechanisms we have touched so far, yet none

of these mechanisms has a cut between levels l and l + 1, there must still be

some H ∈ supp(M τ) with a cut below A and in which A gets the item with

non-zero probability (otherwise it couldn’t be that M τ
j (A) > M τ

j (B) ≥ 0). For

such an H, there is at least one type not from bidder j in level l or l + 1. We

distinguish two sub-cases:

– Every bidder has at least one type in level l + 1 or larger (in other words,

every type in level l+1 wins the item with non-zero probability). Consider

now moving the cut from below i to below i − 1. Clearly, A will be less

happy if we do this. Every type not from bidder j in l will be strictly

happier, as now they do not have to share the item with A. Every type

not from bidder j in l + 1 will be strictly happier, as they now get to

share the item with A. It is also not hard to see that all types 6= A from

bidder j in level l and l + 1 are not affected by this change, as they never

share the item with A in either case. So in particular B is unaffected.

Consider instead moving the cut from below i to below i + 1. Then B is

happier, every type not from bidder j in l + 1 is less happy than before

(as they now don’t get to share with B), every type not from bidder j

in l is also less happy than before (because now they have to share with

B), and all types 6= B from bidder j in level l and l + 1 are not affected

by the change (as they never share the item with B in either case). To

summarize, we have argued that, when we move the cut to below i + 1,

B becomes strictly happier, and every type that becomes less happy by

this change becomes strictly happier if we move the cut to below i − 1

instead. Also, B is unaffected by moving the cut to i− 1. So with a tiny

probability ε, move the cut from below i to below i − 1, whenever H is

sampled from M τ . This makes all of the types not from bidder j in level

74

l or l + 1 strictly happier. With a tinier probability δ, move the cut from

below i to below i + 1, whenever H is sampled from M τ . Choose ε to be

small enough that we don’t make A maximally unhappy, and choose δ to

be small enough so that we don’t make any types besides A less happy

than they were in H. Then we have strictly increased the happiness of B

without making A maximally unhappy, or decreasing the happiness of any

other types. Therefore, we have reduced |Sτ |, a contradiction.

– If there is a bidder j′ whose types are all in levels 1, . . . , l (call such bidders

high), then no type in level l+ 1 can possibly win the item. We also know

that: every high bidder has at least one type in level l by our choice of H

(otherwise A would get the item with probability 0); and all high bidders

are different than j, since B is in level l+ 1. Now we can basically use the

same argument as above. The only difference is that when we move the

cut to below i − 1 or the cut to below i + 1, types in level l + 1 that are

different than B will remain unaffected (i.e. the affected types different

from B are only those in level l). But since every high bidder has a type

in level l, B will be unaffected in the first case but strictly happier in the

second, and it is still the case that every type who is made unhappier by

moving the cut to below i+ 1 is made strictly happier by moving the cut

to below i − 1. So we can carry over the same proof as above, and get a

contradiction.

Therefore, it can not be the case that j = k.

• Case 2: j 6= k and there is never a cut below A.

This case is easy. If we switch (A, j) and (B, k) in τ , then the set Sτ is exactly

the same, and the distribution M τ is exactly the same. However, we have now

relabeled the types in Sτ so that τ−1(i) ∈ Sτ and τ−1(i+ 1) /∈ Sτ .

• Case 3: j 6= k and there is sometimes a cut below A.

Pick a mechanism H in the support of M τ that has a cut between A and B

75

and in which A gets the item with positive probability. (If such a mechanism

doesn’t exist we can remove the cut between i and i + 1 in all mechanisms in

the support without changing the allocation probabilities and return to Case

2). Let now i∗ = maxi′<i{i′|τ−1(i′) ∈ Sτ}. By our choice of i (specifically, that

it is the smallest i such that τ−1(i + 1) ∈ Sτ but τ−1(i) /∈ Sτ), we see that

τ−1(i′) ∈ Sτ for all i′ ≤ i∗, and τ−1(i′) /∈ Sτ for all i∗ < i′ ≤ i. There are again

two sub-cases:

– H(τ−1(i∗)) < l. By our choice of i∗, this means that everyone in level l is

not maximally unhappy. By our choice of H, everyone in level l receives

the item with non-zero probability, so there is at least one type from each

bidder in level l or larger. If we pick a tiny ε, and with probability ε remove

the cut from below i (whenever H is sampled from M τ), then everyone in

level l+ 1 is happier, everyone in level l is unhappier, and everyone else is

unaffected. In particular, B will be strictly happier with this change, as he

now gets to share with A (and possibly others). If we choose a sufficiently

small ε, no one in level l will be made maximally unhappy, and (B, k) will

be removed from Sτ , a contradiction.

– H(τ−1(i∗)) = l. In this case, introduce a cut below i∗ with some probability

ε whenever H is sampled from M τ . The only types who may become

happier by this change are those in level l with τ(C, q) ≤ i∗. The only

types who may become unhappier by this change are those in level l with

τ(C, q) > i∗. Everyone else is unaffected by this change. But, if we can

make any type happier, then we can choose ε small enough, so that we

remove this type from Sτ (this type must be in Sτ as all types in level l

with τ(C, q) ≤ i∗ are) without making any new type maximally unhappy

(as all types that can possibly become unhappier with this change are

not in Sτ). Again, we obtain a contradiction because this would decrease

|Sτ | without increasing Fτ (M
τ). Thus, this change cannot make anyone

happier, and therefore cannot make anyone unhappier. So we may modify

76

Mσ by introducing a cut below i∗ with probability 1 whenever M τ samples

H, thereby removing H from the support of M τ (without making anyone

happier or unhappier) and replacing it with H ′ satisfying: H ′(τ−1(i∗)) <

H ′(τ−1(i)) < H ′(τ−1(i + 1)) and H ′ awards the item to τ−1(i) with non-

zero probability. After this modification, we may return to the previous

sub-case to obtain a contradiction.

Hence, it can not be the case that j 6= k with sometimes a cut below A.

At the end of all three cases, we see that if we ever have τ−1(i) /∈ Sτ and τ−1(i+1) ∈

Sτ , then these types must belong to different bidders, and no mechanism in the

support of M τ ever places a cut between these types. Hence, we can simply swap

these types in τ (as we described in Case 2 above), and we do that repeatedly until we

have Sτ = {τ−1(1), . . . , τ−1(|Sτ |)}. Once such a τ has been found, let k = |Sτ |. Now

consider a mechanism in the support of M τ that has no cut below k, and consider

putting a cut there with some tiny probability ε whenever this mechanism is sampled.

The only effect this might have is that when the item went to a type outside Sτ , it

now goes with some probability to a type inside Sτ . Therefore, if anyone gets happier,

it is someone in Sτ . However, if we make anyone in Sτ happier and choose ε small

enough so that we don’t make anyone outside of Sτ maximally unhappy, we decrease

|Sτ |, getting a contradiction. Therefore, putting a cut below k cannot possibly make

anyone happier, and therefore cannot make anyone unhappier. So we may w.l.o.g.

assume that there is a cut below k in all mechanisms in the support of M τ . But now

we get that the item always goes to someone in Sτ whenever someone in Sτ shows

up, yet everyone in this set is unhappy. Therefore, Sτ is a constricting set, certifying

that the given π is infeasible.

Putting everything together, we have shown that if there is no σ with Fσ(Mσ) ≤ 0

then the reduced form is infeasible. So there must be some σ with Fσ(Mσ) ≤ 0, and

such an Mσ implements the reduced form by sampling only σ-ordered hierarchical

mechanisms, completing the proof. �

77

Chapter 4

Feasibility of General Reduced

Forms

As we have seen in Chapter 3, checking feasibility for reduced form auctions is a

non-trivial task even with only a single item. In this chapter, we study the feasibility

of general reduced form auctions with arbitrary feasibility constraint. Surprisingly,

we manage to find a general approach to solve it.

We first show a characterization result that every feasible auction can be imple-

mented as a distribution over virtual VCG allocation rules. A virtual VCG allocation

rule has the following simple form: Every bidder’s type ti is transformed into a virtual

type fi(ti), via a bidder-specific function. Then, the allocation maximizing virtual

welfare is chosen. We generalize this result to arbitrarily correlated bidders, introduc-

ing the notion of a second-order VCG allocation rule. Next, we give two algorithmic

results on reduced form auctions in settings with arbitrary feasibility and demand

constraints. First, we provide a separation oracle for determining feasibility of a re-

duced form auction. Second, we provide a geometric algorithm to decompose any

feasible reduced form into a distribution over virtual VCG allocation rules. In addi-

tion, we show how to efficiently execute both algorithms given only black box access

to an implementation of the VCG allocation rule.

Section 4.1 provides the characterization result. In Section 4.2, we present an

exact but inefficiently implementation of the separation oracle and decomposition

78

algorithm using the characterization result. In Section 4.3, we briefly describe how to

use a novel sampling technique to make both algorithms efficient, and give full details

in Section 4.4. In Section 4.5, we present the characterization result for correlated

bidders.

4.1 Characterization of General Feasible Reduced

Forms

In this section, we provide our characterization result, showing that every feasible

reduced form can be implemented as a distribution over virtual VCG allocation rules.

In the following definition, V CGF denotes the allocation rule of VCG with feasibility

constraints F . That is, on input ~v = (~v1, . . . , ~vm), V CGF outputs the allocation that

VCG selects when the reported types are ~v.

Definition 7. A virtual VCG allocation rule is defined by a collection of weight

functions, fi : Ti → Rn. fi maps a type of bidder i to a virtual type of bidder i.

On any type profile ~v, the virtual VCG allocation rule with functions {fi}i∈[m] runs

V CGF on input (f1(~v1), . . . , fm(~vm)).1 V V CGF({fi}i∈[m]) denotes the virtual VCG

allocation rule with feasibility constraints F and weight functions {fi}i∈[m].

In other words, a virtual VCG allocation rule is simply a VCG allocation rule,

but maximizing virtual welfare instead of true welfare. It will be convenient to intro-

duce the following notation, viewing the weight functions as a (scaled) n
∑m

i=1 |Ti|-

dimensional vector. Below, fij denotes the jth component of fi.

Definition 8. Let ~w ∈ Rn
Pm
i=1 |Ti|. Define fi so that fij(A) =

wij(A)

Pr[ti=A]
. Then

V V CGF(~w) is the virtual VCG allocation rule V V CGF({fi}i∈[m]).

It is easy to see that every virtual VCG allocation rule can be defined using the

notation of Definition 8 by simply setting wij(A) = fij(A) · Pr[ti = A]. We scale

1If there are multiple VCG allocations, break ties arbitrarily, but consistently. A consistent
lexicographic tie-breaking rule is discussed in Section 4.1. For concreteness, the reader can use this
rule for all results of this section.

79

the weights this way only for notational convenience (which first becomes useful in

Lemma 3). We say that a virtual VCG allocation rule is simple iff, for all ~v1, . . . , ~vm,

V CGF(f1(~v1), . . . , fm(~vm)) has a unique max-weight allocation. We now state the

main theorem of this section, which completely characterizes all feasible reduced

forms.

Theorem 10. Let F be any set system of feasibility constraints, and D be any (pos-

sibly correlated) distribution over bidder types with finite support. Then every feasible

reduced form (with respect to F and D) can be implemented as a distribution over at

most n
∑m

i=1 |Ti|+ 1 simple virtual VCG allocation rules.

Before outlining the proof, we provide a brief example illustrating the content of

Theorem 10. We are not claiming that every feasible allocation rule can be imple-

mented as a distribution over virtual VCG allocation rules. This is not true. What

we are claiming is that every feasible allocation rule has the same reduced form as

some distribution over virtual VCG allocation rules. Consider a scenario with a single

item and two bidders each with two types, A and B that are sampled independently

and uniformly at random. If M is the allocation rule that awards bidder 1 the item

when the types match, and bidder 2 the item when they don’t, then M cannot be im-

plemented as a distribution over simple virtual VCG allocation rules. Because bidder

1 gets the item when both types match, we must always have w11(A) > w21(A) and

w11(B) > w21(B). Similarly, because bidder 2 gets the item when the types don’t

match we must have w21(A) > w11(B) and w21(B) > w11(A). Clearly, no weights

can simultaneously satisfy all four inequalities. However, there is a distribution over

simple virtual VCG allocation rules with the same reduced form.2 The proof of

Theorem 10 begins with a simple observation and proposition.

Observation 3. An allocation rule is feasible if and only if it is a distribution over

feasible deterministic allocation rules.

2Specifically, the reduced form of M is 1
2 · ~1. If we define w(1)

11 (A) = w
(1)
11 (B) = 1, w(1)

21 (A) =
w

(1)
21 (B) = 0, and w

(2)
11 (A) = w

(2)
11 (B) = 0, w(2)

21 (A) = w
(2)
21 (B) = 1, then the allocation rule that

chooses uniformly at random between V V CGF (~w(1)) and V V CGF (~w(2)) also has reduced form 1
2 ·~1.

80

Proof. For any feasible allocation rule M , and any type profile ~v, the (possibly ran-

domized) allocation M(~v) is a distribution over feasible deterministic allocations.

So let M(~v) sample the deterministic allocation Ai(~v) with probability pi(~v). Then

M(~v) can be implemented by uniformly sampling x from [0, 1] and selecting Ai(~v)

iff
∑

j<i pj(~v) < x ≤
∑

j≤i pj(~v). So for y ∈ [0, 1] let M (y) denote the deterministic

allocation rule that on profile ~v implements the deterministic allocation selected by

M(~v) when x = y, then M is exactly the allocation rule that samples x uniformly at

random from [0, 1] and implements the deterministic allocation rule M (x). So every

feasible allocation rule is a distribution over deterministic allocation rules. The other

direction is straight-forward: any distribution over feasible deterministic allocation

rules is still feasible.

Proposition 5. If |D| is finite, F (F ,D) is a convex polytope.

Proof. It is clear that there are only finitely many deterministic allocation rules: there

are finitely many choices per profile, and finitely many profiles. So consider the set S

that contains the reduced form of every deterministic allocation rule that is feasible

with respect to F . We claim that F (F ,D) is exactly the convex hull of S. Consider

any feasible reduced form ~π. Then there is some feasible allocation rule M that

implements ~π. By Observation 3, M is a distribution over deterministic allocation

rules, sampling Mi with probability pi. Therefore, if ~πi denotes the reduced form of

Mi, we must have ~π =
∑

i pi~πi, so ~π is in the convex hull of S. Similarly, if a reduced

form ~π satisfies ~π =
∑

i pi~πi, where ~πi is the reduced form of a deterministic allocation

rule Mi for all i, the allocation rule that selects Mi with probability pi implements ~π.

So the space of feasible reduced forms is exactly the convex hull of S, which is finite,

and hence its convex hull is a polytope.

Now that we know that F (F ,D) is a convex polytope, we want to look at the

extreme points by examining, for any ~w, the allocation rule of F (F ,D) whose reduced

form maximizes ~π · ~w. Lemma 3 and Proposition 6 characterize the extreme points

of F (F ,D), which allows us to prove Theorem 10.

81

Lemma 3. Let ~π be the reduced form of V V CGF(~w) (with an arbitrary tie-breaking

rule) when bidders are sampled from D. Then, for all ~π′ ∈ F (F ,D), ~π · ~w ≥ ~π′ · ~w.

Proof. The proof is straight-forward once we correctly interpret ~π · ~w. Expanding the

dot product and using that fij(A) = wij(A)/Pr[ti = A], we see that:

~π · ~w =
∑
i

∑
j

∑
A∈Ti

πij(A)wij(A)

=
∑
i

∑
j

∑
A∈Ti

πij(A)fij(A) Pr[ti = A].

If the “weight” of awarding item j to bidder i when her reported type is A is

fij(A), then the last line is exactly the expected weight of items awarded by an

allocation rule whose reduced form is ~π. The feasible allocation rule that maximizes

the expected weight of items awarded simply chooses a max-weight feasible allocation

on every profile. This is exactly what V V CGF({fi}i∈[m]) does, i.e. exactly what

V V CGF(~w) does. So the reduced form of V V CGF(~w) exactly maximizes ~x · ~w over

all ~x ∈ F (F ,D).

Proposition 6. Every corner of F (F ,D) can be implemented by a simple virtual

VCG allocation rule, and the reduced form of any simple virtual VCG allocation rule

is a corner of F (F ,D).

Proof. We first prove that every corner of F (F ,D) can be implemented by a simple

virtual VCG allocation rule. From Proposition 5, we know F (F ,D) is a convex

polytope. So for every corner ~π ∈ F (F ,D), there is a weight vector ~w, such that

∀ ~π′ ∈ F (F ,D) and ~π′ 6= ~π,

~w · ~π > ~w · ~π′.

So by Lemma 3, we know that ~π must be the reduced form of V V CGF(~w), as ~π

maximizes ~x · ~w over all ~x ∈ F (F ,D). To see that V V CGF(~w) is simple, assume for

contradiction that there is some profile with multiple max-weight feasible allocations.

Let B denote the allocation rule that chooses the exact same allocation as V V CGF(~w)

on every other profile, but chooses a different max-weight feasible allocation on this

82

profile. Let ~πB denote the reduced form of B. By the definition of B, we still have

~πB · ~w = ~π · ~w. Yet, we also clearly have ~πB 6= ~π, as they are reduced forms for

allocation rules that are identical on all but one profile, where they differ. This

contradicts the choice of ~w, so V V CGF(~w) must be simple.

Now we show that the reduced form of any simple virtual VCG allocation rule is

a corner of F (F ,D). Let ~π be the reduced form of V V CGF(~w). Then for any other

~π′ ∈ F (F ,D), we must have ~π · ~w > ~π′ · ~w. Otherwise, let ~π′ denote a feasible reduced

form with ~π′ · ~w ≥ ~π · ~w, ~π′ 6= ~π and let M ′ implement ~π′. Then clearly, there is some

profile where the allocation chosen by M ′ differs from that chosen by V V CGF(~w) and

its weight with respect to {fi}i∈[m] is at least as large as the weight of the allocation

chosen by V V CGF(~w). As V V CGF(~w) is simple, this is a contradiction. Therefore,

~π · ~w > ~π′ · ~w for all ~π′ 6= ~π ∈ F (F ,D) and ~π is a corner.

Now we are ready to prove Theorem 10.

Proof of Theorem 10: Since F (F ,D) is a convex polytope (Proposition 5), by Carathéodory’s

Theorem, we know that every point in F (F ,D) can be written as a convex combina-

tion of at most n
∑m

i=1 |Ti| + 1 corners of F (F ,D). By Proposition 6, we know that

every corner of F (F ,D) can be implemented by a simple virtual VCG allocation rule.

Finally, we observe that if the allocation rules Mi implement ~πi, then the allocation

rule that samples Mi with probability pi implements
∑

i pi~πi. �

We conclude this section by providing necessary and sufficient conditions for

feasibility of a reduced form. For the following statement, for any weight vector

~w ∈ Rn
Pm
i=1 |Ti|, WF(~w) denotes the total expected weight of items awarded by

V V CGF(~w) (where we assume that the weight of giving item j to bidder i of type A

is fij(A) = wij(A)/Pr[ti = A]). The proof of Lemma 3 implies that the tie-breaking

rule used in V V CGF(~w) does not affect the value of WF(~w), and that no feasible

allocation rule can possibly exceed WF(~w). The content of the next corollary is that

this condition is also sufficient.

Corollary 3. A reduced form ~π is feasible (with respect to F and D) if and only if,

for all ~w ∈ [−1, 1]n
Pm
i=1 |Ti|, ~π · ~w ≤ WF(~w).

83

Proof. As F (F ,D) is a convex polytope, we know that ~π ∈ F (F ,D) if and only if for

all ~w ∈ [−1, 1]n
Pm
i=1 |Ti|:

~π · ~w ≤ max
~π′∈F (F ,D)

~π′ · ~w.

By the definition of V V CGF(~w), the right hand side is exactly WF(~w).

Tie-breaking

Here we discuss tie-breaking. This is important in later sections because we will

want to argue that any virtual VCG allocation rule we use is simple. Because we

only have black-box access to AF , we do not necessarily have any control over the

tie-breaking rule used, which could be problematic. Instead, we would like to enforce

a particularly simple tie-breaking rule by changing ~w to ~w′ such that V V CGF(~w′)

also maximizes ~π · ~w over all reduced forms in F (F ,D), and V V CGF(~w′) is simple.

Additionally, we would like the bit complexity of coordinates of ~w′ to be polynomial in

the bit complexity of coordinates of ~w. Lemma 4 formally that a simple lexicographic

tie-breaking rule can be implemented in the desired manner.

Lemma 4. Let ~w be a weight vector whose coordinates are rational numbers of bit

complexity `1, and let `2 be such that for all i, A ∈ Ti, Pr[ti = A] is a rational number

of bit complexity `2. Then the lexicographic tie-breaking rule can be implemented

by a simple transformation that turns ~w into ~w′ such that V V CGF(~w′) is simple,

V V CGF(~w′) selects a maximum weight allocation with respect to the scaled weights

~w on every profile, and each coordinate of ~w′ is a rational number of bit complexity

n`1

∑m
i=1 |Ti|+ (n

∑m
i=1 |Ti|+ 1)`2 +mn+ n+ 1.

Proof of Lemma 4: Let {fi}i denote the weight functions used by V V CGF(~w) (i.e.

fij(A) = wij(A)/Pr[ti = A]), and rewrite each value fij(A) with a common de-

nominator. Before rewriting, each fij(A) was a rational number of bit complex-

ity `1 + `2. After rewriting, the numerator and denominator of each fij(A) has at

most b = n(
∑m

i=1 |Ti|)(`1 + `2) bits. Now define new weight functions {f ′i}i such

that f ′ij(A) is equal to fij(A) except that 2−b−ni−j−1 is added to its numerator. In

84

going from {fi}i to {f ′i}i, the numerator of the weight of any allocation goes up

by at most 2−b−n−1, not enough to make an allocation optimal if it was subopti-

mal. Moreover, notice that the last mn bits of the numerator are in one-to-one

correspondence with possible allocations. So even if there were any ties before,

there can’t be any ties after the transformation, and ties will be broken lexico-

graphically. It is also obvious that we have only added nm + n + 1 bits to each

numerator of fij(A), and therefore w′ij(A) = f ′ij(A) Pr[ti = A] has bit complexity

b+ nm+ n+ 1 + `2 = n`1

∑m
i=1 |Ti|+ (n

∑m
i=1 |Ti|+ 1)`2 +mn+ n+ 1. �

From now on, whenever we use the term V V CGF(~w), we will implicitly assume

that this tie-breaking rule has been applied. Sometimes we will explicitly state so, if

we want to get our hands on ~w′.

85

4.2 Algorithms for Reduced Forms

The characterization result of Section 4.1 hinges on the realization that F (F ,D) is

a polytope whose corners can be implemented by especially simple allocation rules,

namely simple virtual VCG allocation rules. To compute the reduced form of an op-

timal mechanism, we would like to additionally optimize a linear objective (expected

revenue) over F (F ,D), so we need a separation oracle for this polytope. Additionally,

once we have found the revenue-optimal reduced form in F (F ,D), we need some way

of implementing it. As we know that every corner of F (F ,D) can be implemented

by an especially simple allocation rule, we would like a way to decompose a given

feasible reduced form into an explicit convex combination of corners (which then cor-

responds to a distribution over simple virtual VCG allocation rules). In this section,

we provide both algorithms. For now, we will not worry about the running time of

our algorithms, but just provide a generic framework that applies to all settings. In

Section 4.3 we will describe how to approximately implement these algorithms effi-

ciently with high probability obtaining an FPRAS with only black box access to an

implementation of the VCG allocation rule. The same algorithms with the obvious

modifications also apply to “second-order reduced forms”, using the techniques of

Section 4.5.

4.2.1 Separation Oracle

Grötschel et al. [GLS81] show that exactly optimizing any linear function over a

bounded polytope P is equivalent to having a separation oracle for P . This is known

as the equivalence of exact separation and optimization. The characterization result

of Section 4.1 essentially tells us how to optimize a linear function in F (F ,D), but

not in an inefficient manner. Therefore, our separation oracle can be obtained using

the result by Grötschel et al. As our goal for this section is to provide a generic

framework, we provide detailed proofs here so that we can conveniently modify them

in later sections, in which we provide an efficient construction of the separation oracle.

We know from Corollary 3 that if a reduced form ~π is infeasible, then there is

86

some weight vector ~w ∈ [−1, 1]n
Pm
i=1 |Ti| such that ~π · ~w > WF(~w). Finding such a

weight vector explicitly gives us a hyperplane separating ~π from F (F ,D), provided

we can also compute WF(~w). So consider the function:

g~π(~w) = WF(~w)− ~π · ~w.

We know that ~π is feasible if and only if g~π(~w) ≥ 0 for all ~w ∈ [−1, 1]n
Pm
i=1 |Ti|. So

the goal of our separation oracle SO is to minimize g~π(~w) over the hypercube, and

check if the minimum is negative. If negative, the reduced form is infeasible, and the

minimizer bears witness. Otherwise, the reduced form is feasible. To write a linear

program to minimize g~π(~w), recall that WF(~w) = max~x∈F (F ,D){~x · ~w}, so g~π(~w) is a

piece-wise linear function. Using standard techniques, we could add a variable, t, for

WF(~w), add constraints to guarantee that t ≥ ~x · ~w for all ~x ∈ F (F ,D), and minimize

t − ~π · ~w. As this is a burdensome number of constraints, we will use an internal

separation oracle ŜO, whose job is simply to verify that t ≥ ~x · ~w for all ~x ∈ F (F ,D),

and output a violating hyperplane otherwise.

To implement ŜO, let RF(~w) denote the reduced form of V V CGF(~w). Then we

know that RF(~w) · ~w ≥ ~x · ~w for all ~x ∈ F (F ,D). So if any equation of the form

~x · ~w ≤ t is violated, then certainly RF(~w) · ~w ≤ t is violated. Therefore, for an input

~w, t, we need only check a single constraint of this form. So let ŜO(~w, t) output “yes”

if RF(~w) · ~w ≤ t, and output the violated hyperplane RF(~w) · ~z − y ≤ 0 otherwise.

ŜO allows us to reformulate a more efficient linear program to minimize g~π(~w).

So our separation oracle SO to check if ~π ∈ F (F ,D) is as follows: run the linear

program of Figure 4-1 to minimize g~π(~w). Let the optimum output by the LP be

t∗, ~w∗. If the value of the LP is negative, we know that ~w∗ ·~π > t∗ = WF(~w∗), and we

have our violated hyperplane. Otherwise, the reduced form is feasible, so we output

“yes.”

We conclude this section with a lemma relating the bit complexity of the corners

of F (F ,D) to the bit complexity of the output of our separation oracle. This is handy

for efficiently implementing our algorithms in later sections. We make use a standard

87

Variables:

• t, denoting the value of WF(~w).

• wij(A) for all bidders i, items j, and types A ∈ Ti.

Constraints:

• −1 ≤ wij(A) ≤ 1 for all bidders i, items j, and types A ∈ Ti, guaranteeing that
the weights lie in [−1, 1]n

Pm
i=1 |Ti|.

• ŜO(~w, t) = “yes,” guaranteeing that t ≥ WF(~w).

Minimizing:

• t− ~π · ~w (this is g~π(~w) provided t = WF(~w)).

Figure 4-1: A Linear Program to minimize g~π(~w).

property of the Ellipsoid algorithm (see Theorem 1).

Lemma 5. If all coordinates of each corner of F (F ,D) are rational numbers of bit

complexity `, then every coefficient of any hyperplane output by SO is a rational

number of bit complexity poly(n
∑m

i=1 |Ti|, `).

Proof. The dimension of the LP (shown in Figure 4-1) used to run SO is n
∑m

i=1 |Ti|.

Every constraint of the linear program that is not part of ŜO has bit complexity

O(1), and the coefficients of every hyperplane output by ŜO have bit complexity ` by

our hypothesis. (Recall our discussion in Section 4.1.) So by the theory of Gaussian

elimination, the coordinates of all corners of the LP of Figure 4-1 are rational numbers

of bit complexity poly(n
∑m

i=1 |Ti|, `). Now recall the third property of the Ellipsoid

algorithm from Theorem 1.

4.2.2 Decomposition Algorithm via a Corner Oracle

We provide an algorithm for writing a feasible reduced-form as a convex combination

of corners of F (F ,D), i.e. reduced forms of simple virtual VCG allocation rules. A

decomposition algorithm for arbitrary polytopes P is already given in Theorem 2, and

the only required ingredients for the algorithm is a separation oracle for P , corner

oracle for P , and bound b on the bit complexity of the coefficients of any hyperplane

88

that can possibly be output by the separation oracle. The goal of this section is to

define both oracles and determine b for our setting. Before stating the result, let us

specify the required functionality of the corner oracle.

The corner oracle for polytope P takes as input k (where k is at most the dimen-

sion, in our case n
∑

i |Ti|) hyperplanes H1, . . . , Hk (whose coefficients are all rational

numbers of bit complexity b) and has the following behavior: If no hyperplane in-

tersects P in its interior and there is a corner of P that lies in all hyperplanes, then

such a corner is output. Otherwise, the behavior may be arbitrary. So all we need

to do is define CO and SO, and provide a bound on the bit complexity of the hy-

perplanes output by SO. We’ve already defined SO and bounded the bit complexity

of hyperplanes output by it by poly(n
∑m

i=1 |Ti|, `), where ` is the maximum number

of bits needed to represent a coordinate in a corner of F (F ,D) (see Lemma 5 of

Section 4.2.1). So now we define CO and state its correctness in Theorem 11 whose

proof is in Appendix A.1. In the last line, CO outputs the weights ~w′ as well so that

we can actually implement the reduced form that is output.

Algorithm 2 Corner Oracle for F (F ,D)

Input: Hyperplanes (~w1, h1), . . . , (~wa, ha), a ≤ n
∑m

i=1 |Ti|.
Set ~w =

∑a
j=1

1
a
~wj.

Use the tie-breaking rule of Section 4.1 (stated formally in Lemma 4) on ~w to obtain
~w′.
Output the reduced form of V V CGF(~w′), as well as ~w′.

Theorem 11. The Corner Oracle of Algorithm 4.2.1 correctly outputs a corner of

F (F ,D) contained in ∩aj=1Hj whenever the hyperplanes H1, . . . , Ha are boundary hy-

perplanes of F (F ,D) and ∩aj=1Hj contains a corner. Furthermore, if all coordinates

of all Hj are rational numbers of bit complexity b, and Pr[ti = A] is a rational number

of bit complexity ` for all i, A ∈ Ti, then every coordinate of the weight vector ~w′ is a

rational number of bit complexity poly(n
∑m

i=1 |Ti|, b, `).

89

4.3 Efficient Implementation of Algorithms for Re-

duced Forms

In this section, we show how to approximately implement the separation oracle (SO)

of Section 4.2.1 and the corner oracle (CO) of Section 4.2.2 efficiently with high prob-

ability, thereby obtaining also an approximate decomposition algorithm for F (F ,D).

We begin by bounding the runtime of an exact implementation, showing that it is

especially good when D is a uniform (possibly non-product) distribution of small sup-

port. As above, AF denotes an algorithm that implements the VCG allocation rule

with respect to feasibility constraints F , and rtF(b) denotes the runtime of AF when

each input weight has bit complexity b.

4.3.1 Exact Implementation

The only tricky step in implementing SO and CO is computing RF(~w) for a given ~w.

A simple approach is to just enumerate every profile in the support of D and check

if V V CGF(~w) awards bidder i item j. This can be done in time polynomial in the

cardinality |D| of the support of D, the bit complexity ` of the probabilities used by

D and rtF(poly(b, `)), where b is the bit complexity of ~w’s coordinates. So, if b is an

upper bound on the bit complexity of the coordinates of the weight vectors ~w for which

RF(~w) is computed in an execution of SO (CO), then SO (CO) can be implemented

in time polynomial in n
∑

i |Ti|, |D|, `, b, c, and rtF(poly(b, `)), where c is the bit

complexity of the numbers in the input of SO (CO). Alone, this result is not very

helpful as we can do much more interesting computations in time polynomial in |D|,

including exactly solve MDMDP [DW12]. The interesting corollary is that when D is

a (possibly correlated) uniform distribution over a collection of profiles (possibly with

repetition) whose number is polynomial in n
∑

i |Ti|, the runtime of all algorithms of

Section 4.2 becomes polynomial in n
∑

i |Ti|, c, and rtF(poly(n
∑

i |Ti|, c)), where c

is the bit complexity of the numbers in the input to these algorithms. Corollaries 15

and 16 in Appendix A.2 quantify this statement precisely. It is these corollaries that

90

enable an efficient approximation for arbitrary distributions in the next section.

4.3.2 Approximate Implementation

Now, we show how to “approximately implement” both algorithms in time polyno-

mial in only
∑m

i=1 |Di|, where |Di| is the cardinality of the support of Di, using the

results of Section 4.3.1. But we need to use the right notion of approximation. Sim-

ply implementing both algorithms approximately, e.g. separating out reduced forms

that are not even approximately feasible and decomposing reduced forms that are ap-

proximately feasible, might not get us very far, as we could lose the necessary linear

algebra to solve LPs. So we use a different notion of approximation. We compute a

polytope P ′ that, with high probability, is a “good approximation” to F (F ,D) in the

sense that instead of optimizing over F (F ,D) we can optimize over P ′ instead. Then

we implement both the separation and the decomposition algorithms for P ′ exactly so

that their running time is polynomial in n,
∑m

i=1 |Ti|, c and rtF(poly(n
∑m

i=1 |Ti|, c)),

where c is the number of bits needed to describe a coordinate of the input to these

algorithms.

Approach: So how can we compute an approximating polytope? Our starting point

is a natural idea: Given an arbitrary distribution D, we can sample profiles P1, . . . , Pk

from D independently at random and define a new distribution D′ that samples a

profile uniformly at random from P1, . . . , Pk (i.e. chooses each Pi with probability

1/k). Clearly as k → ∞ the polytope F (F ,D′) should approximate F (F ,D) better

and better. The question is how large k should be taken for a good approximation.

If taking k to be polynomial in n
∑m

i=1 |Ti| suffices, then Section 4.3.1 (specfically,

Corollaries 15 and 16 of Appendix A.2) also implies that we can implement both

the separation and the decomposition algorithms for F (F ,D′) in the desired running

time.

However this approach fails, as some types may very well have Pr[ti = A] <<

1
poly(n

Pm
i=1 |Ti|)

. Such types likely wouldn’t even appear in the support of D′ if k scales

polynomially in n
∑m

i=1 |Ti|. So how would then the proxy polytope F (F ,D′) inform

91

us about F (F ,D) in the corresponding dimensions? To cope with this, for each bidder

i and type A ∈ Ti, we take an additional k′ samples from D−i and set ti = A. D′ still

picks uniformly at random from all k + k′
∑m

i=1 |Ti| profiles.

Now here is what we can guarantee. In Corollary 6 (stated and proved in Sec-

tion 4.4.1), we show that with high probability every ~π in F (F ,D) has some ~π′ ∈

F (F ,D′) with |~π−~π′|∞ small. This is done by taking careful concentration and union

bounds. In Corollary 7 (stated and proved in Section 4.4.1), we show the converse:

that with high probability every ~π′ ∈ F (F ,D′) has some ~π ∈ F (F ,D) with |~π− ~π′|∞
small. This requires a little more care as the elements of F (F ,D′) are not fixed a pri-

ori (i.e. before taking samples from D to define D′), but depend on the choice of D′,

which is precisely the object with respect to which we want to use the probabilistic

method. We resolve this apparent circularity by appealing to some properties of the

algorithms of Section 4.2 (namely, bounds on the bit complexity of any output of SO

and CO). Finally, in Theorems 12 and 13 (stated below and proved in Section 4.4.2),

we put our results together to prove that our approximations behave as desired while

taking k and k′ both polynomial in n
∑m

i=1 |Ti|, thereby achieving the desired runtime.

In the following theorems, Algorithm 3 refers to a pre-processing algorithm (see

Section 4.4.2) that explicitly chooses k and k′, both polynomial in n
∑

i |Ti|, so that

the polytopes F (F ,D) and F (F ,D′) are close with high probability. Algorithm 4

refers to a decomposition algorithm (Section 4.4.2) combining the geometric algorithm

of in Section 2.8 with some bookkeeping to decompose any reduced form in F (F ,D′)

into an explicit distribution over simple virtual VCG allocation rules.

Theorem 12. Given the choice of k, k′ and D′ in Algorithm 3, the following are true

with probability at least 1− e−Ω(n
Pm
i=1 |Ti|/ε):

1. For all ~π ∈ F (F ,D), there is a ~π′ ∈ F (F ,D′) with |~π − ~π′|∞ ≤ ε.

2. For all ~π′ ∈ F (F ,D′), there is a ~π ∈ F (F ,D) with |~π − ~π′|∞ ≤ ε.

Moreover the separation oracle of Section 4.2.1 for feasibility set F and distribution D′

runs in time polynomial in n,
∑m

i=1 |Ti|, 1/ε, c, and rtF(poly(n
∑m

i=1 |Ti|, log 1/ε, c)),

where c is the bit complexity of the coordinates of its input.

92

Theorem 13. Algorithm 4 has the following property on input ~π′ ∈ F (F ,D′) with

probability at least 1 − e−O(n
Pm
i=1 |Ti|/ε): Let ~π denote the reduced form of the output

allocation rule when consumers are sampled from D. Then |~π − ~π′|∞ ≤ ε. Fur-

thermore, the running time of the algorithm is polynomial in n,
∑m

i=1 |Ti|, 1/ε, c, and

rtF(poly(n
∑m

i=1 |Ti|, log 1/ε, c)), where c is the bit complexity of the coordinates of its

input.

Remark 1. Observe that, despite the non-canonical way Theorems 12 and 13 are

stated for FPRASs, the dependence of the running time on the approximation error

and the failure probability is the typical one. Namely, using the stated results as black

box we can simultaneously achieve error probability at most η and approximation error

at most ε in time polynomial in log 1/η, 1/ε, n,
∑

i |Ti|, c and rtF(poly(n
∑m

i=1 |Ti|,

log 1/ε, log log(1/η), c)), where c is the bit complexity of the coordinates of the input

to our algorithms.

93

4.4 Details for Approximate Implementation

Notation We will use the following notation throughout this section: k is the

number of samples taken directly from D, k′ is the number of samples taken from

D−i after fixing ti = A for all i, A ∈ Ti, k′′ is the total number of samples taken (i.e.

k′′ = k + k′
∑

i |Ti|) and D′ is the distribution that samples one of the k′′ sampled

profiles uniformly at random. We also make use of the following, standard Chernoff

bound:

Theorem 14. (Hoeffding [Hoe63]) Let X1, . . . , Xn be independent random variables

in [0, 1], and let X =
∑

iXi/n. Then Pr[|X − E[X]| > t] ≤ 2e−2t2n.

4.4.1 An Approximate Polytope

Every point in F (F ,D) is close to some point in F (F ,D′)

The desired claim is stated at the end of the section as Corollary 6, and the proof is

obtained by a series of small technical lemmas. Throughout this section, we will be

interested in whether a profile with ti = A in the support of D′ is genuine from the

perspective of bidder i (i.e. it was sampled from D without conditioning on anything

except perhaps ti = A) or biased (i.e. it was sampled by conditioning on ti′ = A′ for

some i′ 6= i). Now let us fix an allocation rule M with reduced form ~π if bidders are

sampled from D. What does the reduced form of M look like for bidders sampled

from D′? The expected probability (over the randomness in the types of the other

bidders) that bidder i receives item j conditioning on ti = A on a genuine from

bidder i’s perspective profile is exactly πij(A). However, if the profile is biased, the

probability that bidder i receives item j might have nothing to do with πij(A). So

for a fixed D′, we’ll let Gi(A) denote the (random) set of profiles in the support of D′

with ti = A that were obtained genuinely from the perspective of bidder i, and Bi(A)

denote the set of profiles with ti = A that are biased from the perspective of bidder

i.

Lemma 6. Fix i and A ∈ Ti, let M be any allocation rule, and let D′ be such that

94

|Gi(A)| = x and |Bi(A)| = z (i.e. condition on |Gi(A)| = x, |Bi(A)| = z and then

sample D′). Then over the randomness in generating D′, for all items j and all t ≤ 1,

if ~π′ denotes the reduced form of M when bidders are sampled from D′ and ~π denotes

the reduced form of M when bidders are sampled from D, we have:

Pr
[
|πij(A)− π′ij(A)| > t+

z

x

]
≤ 2e−2t2x.

Proof. Label the profiles in Gi(A) as P1, . . . , Px and Bi(A) as Px+1, . . . , Px+z, and let

Xa be the random variable denoting the probability that M awards item j to bidder

i on profile Pa. Then for all 1 ≤ a ≤ x we have E[Xa] = πij(A). For all a > x, we

have 0 ≤ E[Xa] ≤ 1. As π′ij(A) = 1
z+x

∑
aXa, we see that:

πij(A)− z

x+ z
≤ x

x+ z
πij(A) ≤

x

x+ z
πij(A) +

1

x+ z

z∑
i=1

E[Xx+i] = E[π′ij(A)] ≤

x

x+ z
πij(A) +

z

x+ z
≤ πij(A) +

z

x+ z
.

So |E[π′ij(A)]− πij(A)| ≤ z
x+z

. Therefore, the triangle inequality tells us that in order

to have |πij(A) − π′ij(A)| > t + z
x
> t + z

z+x
, we must have |π′ij(A) − E[π′ij(A)]| > t.

As π′ij(A) is the average of x+ z independent trials, by the Hoeffding inequality, this

happens with probability at most 2e−2t2x.

Lemma 7. For any i, A ∈ Ti, |Gi(A)| ≥ k′. Furthermore, if k > k′
∑

i′ 6=i |Ti′|, for all

x ≤ 1 we have:

Pr

[
|Bi(A)| >

(
2x+

k′

k

)∑
i′ 6=i

|Ti′| · |Gi(A)|

]
≤ 4e−2x2k′n

P
i′ 6=i |Ti′ |.

Proof of Lemma 7: The first claim is obvious, as we fix ti = A in exactly k′ profiles.

For the second claim, there are k′(
∑

i′ 6=i |Ti′|) independent chances to get a profile in

95

Bi(A). Each chance occurs with probability q = Pr[ti = A]. There are k indepen-

dent chances to get additional profiles in Gi(A), and each occurs with probability q.

Therefore, we get that E[|Bi(A)|] = qk′
∑

i′ 6=i |Ti| and E[|Gi(A)|] = k′+ qk. Applying

the Hoeffding inequality, we get

Pr

[∣∣∣ |Bi(A)| − qk′
∑
i′ 6=i

|Ti′|
∣∣∣ > xk′

∑
i′ 6=i

|Ti′ |

]
≤ 2e−x

2k′
P
i′ 6=i |Ti′ |,

and

Pr
[∣∣∣|Gi(A)| − (k′ + qk)

∣∣∣ > xk
]
≤ 2e−x

2k.

Then since k ≥ k′
∑

i′ 6=i |Ti′ |, by union bound, we get that for any x ≤ 1, with

probability at least 1− 4e−2x2k′
P
i′ 6=i |Ti′ | we have the following two inequalities:

|Bi(A)| ≤ qk′
∑
i′ 6=i

|Ti′ |+ xk′
∑
i′ 6=i

|Ti′|

|Gi(A)| ≥ k′ + max{0, (q − x)k} (4.1)

which imply the following two inequalities by ignoring one of the positive terms on

the right-hand side of Equation (4.1):

|Bi(A)| ≤ (q + x)
∑
i′ 6=i

|Ti′ | · |Gi(A)| (4.2)

|Bi(A)| ≤ q + x

q − x
·
k′
∑

i′ 6=i |Ti′|
k

|Gi(A)| (we only use this when q > x) (4.3)

When q ≤ x + k′

k
, Equation (4.2) gives a better bound. Otherwise, Equation (4.3)

gives a better bound. As q decreases, the bound from Equation (4.2) only gets better.

Likewise, as q increases, the bound from Equation (4.3) only gets better. So for any

q, one of the bounds will yield:

|Bi(A)| ≤
(

2x+
k′

k

)∑
i′ 6=i

|Ti′ | · |Gi(A)|

96

as desired.�

Corollary 4. Let M be any allocation rule and assume k > k′
∑

i′ 6=i |Ti′|. Then for

all items j, bidders i, types A ∈ Ti, and all t ≤ 1, if ~π′ denotes the reduced form of M

when bidders are sampled from D′ and ~π denotes the reduced form of M when bidders

are sampled from D, we have:

Pr

[
|πij(A)− π′ij(A)| > t+

(
2t+

k′

k

)∑
i′ 6=i

|Ti′|

]
≤ 6e−2t2k′ .

Proof of Corollary 4: Lemma 7 says that with probability at least 1−4e−2x2k′
P
i′ 6=i |Ti′ | ≥

1− 4e−2x2k′ , D′ is such that |Bi(A)| ≤ (2x+ k′

k
)
∑

i′ 6=i |Ti′| · |Gi(A)| and |Gi(A)| ≥ k′.

For such D′, the bound given by Lemma 6 is:

Pr

[
|πij(A)− π′ij(A)| > t+

(
2x+

k′

k

)∑
i′ 6=i

|Ti′ |

]
≤ 2e−2t2k′ .

So after taking a union bound and setting x = t we get the desired claim. �

Corollary 5. Let M be any allocation rule and assume k > k′
∑

i′ 6=i |Ti′ |. Then if ~π′

denotes the reduced form of M when bidders are sampled from D′ and ~π denotes the

reduced form when bidders are sampled from D, we have:

Pr

[
|~π − ~π′|∞ > t+

(
2t+

k′

k

)∑
i

|Ti|

]
≤ 6n

m∑
i=1

|Ti|e−2t2k′ .

Proof of Corollary 5: Use Corollary 4, observe that
∑

i′ |Ti′| >
∑

i′ 6=i |Ti′| for all i,

and take a union bound over all j, i, A ∈ Ti. �

Corollary 6. Assume k > k′
∑

i |Ti|. Then for all t ≤ 1, with probability at least

1− 6n
m∑
i=1

|Ti|e−2t2k′−n
Pm
i=1 |Ti| ln t,

for every ~π ∈ F (F ,D), there is a ~π′ ∈ F (F ,D′) with |~π−~π′|∞ ≤ 2t+(2t+ k′

k
)
∑m

i=1 |Ti|.

Proof of Corollary 6: Consider an t-`∞ cover of F (F ,D) such that every point in

F (F ,D) is within `∞ distance t of a point in the cover. There is certainly a cover

97

that uses at most
(

1
t

)nPm
i=1 |Ti| points, as there is a cover of the entire hypercube using

this many points. If for every point ~x in the cover, there is a point ~z ∈ F (F ,D′),

such that |~x− ~z|∞ ≤ t+ (2t+ k′

k
)
∑

i |Ti|, then clearly for every point ~π in F (F ,D),

there is a point ~π′ ∈ F (F ,D′) such that |~π − ~π′|∞ ≤ 2t + (2t + k′

k
)
∑

i |Ti| by the

triangle inequality. So we simply take a union bound over all e−n
Pm
i=1 |Ti| ln t points in

the cover and apply Corollary 5 to conclude the proof. �

Every point in F (F ,D′) is close to some point in F (F ,D)

In the previous section, we showed that for all ~π ∈ F (F ,D) there is a nearby ~π′ ∈

F (F ,D′) using the probabilistic method over the choice of D′. In this section, we

want to show the other direction, namely that for any reduced form ~π′ ∈ F (F ,D′)

there is a nearby reduced form ~π ∈ F (F ,D). However, it is not clear how to use

the probabilistic method over the choice of D′ to prove this, as for ~π′ ∈ F (F ,D′) the

allocation rule that implements ~π′ is heavily dependent on D′, which is the object

with respect to which we plan to apply the probabilistic method. To go around this

circularity we show that after fixing k and k′, but before selecting D′, there are not too

many allocation rules that could possibly implement a reduced form that is a corner

of F (F ,D′). Specifically, we show that the reduced form with respect to D′ of any

simple virtual VCG allocation rule is equivalent to one whose functions only output

rational numbers with bit complexity that only depends on k, k′ and the dimension.

In particular, regardless of D′, there is an a-priori fixed set of allocation rules that

implement the corners of F (F ,D′) whose cardinality depends only on k, k′ and the

dimension. So we can still use concentration of measure to argue that the reduced

form π′ of every corner of F (F ,D′) has a nearby reduced form π ∈ F (F ,D). And,

as every point in F (F ,D′) is a convex combination of the corners of F (F ,D′), this

suffices to prove the desired claim. Our starting point is the following observation.

Lemma 8. Let ~π be the reduced form of a simple virtual VCG allocation with respect

to D′. Then each πij(A) is a rational number of bit complexity O(log k′′).

Proof of Lemma 8: In every simple virtual VCG allocation, the probability that

98

bidder i gets item j on profile P is always 1 or 0. Therefore, if ti = A in exactly x

profiles, and bidder i receives item j in exactly x′ of those profiles, πij(A) = x′/x. As

x′ ≤ x ≤ k′′, this value clearly has bit complexity O(log k′′). �

Given Lemma 8 the corners of F (F ,D′) belong to a set of at most (k′′)O(n
P
i |Ti|)

reduced forms that is independent of D′. Still the allocation rules that implement

those reduced forms may vary depending on D′. We show that this can be mitigated

by appealing to the correctness of the decomposition algorithm of Section 4.2.2.

Lemma 9. Suppose that the allocation rule M implements a corner ~π of F (F ,D′).

Then there is a virtual VCG allocation rule V V CG({fi}i∈[m]) whose reduced form

with respect to D′ is exactly ~π and such that each fi only outputs rational numbers of

bit complexity fc(n
∑m

i=1 |Ti| log k′′), where fc(·) is a polynomial function.

Moreover, for any input ~π ∈ F (F ,D′) to the decomposition algorithm of Sec-

tion 4.2.2 for D′, the output decomposition uses simple virtual VCG allocation rules

whose weight functions only output rational numbers of complexity fc(n
∑m

i=1 |Ti| log k′′).

Proof of Lemma 9: For the first part of the theorem, suppose that a corner ~π of

F (F ,D′) is fed as input to the decomposition algorithm of Section 4.2.2. From the

correctness of this algorithm it follows that the output decomposition consists of a

single reduced form, namely ~π itselft, as ~π is a corner of F (F ,D′). The decomposition

algorithm in Section 2.8 (which is at the heart of the decomposition algorithm of

Section 4.2.2) has the property that every corner used in the output decomposition

will always be an output of the corner oracle. So let us try to argue that all reduced

forms that are possibly output by the corner oracle can be implemented by a small

set of allocation rules that does not depend on D′. We use the following lemma:

Lemma 10. On any input ~π, the coefficients of the hyperplane output by the separa-

tion oracle SO of Section 4.2.1 using D′ as the bidder-type distribution are rational

numbers of bit complexity fs(n
∑m

i=1 |Ti| log k′′), where fs(·) is a polynomial function.

Proof. By Lemma 8, we know that all coordinates of all corners of F (F ,D′) can be

described using at most O(log k′′) bits. Lemma 5 now tells us that SO will only

output rational numbers of bit complexity poly(n
∑m

i=1 |Ti|, log k′′).

99

Now let’s go back to the corner oracle. By Lemma 10 the weights input to the

corner oracle will always be rational numbers of bit complexity fs(n
∑m

i=1 |Ti| log k′′) =

poly(n
∑m

i=1 |Ti|, log k′′). As the number of hyperplanes input to the corner oracle will

never be more than n
∑m

i=1 |Ti|, the weights obtained by averaging in step 2 of the

corner oracle require at most an additional O(log(n
∑m

i=1 |Ti|)) bits. Given the above

and that, for all i, A, Pr[ti = A] is a multiple of 1/k′′ and hence has bit complexity

O(log k′′), the tie-breaking rule in step 3 of the corner oracle results in a weight vector

whose coordinates have bit complexity poly(n
∑m

i=1 |Ti|, log k′′). As Pr[ti = A] is a

multiple of 1/k′′ for all i, A, transforming from the weight vector representation of

the simple VCG mechanism computed by the corner oracle to the weight function

representation adds at most an additional O(log k′′) bits per weight.

The second part of the lemma is already implied by the above discussion. As

we noted above the decomposition algorithm in Section 2.8 (which is at the heart

of the decomposition algorithm of Section 4.2.2) has the property that every corner

used in the output decomposition will always be an output of the corner oracle. And

we argued that the corner oracle for D′ outputs simple virtual VCG allocation rules

whose weight functions only output rationals of bit complexity as bounded above. �

Lemma 9 implies that, before we have sampled D′ but after we have chosen k and

k′, there is a fixed set K of at most 4n
Pm
i=1 |Ti|fc(n

Pm
i=1 |Ti| log k′′) simple virtual VCG

allocation rules (namely those whose weight functions only output rational numbers

of bit complexity fc(n
∑m

i=1 |Ti| log k′′)) such that, no matter what D′ is sampled, all

corners of F (F ,D′) can be implemented by a simple virtual VCG allocation rule in

K. Moreover, the decomposition algorithm of Section 4.2.2 only uses simple virtual

VCG mechanisms from K in its support. This implies the following.

Corollary 7. Assume k > k′
∑

i |Ti| and t ≤ 1. Then, with probability at least

1− 6n
m∑
i=1

|Ti|e−2t2k′+n
Pm
i=1 |Ti|fc(n

Pm
i=1 |Ti| log k′′) ln 4,

the following hold, where fc(·) is a polynomial function:

100

1. every ~π′ ∈ F (F ,D′) has some ~π ∈ F (F ,D) with |~π−~π′|∞ ≤ t+(2t+ k′

k
)
∑

i |Ti|;

2. if ~π is the reduced form with respect to D of the distribution over simple virtual

VCG allocation rules that is output on input ~π′ ∈ F (F ,D′) by the decomposition

algorithm of Section 4.2.2 for D′ then |~π − ~π′|∞ ≤ t+ (2t+ k′

k
)
∑

i |Ti|.

Proof of Corollary 7: For a fixed simple virtual VCG allocation rule M ∈ K, Corol-

lary 5 guarantees that the reduced form of M when consumers are sampled from D,

~π(M), and when consumers are sampled from D′, ~π′(M), satisfy: |~π(M)−~π′(M)|∞ ≤

t + (2t + k′

k
)
∑m

i=1 |Ti| with probability at least 1 − 6n
∑m

i=1 |Ti|e−2t2k′ . In addition,

Lemma 9 guarantees that |K| ≤ 4fc(n
Pm
i=1 |Ti| log k′′)n

Pm
i=1 |Ti|. Because this set is fixed

a priori and independent of D′, we may take a union bound over the elements of the

set to get that the same claim holds for all simple virtual VCG allocation rules in K

with probability at least

1− 6n
m∑
i=1

|Ti|e−2t2k′4n
Pm
i=1 |Ti|fc(n

Pm
i=1 |Ti| log k′′).

We proceed to show (i) and (ii) conditioning on the above. For (i) we use the first

part of Lemma 9 to get that for all ~π′ ∈ F (F ,D′), we can write ~π′ =
∑

a pa~π
′(Ma),

where for all a: Ma ∈ K, pa > 0, and
∑

a pa = 1. If we consider the exact same

distribution over simple virtual VCG allocation rules when consumers are sampled

from D, the reduced form will be ~π =
∑

a pa~π(Ma). Given that for all Ma ∈ K we have

|~π(Ma)−~π′(Ma)|∞ ≤ t+(2t+ k′

k
)
∑m

i=1 |Ti|, we have |~π−~π′|∞ ≤ t+(2t+ k′

k
)
∑m

i=1 |Ti|

as well.

For (ii) the proof is virtually identical. By the second part of Lemma 9 the simple

virtual VCG allocation rules in the support of the decomposition belong to the set

K. We proceed as above. �

101

4.4.2 Putting Everything Together

Setting k and k′, and sampling D′

Algorithm 3 is a preprocessing algorithm used to set the parameters k and k′ that

were left free in Sections 4.4.1 and 4.4.1.

Algorithm 3 Pre-processing to generate a proxy distribution D′ for D. The desired
`∞ accuracy is ε.

1: Input: D. Denote by T =
∑m

i=1 |Ti|.
2: Set t = ε

6T
, k′ = n2T 2fc(nT)

t3
, k = 4k′T

ε

3: Build D′ by sampling k profiles independently from D. For each i, A ∈ Ti, fix
ti = A and sample k′ profiles independently from D−i. D′ picks one of the
k + k′

∑m
i=1 |Ti| sampled profiles uniformly at random.

4: Output t, k, k′,D′.

Separation Oracle for Approximating Polytope F (F ,D′)

We provide the proof Theorem 12.

Proof of Theorem 12: We use the shorthand T =
∑m

i=1 |Ti|. After plugging in our

choice of t, k′, k, we see that 2t + (2t + k′

k
)
∑m

i=1 |Ti| ≤ ε. So we just have to verify

that the probability bounds given by Corollaries 6 and 7 are as desired.

Before plugging in the choice of t, k′, k to Corollary 6, we get that the first claim

is true with probability at least 1 − 6nTe−2t2k′−nT ln t. As k′ ≥ nT/t3, this is at

least 1− 6nTe−(2/t−ln(1/t))nT . As 1/t asymptotically dominates ln(1/t) as t→ 0, this

probability becomes 1− e−Ω(nT/ε) after plugging in our choice of t.

Before plugging in the choice of t, k′, k to Corollary 7, we get that the second claim

is true with probability at least 1 − 6nTe−2t2k′+nTfc(nT log(k+k′)) ln 4. Plugging in the

choice of k′ and k (and observing that log(k + k′) is O(log (nT/t)) this becomes:

1− 6nTe−2n2T 2fc(nT)/t + nTfc(nT ·O(log(nT/t))) ln 4.

Therefore, the ratio of the absolute value of the negative term in the exponent to

the value of the positive term is nT/t
poly log(nT/t)

, so the negative term dominates asymp-

102

totically as t→ 0. Therefore, the entire probability is 1− e−Ω(nT/ε) after plugging in

our choice of t.

The bound on the running time follows directly from Corollary 15 and our choice

of parameters. �

Decomposition Algorithm for Approximating Polytope F (F ,D′)

Algorithm 4 describes our decomposition algorithm for F (F ,D′). After stating it, we

analyze it.

Algorithm 4 Algorithm for decomposing a reduced form ~π′ ∈ F (F ,D′) into a dis-
tribution over simple virtual VCG allocations.

1: Input: F , D′, ~π′ ∈ F (F ,D′).
2: Run the geometric algorithm in Section 2.8 on F (F ,D′) using the separation

oracle of Section 4.2.1 and the corner oracle of Section 4.2.2. The output will be
a collection of at most n

∑m
i=1 |Ti|+ 1 corners output by the corner oracle. These

will be simple virtual VCG allocation rules, whose weight functions we denote

by {fi}(1)
i∈[m], . . . , {fi}

(n
Pm
i=1 |Ti|+1)

i∈[m] . We also denote by pj the probability placed on

V V CG
(
{fi}(j)

i∈[m]

)
in the output decomposition.

3: Output the allocation rule M that runs V V CG
(
{fi}(j)

i∈[m]

)
with probability pj.

Proof of Theorem 13: It follows from the correctness of the decomposition algorithm

in Section 2.8 that the output allocation rule M implements the input reduced form

~π′ when bidders are sampled from D′. Now it follows from Corollary 7 that with

probability at least 1 − e−O(n
Pm
i=1 |Ti|/ε) (see the proof of Theorem 12 for why the

probability guaranteed by Corollary 7 is at least this large given our choice of pa-

rameters) it holds that |~π− ~π′|∞ ≤ ε (again see the proof of Theorem 12 for why the

guaranteed distance is at most ε given our choice of parameters). The bound on the

running time follows directly from Corollary 16 and our choice of parameters. �

103

4.5 Characterization for Correlated Biddders

Here we provide the analogue of Theorem 10 for correlated bidders. We begin by

observing that, in fact, Theorem 10 already holds for correlated bidders. The re-

duced form is still well-defined, and nothing about the proofs in Section 4.1 requires

independence across bidders. What’s wrong is that the information contained in the

reduced form is not sufficient for correlated bidders. Indeed, for independent bidders,

the information contained in the reduced form is sufficient to verify both feasibility

(due to Section 4.2.1) and bayesian incentive compatibility. For correlated bidders,

while feasibility can still be verified, bayesian incentive compatibility cannot. This is

because in order for bidder i to decide whether she wishes to report type A or type B

when her true type is B, she needs to know the probability of receiving each item if

she reports A, conditioned on the fact that the remaining bidders are sampled accord-

ing to the conditional distribution induced by ti = B. This information is simply not

contained in the reduced form. To cope with this issue, we first propose an extended

definition of reduced form for the case of correlated bidders, and a proper analogue

of a virtual VCG allocation rule.

Definition 9. A second-order reduced form is a vector valued function π(·) such

that πij(A,B) denotes the probability that bidder i receives item j when reporting type

A, where the probability is taken over the randomness of the mechanism and the other

bidders’ types, assuming they are sampled from D−i(B) and bid truthfully.

Definition 10. A second-order VCG allocation rule is defined by a collection

of second-order weight functions wij : Ti×Ti → R. wij maps a reported type of bidder

i and true type of bidder i to a second-order bid for item j. On any profile ~v, the

second-order VCG allocation rule with weights ~w (denoted SOV CGF(~w)) on input ~v

selects the max-weight feasible allocation using the weights:

fij(~v) =
∑
B∈Ti

wij(~vi, B) Pr[~v−i ← D−i(B)]

104

We say that a second-order VCG allocation rule with weights ~w is simple, if

on every profile ~v, there is a unique max-weight allocation, where the weight for

allocating item j to bidder i is fij(~v). We now quickly observe a connection between

second-order VCG allocation rules and virtual VCG allocation rules when bidders

are independent, and follow with a statement of the analogue of Theorem 10 for

second-order reduced forms.

Observation 4. If bidders are independent, then for any second-order weight vector

~w and virtual weight vector ~w′ with w′ij(A) =
∑

B∈Ti wij(A,B), the allocation rules

V V CGF(~w′) and SOV CGF(~w) are identical for all F .

Proof. When bidders are independent, Pr[~v−i ← D−i(B)] = Pr[~v−i ← D−i] for all B.

In addition, Pr[~v−i ← D−i] = Pr[~v ← D]/Pr[ti = ~vi]. Therefore, the weight fij used

by SOV CGF(~w) on bid vector ~v is just:

fij(~v) =
Pr[~v ← D]

Pr[ti = ~vi]

∑
B∈Ti

wij(~vi, B)

The weight f ′ij used by V V CGF(~w′) is:

f ′ij = w′ij(~vi)/Pr[ti = ~vi]

=
1

Pr[ti = ~vi]

∑
B∈Ti

wij(~vi, B)

=
fij(~v)

Pr[~v ← D]

So the weights used by V V CGF(~w′) are proportional to the weights used by

SOV CGF(~w) and they will choose the same allocation on every profile.

Theorem 15. Let F be any set system of feasibility constraints, and D any arbi-

trarily correlated distribution over consumer types with finite support. Then every

feasible second-order reduced form (with respect to F and D) can be implemented by

a distribution over at most
∑m

i=1 |Ti|2 + 1 simple second-order VCG allocation rules.

105

The proof of Theorem 15 parallels that of Theorem 10. We begin by observing that

Observation 3 and Proposition 5 also hold in this setting and the proofs are identical.

We denote the polytope of feasible second-order reduced forms with respect to F and

D by SO(F ,D). We now characterize the corners of SO(F ,D), beginning with an

analogue of Lemma 3:

Lemma 11. Let ~π be the second-order reduced form of SOV CGF(~w) with respect to

D. Then for all ~π′ ∈ SO(F ,D):

~π · ~w ≥ ~π′ · ~w

Proof. Consider any allocation rule M with second-order reduced form ~π′′ and denote

by Mij(~v) the probability that M awards item j to bidder i on profile ~v. Then we

can expand ~π′′ · ~w as:

~π′′ · ~w =
∑
j

∑
i

∑
A∈Ti

∑
B∈Ti

wij(A,B)π′′ij(A,B)

=
∑
j

∑
i

∑
A∈Ti

∑
B∈Ti

wij(A,B)
∑
~v−i

Pr[~v−i ← D−i(B)]Mij(~v−i;A)

=
∑
~v

∑
i

∑
j

Mij(~v) ·
∑
B∈Ti

wij(~vi, B) Pr[~v−i ← D−i(B)]

=
∑
~v

∑
i

∑
j

Mij(~v) · fij(~v)

The second line is derived by simply exanding π′′ij(A,B). The third line is derived

by determining the coefficient for each Mij(~v) in the previous line. The final line

is derived by replacing
∑

B∈Ti wij(~vi, B) Pr[~v−i ← D−i(B)] with fij(~v). One should

interpret fij(~v) to be the weight of awarding item j to bidder i on profile ~v. Therefore,

the allocation rule whose second-order reduced form maximizes ~π′′ · ~w over all feasible

second order reduced forms is simply the one that selects the max-weight allocation

on every profile, where the weight of awarding bidder i item j on profile ~v is fij(~v).

This is exactly the allocation rule SOV CGF(~w).

106

Proposition 7. Every corner in SO(F ,D) can be implemented by a simple second-

order VCG allocation rule, and the reduced form of any second-order VCG allocation

rule is a corner in SO(F ,D).

Proof. The proof is truly identical to that of Proposition 6 after replacing Lemma 3

with Lemma 11.

Proof of Theorem 15: Again, the proof is identical to that of Theorem 10 after

replacing Proposition 6 with Proposition 7. �

We conclude this section with a discussion on the content of Theorems 10 and 15.

Again, we are not claiming that every allocation rule can be implemented as a distri-

bution over second-order VCG allocation rules. This is again not true, and the same

example from Section 4.1 bears witness. Let’s take a step back and view virtual and

second-order VCG allocation rules as special cases of a more generic type of allocation

rule:

Definition 11. A weight-scaling allocation rule is defined by a dimension, k, and

a collection of functions {Vij,Wij}(i,j)∈[m]×[n]. Vij maps a type of bidder i to a k-

dimensional weight vector (Ti → Rk) and Wij maps the remaining types to a k-

dimensional scaling vector (×i′ 6=iTi′ → Rk). On any profile ~v, the weight-scaling allo-

cation rule with functions {Vij,Wij}i,j selects the max-weight allocation with weights:

fij(~v) = Vij(~vi) ·Wij(~v−i)

In other words, the weight of awarding bidder i item j is the dot product of two

vectors, one contributed by bidder i’s type, and the other contributed by the rest of

the profile. It is not hard to see that every deterministic allocation rule can be imple-

mented by a weight-scaling allocation rule of dimension
∏

i |Ti|. 3 It is also not hard

3Specifically, to implement any deterministic allocation rule M , index the possible profiles as
P1, . . . , Pk. If on profile Pa, ti 6= ~vi, set (Vij)a(~vi) = 0 for all j. Similarly, if t−i 6= ~v−i, set
(Wij)a(~v−i) = 0 for all j. If t−i = ~v−i on profile Pa, set (Wij)a(~v−i) = 1. If ti = ~vi, and M awards
bidder i item j on profile Pa, set (Vij)a(~vi) = 1. If ti = ~vi and M doesn’t award bidder i item j on
profile Pa, set (Vij)a(~vi) = −1. Then on any profile, we will have fij(~v) = 1 iff M awards bidder i
item j on ~v, and −1 otherwise.

107

to imagine that in order to specify arbitrary deterministic mechanisms as a weight-

scaling allocation rule, dimension
∏

i |Ti| might be necessary. However, virtual VCG

allocation rules are weight-scaling allocation rules of dimension 1 (and furthermore,

Wij(~v−i) = 1 for all i, ~v−i), and second-order VCG allocation rules are weight-scaling

allocation rules of dimension maxi |Ti|. By restricting ourselves to only care about the

reduced form or second-order reduced form, we have drastically simplified the space

of allocation rules. Our characterization theorems show that every allocation rule has

the same reduced form as a distribution over weight-scaling allocation rule of dimen-

sion 1, and the same second-order reduced form as a distribution over weight-scaling

allocation rule of dimension maxi |Ti|.

108

Chapter 5

Revenue-Optimal Mechanisms

In this chapter, we describe how to use the results of Section 4.3 to obtain computa-

tionally efficient nearly-optimal solutions to MDMDP using only black box access to

an implementation of the VCG allocation rule. As our notable contribution to obtain

these results is the techniques of Sections 4.1 through 4.3, we only state our results

here.

In Section 5.2, we provide a high-level overview of how to combine our results

with the LPs of [DW12] to solve the MDMDP, followed by proofs. In all theorem

statements, the allocation rule of the mechanism output by our algorithm is a dis-

tribution over simple virtual VCG allocation rules. There is no special structure in

the pricing rule, it is just the output of a linear program. As usual, we denote by AF

an algorithm that implements the VCG allocation rule with feasibility constraints

F , and denote by rtF(b) the runtime of AF when each input weight has bit com-

plexity b. We note that the mechanisms output by the following theorems can be

made interim or ex-post individually rational without any difference in revenue. We

are also able to accommodate bidders with hard budget constraints in our solutions.

The proofs presented in Section 5.2 provide interim individually rational mechanisms

without budget constraints. Ex-post individual rationality and budgets are discussed

in Section 5.3.

109

5.1 Revenue-Maximizing Mechanisms

We first present a result for a special case of MDMDP where the feasibility is simply

that no item should be given out more than once. As there is no constraint across

items, to verify the feasibility of a reduced form auction, it suffices to check the

corresponding single-item reduced form auction for each item separately. Thus, for

this special case we can use the exact separation oracle and decomposition algorithm

in Chapter 3, the end result is an exact revenue-optimal mechanism.

Theorem 16. When the feasibility constant F is that no item should be given out

more than once, for all D of finite support in [0, 1]nm there is an exact solution for

MDMDP with running time polynomial in n,m,
∑

i |Ti| and `, where ` is an upper

bound on the bit complexity of the coordinates of the points in the support of D, as

well as of the probabilities assigned by D1, . . . ,Dm to the points in their support. The

output mechanism is BIC.

Now, we are ready to state our main result – a solution to MDMDP with an

arbitrary feasibility constraint.

Theorem 17. For all ε, η > 0, all D of finite support in [0, 1]nm, and all F , given D

and black box access to AF there is an additive FPRAS for MDMDP. In particular, the

FPRAS obtains expected revenue OPT−ε, with probability at least 1−η, in time poly-

nomial in `, m,n,maxi∈[m]{|Ti|}, 1/ε, log(1/η) and rtF(poly(n
∑m

i=1 |Ti|, log log(1/η),

log 1/ε, `)), where ` is an upper bound on the bit complexity of the coordinates of the

points in the support of D, as well as of the probabilities assigned by D1, . . . ,Dm to

the points in their support. The output mechanism is ε-BIC, its allocation rule is a

distribution over simple virtual VCG allocation rules, and it can be implemented in

the afore-stated running time.

Theorem 18. For all ε, η > 0, all item-symmetric D of finite support in [0, 1]nm,

and all item-symmetric F ,1 given D and black box access to AF , there is an additive

1Distributions and feasibility constraints are item-symmetric if they are invariant under every
item permutation.

110

FPRAS for MDMDP. The FPRAS obtains expected revenue OPT−ε, with probability

at least 1−η, in time polynomial in `,m, nc, 1/ε, log 1/η and rtF(poly(ncm, log log(1/η),

log 1/ε, `)), where c = maxi,j |Dij|, where |Dij| is the cardinality of the support of the

marginal of D on bidder i and item j, and ` is as in the statement of Theorem 17.

The output mechanism is ε-BIC, its allocation rule is a distribution over simple virtual

VCG allocation rules, and it can be implemented in the afore-stated running time.

Theorem 19. For all ε, η, δ > 0, all item-symmetric D supported on [0, 1]nm and

all item-symmetric F , given D and black box access to AF , there is an additive bi-

criterion PRAS algorithm for MDMDP with the following guarantee: If C is the

maximum number of items that are allowed to be allocated simultaneously by F , the

algorithm obtains expected revenue OPT − (
√
ε+
√
δ)C, with probability 1 − η, in

time polynomial in m,n1/δ, 1/ε, log(1/η), and rtF(poly(n1/δm, log 1/ε, log log 1/η)). In

particular, the runtime does not depend on |D| at all). The output mechanism is ε-

BIC, and can be implemented in the afore-stated running time.

Remark 2. The assumption that D is supported in [0, 1]mn as opposed to some other

bounded set is w.l.o.g., as we could just scale the values down by a multiplicative vmax.

This would cause the additive approximation error to be εvmax. In addition, the point

of the additive error in the revenue of Theorem 19 is not to set ε, δ so small that

they cancel out the factor of C, but rather to accept the factor of C as lost revenue.

For “reasonable” distributions, the optimal revenue scales with C, so it is natural to

expect that the additive loss should scale with C as well.

111

5.2 Discussion and Proofs from Section 5.1

Approach. In [DW12], linear programs are provided that exactly solve MDMDP in

cases with finite support (and less general feasibility constraints, namely each bidder

has an upper bound on the number of items she wants to receive, and every item

should be allocated to at most one bidder). However, the proposed LPs maintain

variables for every type profile P , denoting the probability that bidder i receives

item j on profile P , resulting in LP size proportional to |D|. We observe that these

LPs can be made more efficient by making use of the reduced form, even if just

a separation oracle is provided for the feasibility of the reduced form. Indeed, the

reduced form of a mechanism contains sufficient information to verify truthfulness

(given the additivity of the bidders), and a separation oracle for the feasibility of

the reduced form is sufficient to optimize the expected revenue of the mechanism by

solving an LP. Algorithm 5 and Figure 5-1 provide the details of how we apply this

approach in our setting, culminating in a proof of Theorem 17. Simply put, we use

the LP approach in the following way: (a) we use a separation oracle for the proxy

polytope of feasible reduced forms F (F ,D′), obtained in Section 4.3, rather than the

real polytope F (F ,D); (b) still, we compute expected revenue for bidders sampled

from the real distribution D. For Theorem 16, the proof is basically the same except

that we can solve the LP on the real polytope as we have an efficient exact separation

oracle and a decomposition algorithm.

Algorithm 5 FPRAS for solving MDMDP when D has finite support.
1: Input: D, F , ε.
2: Set δ = ε

2m
. Run the pre-processing algorithm (Algorithm 3) on input D, with

accuracy δ/2n. Call the output distribution D′.
3: Let SO(~π) be the separation oracle that on input ~π executes the separation oracle

of Section 4.2.1 on input ~π for distribution D′ and feasibility constraints F .
4: Using SO, solve the Linear Program of Figure 5-1. Store the output as ~π, ~p.
5: Run the decomposition algorithm (Algorithm 4) with input F ,D′, ~π. Store the

output as M ′. M ′ is a distribution over at most n
∑m

i=1 |Ti| + 1 simple virtual
VCG allocations.

6: Output the allocation rule M ′ and pricing rule ~p−δ ·~1 (i.e. when bidder i reports
type A, charge her pi(A)− δ).

112

Variables:

• pi(~vi), for all bidders i and types ~vi ∈ Ti, denoting the expected price paid by
bidder i when reporting type ~vi over the randomness of the mechanism and the
other bidders’ types.

• πij(~vi), for all bidders i, items j, and types ~vi ∈ Ti, denoting the probability
that bidder i receives item j when reporting type ~vi over the randomness of the
mechanism and the other bidders’ types.

Constraints:

• ~πi(~vi) ·~vi−pi(~vi) ≥ ~πi(~wi) ·~vi−pi(~wi)−δ, for all bidders i, and types ~vi, ~wi ∈ Ti,
guaranteeing that the reduced form mechanism (~π, ~p) is δ-BIC.

• ~πi(~vi) ·~vi− pi(~vi) ≥ 0, for all bidders i, and types ~vi ∈ Ti, guaranteeing that the
reduced form mechanism (~π, ~p) is individually rational.

• SO(~π) =“yes,” guaranteeing that the reduced form ~π is in F (F ,D′).

Maximizing:

•
∑m

i=1

∑
~vi∈Ti Pr[ti = ~vi] ·pi(~vi), the expected revenue when played by bidders

sampled from the true distribution D.

Figure 5-1: A linear programming formulation for MDMDP.

Proof of Theorem 17: We use Algorithm 5. Using the additivity of the bidders, it

follows that Step 4 of the algorithm outputs a reduced form/pricing rule pair (~π, ~p)

that is revenue-optimal with respect to all δ-BIC, IR reduced form/pricing rule pairs,

except that the reduced forms that are searched over belong to F (F ,D′) and may

be infeasible with respect to D. We proceed to argue that the achieved revenue is

nearly-optimal with respect to all BIC, IR reduced form/pricing rule pairs for which

the reduced form lies inside F (F ,D). So let (~π∗, ~p∗) denote an optimal such pair,

and let OPT denote its expected revenue. By Theorem 12, we know that, with high

probability, there is some reduced form ~π′ ∈ F (F ,D′) satisfying |~π′ − ~π∗|∞ ≤ δ/2n.

So, if we let ~p′ = ~p∗ − δ
2
· ~1, it is obvious that the reduced form (~π′, ~p′) is δ-BIC.

It is also obvious that it is individually rational. Finally, it is clear that value of

the LP achieved by (~π′, ~p′) is exactly mδ/2 = ε/4 less than the value of (~π∗, ~p∗). So

because (~π′, ~p′) is in the feasible region of the LP of Figure 5-1, the reduced form/price

113

rule pair output by Step 4 of Algorithm 5 has expected revenue at least OPT− ε/4.

Noticing that we subtract an additional δ from the price charged to each bidder in

Step 6 of the algorithm, we get that the end price rule makes expected revenue at

least OPT− ε.

We argue next that the mechanism output by Algorithm 5 is ε-BIC and IR. To

see this let M ′ be the allocation rule (computed in Step 5 of the algorithm), which

implements the reduced form ~π (computed in Step 4) with respect to D′. Let also ~π′

denote the reduced form of M ′ with respect to D. By Theorem 13, we know that,

with high probability, |~π − ~π′|∞ ≤ δ/2n. Therefore, given that (~π, ~p) is δ-BIC, we

immediately get that (~π′, ~p− δ ·~1) is 2δ-BIC. So allocation rule M ′ with pricing rule

~p−δ·~1 comprises an ε-BIC mechanism. Also because (~π, ~p) is IR and |~π−~π′|∞ ≤ δ/2n,

we immediately get that (~π′, ~p− δ · ~1) is IR, and hence that allocation rule M ′ with

pricing rule ~p− δ ·~1 is IR.

Overall the above imply that the allocation rule M ′ and the pricing rule ~p− δ ·~1

output in Step 6 of our algorithm comprise an ε-BIC and IR mechanism, whose

pricing rule achieves revenue at least OPT − ε. Moreover, it is immediate from

Theorems 12 and 13 that Algorithm 5 runs in time polynomial in c, n,
∑m

i=1 |Ti|, 1/ε,

and rtF(poly(n
∑m

i=1 |Ti|, log 1/ε, c)), where c is as in the statement of the theorem.

Finally, the way we chose our parameters in Algorithm 5 the probability of failure

of the algorithm is 1−e−Ω(mn2
P
i |Ti|/ε) by Theorems 12 and 13. Trading off probability

of error with ε (as per Remark 1) we complete the proof of Theorem 17.�

Theorems 18 and 19 are obtained by combining Theorem 17 with tools developed

in [DW12]. Both theorems are based on the following observation, generalizing The-

orem 2 of [DW12]: If D is item-symmetric and the feasibility constraints F are also

item-symmetric then there exists an optimal mechanism that is:

1. item-symmetric, i.e. for all bidders i, all types ~vi ∈ Ti, and all item-permutations

σ, the reduced form of the mechanism satisfies ~πi(σ(~vi)) = σ(~πi(~vi)); this means

that the reduced form on a permuted type of a bidder is the same permutation

of the reduced form of the un-permuted type of the bidder.

114

2. strongly-monotone, i.e. for all bidders i, and items j and j′, vij ≥ vij′ =⇒

πij(~vi) ≥ πij′(~vi).

Using this structural observation for optimal mechanisms, we sketch the proofs of

Theorems 18 and 19.

Proof of Theorem 18: (Sketch) Given our structural observation for optimal mech-

anisms, we can—without loss of generality—rewrite the LP of Figure 5-1, while at

the same time enforcing the above constraints, i.e. searching over the set of item-

symmetric, strongly-monotone reduced forms. Indeed, to save on computation we

can write a succinct LP on variables {πij(~vi)}i,j,~vi∈Ei where, for every bidder i, Ei is

a sufficient (based on the above symmetries) set of representative types, e.g. we can

take Ei = {~vi | vi1 ≥ . . . ≥ vin}. We refer the reader to [CDW12a] for the explicit form

of the succinct LP. The benefit of the succinct formulation is that |Ei| ≤ nc, where c

is as in the statement of Theorem 18, so the size of the succinct LP is polynomial in

m, nc and `, where ` is as in the statement of the theorem.

But we also need to come up with an efficient separation oracle for our setting.

Checking violation of the strong-monotonicity property is easy to do in time linear in

O(mn) and the description of {πij(~vi)}i,j,~vi∈Ei . So it remains to describe a separation

oracle determining the feasibility of a succinct description {πij(~vi)}i,j,~vi∈Ei of an item-

symmetric reduced form. One approach to this would be to expand out the succinct

description of the item-symmetric reduced form to a full-fledged reduced-form and

invoke the separation oracle developed in Sections 4.2 through 4.3. However, this

would make us pay computation time polynomial in
∑

i |Ti|, and the whole point of

using item-symmetries is to avoid this cost. To circumvent this, we take the following

approach:

• First, let FS(F ,D) be the set of item-symmetric reduced forms that are feasible

with respect to F and D;

• FS(F ,D) is a polytope, as it is the intersection of the polytope F (F ,D) and the

item-symmetry constraints; moreover, every point in FS(F ,D) has a succinct

description of the form {πij(~vi)}i,j,~vi∈Ei where, for all i, Ei is defined as above;

115

• What are the corners of FS(F ,D)? These can be implemented by item-symmetric

virtual VCG allocation rules whose weight-functions are item-symmetric. The

proof of this is identical to the proof of Proposition 6 noticing that FS(F ,D)

lies in the lower-dimensional space spanned by the item-symmetries. We note

that we do not require the virtual VCG allocation rules to be simple in the same

sense defined in Section 4.1, as this could violate item-symmetry.

• However, given an item-symmetric weight vector ~w how do we even run an item-

symmetric virtual VCG allocation rule corresponding to ~w? There are two issues

with this: (a) how to enforce the item-symmetry of the virtual VCG allocation

rule; and (b) there could be multiple item-symmetric virtual VCG allocation

rules consistent with ~w, e.g., if ~w is perpendicular to a facet of FS(F ,D). Here

is how we resolve these issues: First, we apply Lemma 4 to the symmetric

weight vector ~w to get a non-symmetric weight vector ~w′ (we may do this

transformation explicitly or do a lazy-evaluation of it—this is relevant only

for our computational results three bullets down). When bidders submit their

types, we pick a permutation σ uniformly at random, and permute the names of

the items. Then we use the simple virtual VCG allocation rule corresponding

to ~w′. Finally, we un-permute the names of the items in the allocation. We

denote this allocation rule by S.V V CGF(~w). It is clear that S.V V CGF(~w)

is well-defined (i.e. no tie-breaking will ever be required), is item-symmetric,

and defines a virtual VCG allocation rule w.r.t. the original weight vector

~w. Given the above discussion, every item-symmetric weight vector ~w has a

succinct description of the form {wij(~vi)}i,j,~vi∈Ei , which defines uniquely an item-

symmetric virtual VCG allocation rule w.r.t. ~w (namely, S.V V CGF(~w));

• Given the above definitions and interpretations, we can generalize the results

of Sections 4.1 and 4.2 to the polytope FS(F ,D).

• Next we discuss how to extend the computationally-friendly results of Sec-

tion 4.3 to the item-symmetric setting, while maintaining the computational

complexity of all algorithms polynomial in m, maxi |Ei| = O(nc) and `, where

116

` is as in the statement of the theorem. We define an item-symmetric distribu-

tion D′ as follows: We draw k′′ = k+k′
∑m

i=1 |Ei| profiles of bidders P1, . . . , Pk′′

from D as in Section 4.3, except that, for each bidder i, we draw k′ profiles

conditioning on the type of the bidder being each element of Ei and not Ti.

Then we define (without explicitly writing down) D′ to be the two-stage distri-

bution that in the first stage draws a random profile from P1, . . . , Pk′′ and in the

second-stage permutes the items using a uniformly random item-permutation.

We claim that using T = poly(mnc) in Algorithm 3 suffices to obtain an analog

of Theorems 12 and 13 for our setting with probability of success 1−e−1/ε. (We

address the running time shortly.) The reason we can save on the number of

samples is that we are working with FS(F ,D) and hence all reduced forms are

forced to be item-symmetric. So we need to prove concentration of measure for

a smaller number of marginal allocation probabilities.

• Unfortunately, we cannot afford to compute reduced forms with respect to D′,

as we can’t in general evaluate the reduced form of S.V V CGF(~w) on a given

type profile without making prohibitively many queries to AF . Instead, we

will also independently sample item permutations σ1, . . . , σk′′ , and associate the

permutation σα with Pα in the following sense. If a given type profile was

sampled by D′ after sampling Pα in the first stage of D′, we will permute the

items by (just) σα when evaluating S.V V CGF(~w) on that profile, instead of

taking a uniformly random permutation. In other words, we have removed the

randomness in evaluating S.V V CGF(~w) and fixed the applied item-permutation

to some σα, which was chosen uniformly at random. Doing so, we still have the

same expectations as in the previous bullet, and we can deduce that the reduced

form of S.V V CGF(~w) when consumers are sampled from D is very close to the

reduced form of S.V V CGF(~w) when consumers are sampled from D′ (while

only using item-permutation σα to run S.V V CGF(~w) on all profiles sampled

from D′ after sampling Pα in the first stage of D′, as explained above).

• With the above modifications, for both Theorems 12 and 13 the running time

117

of the corresponding algorithm can be made polynomial in `′, m, nc, 1/ε and

rtF(poly(nc,m, log 1/ε, `′)), where `′ is the max of ` (see statement) and the bit

complexity of the coordinates of the input to the algorithms. To achieve this

we only do computations with succinct descriptions of item-symmetric reduced

forms and weight vectors. What we need to justify further is that we can do

exact computations on these objects with respect to the distribution D′ given

oracle access to AF in the afore-stated running time. For this it suffices to be

able compute the succinct description of the reduced form ~π of S.V V CGF(~w)

(using permutation σα on profiles coming from Pα as explained above). The

small obstacle is that the support of D′ is not polynomial in the required running

time, but it suffices to do the following. For each profile Pα find the allocation

output by the (non item-symmetric) virtual VCG allocation rule corresponding

to the perturbed vector ~w′, after relabeling the items according to σα. This we

can do in the allotted running time with a lazy evaluation of the perturbation.

Then, for all i, ~vi and j, to compute πij(~vi) do the following: for all profiles Pα,

let xα(i, ~vi) denote the number of τ such that τ(~vi) matches the type ti(α) of

bidder i in Pα. Let yα(i, ~vi) denote the number of τ such that τ(~vi) matches

the type of bidder i in Pα, and item τ(j) is awarded to bidder i. It is easy

to compute xα(i, ~vi): let J1
v = {j|vij = v}, and J2

v be the set of items that

bidder i values at v in profile Pα. Then if |J1
v | 6= |J2

v | for any v, xα(i, ~vi) = 0.

Otherwise, xα(i, ~vi) =
∏

v |J1
v |!, because τ(~vi) matches the type of bidder i

iff τ maps all of J1
v to J2

v for all v. Computing yα(i, ~vi) is also easy: simply

break up J2
v into two sets: J2

v (W) of items that bidder i values at v and wins,

and J2
v (L) of items that bidder i values at v and loses. Then if xα(i, ~vi) 6= 0,

yα(i, ~vi) = |J2
vij

(W)| · (|J2
vij
| − 1)! ·

∏
v 6=vij |J

2
v |!, because bidder i is awarded item

τ(j) and τ(~vi) matches the type of bidder i iff τ(j) ∈ J2
vij

(W), and τ maps J1
v to

J2
v for all v. Once we’ve computed xα(i, ~vi) and yα(i, ~vi), it is easy to see that:

πij(~vi) =
1

|{α|xα(i, ~vi) > 0}|
∑

α|xα(i,~vi)>0

yα(i, ~vi)

xα(i, ~vi)
.

118

The above bullet points explain briefly how our ideas from the previous sections are

modified for item-symmetric distributions. The complete details are omitted.�

Proof of Theorem 19: We combine Theorem 18 with (i) a discretization of the hyper-

cube so that every ~v in the support of the distribution has vij = kδ, k ∈ N, for all i, j;

and (ii) the approximately-BIC to BIC reduction of Section 6 of [DW12], informally

stated below.

Informal Theorem 3. (Reworded from [DW12]) Let C = ×iCi and C ′ = ×iC ′i be

product distributions sampling every additive bidder independently from [0, 1]n. Sup-

pose that, for all i, Ci and C ′i can be coupled so that with probability 1, ~vi sampled

from Ci and ~v′i sampled from C ′i satisfy vij ≥ v′ij ≥ vij − δ for all j. If M ′ is any

ε-BIC mechanism for C ′, then with exact knowledge of the reduced form of M ′ with

respect to C ′, we can transform M ′ into a BIC mechanism for C while only losing

O(C(
√
δ +
√
ε)) revenue, where C is the maximum number of items that are allowed

to be allocated simultaneously. In item symmetric settings, the reduction runs in time

polynomial in n1/δ,m.

While doing the discretization is straihgtforward, there is an issue with apply-

ing the aforementioned approximately-BIC to BIC reduction. To directly apply the

reduction in our setting, one might try to take C ′ to be the D′ from the sampling

procedure. Unfortunately, this doesn’t work because D′ is correlated across bidders.

Instead, we might try to take C ′ to be D. This too doesn’t work because we can’t

exactly compute the reduced form of a mechanism with respect to D. We can, how-

ever, compute the reduced form of a mechanism with respect to D with quite good

accuracy. So we will prove a quick lemma about the quality of the reduction proposed

in [DW12] in our setting. Virtually the same lemma is used in [HKM11] where the

ideas behind this reduction originated, but in a different setting.

Lemma 12. Let C and C ′ satisfy the hypotheses of Theorem 4 in [DW12], and let

M ′ be a γ-BIC mechanism whose reduced form with respect to C ′ is ~π′ (which is

possibly unknown). Then with knowledge of some ~π such that |~π − ~π′|1 ≤ ε, the

119

reduction of [DW12] transforms M ′ into a 2ε-BIC mechanism for C while only losing

O(C(
√
δ +
√
γ)) revenue, where C is as above.

Proof of Lemma 12: We avoid repeating a complete description of the reduction and

refer the reader to [DW12] for more details. At a high level, the reduction is the

following. The new mechanism M is a two-stage mechanism. First, each bidder

i, independently from the other bidders, plays a VCG auction against make-believe

replicas of herself, drawn independently from Ci, to purchase a surrogate from a

collection of surrogates drawn independently from C ′i. (The items of the per-bidder

VCG auction are the surrogates and, in particular, they have nothing to do with the

items that M is selling. Moreover, the feasibility constraints of the VCG auction

are just unit-demand constraints on the bidder-side and unit-supply constraints on

the item-side.) After each bidder buys a surrogate, the purchased surrogates play

M ′ against each other. Each bidder receives the items their surrogate is awarded

and pays the price the surrogate pays in M ′, as well as a little extra in order to

buy the surrogate in the per-bidder VCG auction. The truthfulness of the two-stage

mechanism M boils down to the truthfulness of VCG: If we can exactly evaluate the

value of bidder i of type ~vi for being represented by each surrogate ~si, and we use

these values in computing the VCG allocation in the per-bidder VCG auction, then

M is BIC. Moreover, it is shown in [DW12] that the distribution of surrogates that

play M ′ is exactly C ′. So, this implies that, if we know exactly the reduced form

of M ′ with respect to C ′, we can exactly compute the value of the bidder for each

surrogate, and M will be BIC.

If we only know the reduced form of M ′ with respect to C ′ within ε in `1-distance,

then we cannot exactly evaluate the value of bidder ~vi for being represented by sur-

rogate ~si, but we can evaluate it within ε. Suppose that we run per-bidder VCG

auctions using our estimates. In the VCG auction corresponding to bidder i, suppose

~vi is the true type of the bidder, let ~π1 be our estimate of the reduced form of the

surrogate that was sold to the bidder, let p1 be the price that surrogate pays in M ′,

and let q1 denote the price paid for that surrogate in VCG. Let (~π2, p2, q2) be the cor-

responding triplet for another surrogate that the bidder would win by misreporting

120

her type. By the truthfulness of VCG,

~vi · ~π1 − p1 − q1 ≥ ~vi · ~π2 − p2 − q2.

The question is how much the bidder regrets not misreporting to the VCG auc-

tion given that the true reduced form of surrogate ~si in M ′ is some ~π′i, which was

false-advertised in the VCG auction as ~πi, i = 1, 2. Given that |~π′i − ~πi|1 ≤ ε and

remembering that each ~vi ∈ [0, 1]n we get:

~vi · ~π′1 ≥ ~vi · ~π1 − ε

~vi · ~π2 ≥ ~vi · ~π′2 − ε.

Therefore,

~vi · ~π′1 − p1 − q1 ≥ ~vi · ~π′2 − p2 − q2 − 2ε.

This means that if bidder i were to misreport her type to get surrogate ~s2, her true

utility would increase by at most 2ε. So M is 2ε-BIC.

Finally, we can use the same argument as in [DW12] to show that the reduction

loses at most O(C(
√
δ +
√
γ)) in revenue.�

Coming back to the proof of Theorem 19, if we just discretized the value distribution

without running the approximately-BIC to BIC reduction of Lemma 12, we would get

a mechanism that is (ε+δ)-BIC and suboptimal by (ε+δ)C (Lemma 3 of [DW12] pins

down the loss of truthfulness/revenue due to discretization of the value distribution

in multiples of δ, and Theorem 18 bounds the additional loss due to computational

constraints). If we apply the reduction of Lemma 12 on this mechanism, we can turn

it into one that is ε-BIC and suboptimal by O(
√
ε +
√
δ)C. The reason we even

bother running the approximately-BIC to BIC reduction when we don’t get a truly

BIC mechanism in the end is because, while keeping our algorithm efficient, ε can

be made as small as 1/poly(n,m), while δ needs to stay a fixed constant. So after

our reduction we obtained a qualitatively stronger result, namely one whose distance

from truthfulness can be made arbitrarily small in polynomial time. �

121

5.3 Accommodating Budget Constraints

In this section we show a simple modification to our solutions that allows them to

accommodate budget constraints as well. To do this, we simply cite an observation

from [DW12]. There, it is observed that if the solution concept is interim individual

rationality, then the LP that finds the revenue-optimal reduced form can be trivially

modified to accommodate budget constraints. In Figure 5-2 we show how to modify

our LP from Figure 5-1 to accommodate budget constraints.

Variables:

• pi(~vi), for all bidders i and types ~vi ∈ Ti, denoting the expected price paid by
bidder i when reporting type ~vi over the randomness of the mechanism and the
other bidders’ types.

• πij(~vi), for all bidders i, items j, and types ~vi ∈ Ti, denoting the probability
that bidder i receives item j when reporting type ~vi over the randomness of the
mechanism and the other bidders’ types.

Constraints:

• ~πi(~vi) ·~vi−pi(~vi) ≥ ~πi(~wi) ·~vi−pi(~wi)−δ, for all bidders i, and types ~vi, ~wi ∈ Ti,
guaranteeing that the reduced form mechanism (~π, ~p) is δ-BIC.

• ~πi(~vi) ·~vi− pi(~vi) ≥ 0, for all bidders i, and types ~vi ∈ Ti, guaranteeing that the
reduced form mechanism (~π, ~p) is individually rational.

• SO(~π) =“yes,” guaranteeing that the reduced form ~π is in F (F ,D′).

• pi(~vi) ≤ Bi, for all bidders i and types ~vi ∈ Ti, guaranteeing that no bidder
i pays more than their budget Bi.

Maximizing:

•
∑m

i=1

∑
~vi∈Ti Pr[ti = ~vi] · pi(~vi), the expected revenue when played by bidders

sampled from the true distribution D.

Figure 5-2: A linear programming formulation for MDMDP that accommodates bud-
get constraints.

It is also shown in [DW12] that accommodating budget constraints comes at a

cost. First, it is shown that without budget constraints, one can turn any interim-

IR mechanism into an ex-post IR mechanism with no loss in revenue. However,

122

with budget constraints, there is a potentially large gap between the revenue of the

optimal ex-post IR mechanism and the optimal interim IR mechanism. In other

words, accommodating budget constraints requires accepting interim IR instead of

ex-post IR. Second, the approximately-BIC to BIC reduction of [DW12] (used in

the proof of Theorem 22) does not respect budget constraints. So to accommodate

budgets in Theorem 22 the output mechanism needs to be δ-BIC instead of ε-BIC.2

Relative to the ability to naturally accommodate budget constraints, these costs are

minor, but we state them in order to correctly quantify the settings our techniques

solve.

2Recall that the runtime required to find and execute the mechanism of Theorem 22 is polynomial
in 1/ε but exponential in 1/δ.

123

Chapter 6

Approximately Optimal

Mechanisms

6.1 Overview of Our Results

In Chapter 4 and 5, we have shown that solving MDMDP under feasibility constraints

F can be poly-time reduced to (the algorithmic problem of) maximizing social welfare

under the same feasibility constraints F , i.e. running the VCG allocation rule with

constraints F . This result implies that, for all F ’s such that maximizing social welfare

can be solved efficiently, MDMDP can also be solved efficiently. On the other hand,

the reduction is geometric and sensitive to having an exact algorithm for maximizing

welfare, and this limits the span of mechanism design settings that can be tackled. In

this chapter we extend this reduction, making it robust to approximation. Namely,

we reduce the problem of approximating MDMDP to within a factor α to the prob-

lem of approximately optimizing social welfare to within the same factor α. Before

stating our result formally, let us define the concept of a virtual implementation of an

algorithm.

Definition 12. Let A be a social welfare algorithm, i.e. an algorithm that takes as

input a vector (t1, . . . , tm) of valuations (or types) of bidders and outputs an allo-

cation O ∈ F . A virtual implementation of A is defined by a collection of func-

124

tions f1, . . . , fm, such that fi : Ti → Rn, where Ti is bidder i’s type set. On input

(t1, . . . , tm) the virtual implementation outputs A(f1(t1), . . . , fm(tm)), i.e. instead of

running A on the “real input” (t1, . . . , tm) it runs the algorithm on the “virtual input”

(f1(t1), . . . , fm(tm)) defined by the functions f1, . . . , fm. The functions f1, . . . , fm are

called virtual transformations.

With this definition, we state our main result informally below, and formally as

Theorem 20 of Section 6.6.

Informal Theorem 4. Fix some arbitrary F and finite T1, . . . , Tm and let A :

×iTi → F be a (possibly randomized, not necessarily truthful) social welfare algo-

rithm, whose output is in F with probability 1. Suppose that, for some α ≤ 1, A is an

α-approximation algorithm to the social welfare optimization problem for F , i.e. on

all inputs ~t the allocation output by A has social welfare that is within a factor of α

from the optimum for ~t. Then for all D1, . . . ,Dm supported on T1, . . . , Tm respectively,

and all ε > 0, given black-box access to A and without knowledge of F , we can obtain

an (α− ε)-approximation algorithm for MDMDP whose runtime is polynomial in the

number of items, the number of bidder types (and not type profiles), and the runtime

of A. Moreover, the allocation rule of the output mechanism is a distribution over

virtual implementations of A.

In addition to our main theorem, we provide in Section 6.6 extensions for distributions

of infinite support and improved runtimes in certain cases, making use of techniques

from [DW12]. We also show that our results still hold even in the presence of bidders

with hard budget constraints. We remark that the functions defining a virtual imple-

mentation of a social welfare algorithm (Definition 12) may map a bidder type to a

vector with negative coordinates. We require that the approximation guarantee of the

given social welfare algorithm is still valid for inputs with negative coordinates. This

is not a restriction for arbitrary downwards-closed F ’s, as any α-factor approxima-

tion algorithm that works for non-negative vectors can easily be (in a black-box way)

converted to an α-factor approximation algorithm allowing arbitrary inputs.1 But

1The following simple black-box transformation achieves this: first zero-out all negative coordi-

125

this is not necessarily true for non downwards-closed F ’s. If optimal social welfare

cannot be tractably approximated (without concern for truthfulness) under arbitrary

inputs, our result is not applicable.

Beyond Additive Settings: We note that the additivity assumption on the bid-

ders’ values for bundles of items is already general enough to model all settings that

have been studied in the revenue-maximizing literature cited above, and already con-

tains all unit-demand settings.

Beyond these settings that are already additive, we remark that we can easily

extend our results to broader settings with minimal loss in computational efficiency.

As an easy example, consider a single-minded combinatorial auction where bidder

i is only interested in receiving some fixed subset Si of items, or nothing, and has

(private) value vi for Si. Instead of designing an auction for the original setting, we

can design an auction for a single “meta-item” such that allocating the meta-item to

bidder i means allocating subset Si to bidder i. So bidder i has value vi for the meta-

item. The meta-item can be simultaneously allocated to several bidders. However,

to faithfully represent the underlying setting, we define our feasibility constraints to

enforce that we never simultaneously allocate the meta-item to bidders i and j if

Si ∩ Sj 6= ∅. As there is now only one item, the bidders are trivially additive. So,

the new setting faithfully represents the original setting, there is only 1 item, and the

bidders are additive. So we can use our main theorem to solve this setting efficiently.

More generally, we can define the notion of additive dimension of an auction set-

ting to be the minimum number of meta-items required so that the above kind of

transformation can be applied to yield an equivalent setting whose bidders are ad-

ditive. For example, the additive dimension of any setting with arbitrary feasibility

constraints and additive bidders with arbitrary demand constraints is n. The addi-

tive dimension of a single-minded combinatorial auction setting is 1. The additive

dimension of general (i.e. non single-minded) combinatorial auction settings, as well

nates in the input vectors; then call the approximation algorithm; in the allocation output by the
algorithm un-allocate item j from bidder i if the corresponding coordinate is negative; this is still a
feasible allocation as the setting is downwards-closed.

126

as all settings with risk-neutral bidders is at most 2n (make a meta-item for each

possible subset of items). In Section 6.9 we discuss the following observation and give

examples of settings with low additive dimension, including settings where bidders

have symmetric submodular valuations [BKS12].

Observation 5. In any setting with additive dimension d, Informal Theorem 4 holds

after multiplying the runtime by a poly(d) factor, assuming that the transformation to

the additive representation of the setting can be carried out computationally efficiently

in the setting’s specification.

6.1.1 Approach and Techniques.

Our main result for this chapter, as well as the one in Chapter 5, are enabled by

an algorithmic characterization of interim allocation rules of auctions.2 The benefit

of working with the interim rule is, of course, the exponential (in the number of

bidders) gain in description complexity that it provides compared to the ex post

allocation rule, which specifies the behavior of the mechanism for every vector of

bidders’ types. On the other hand, checking whether a given interim rule is consistent

with an auction is a non-trivial task. Indeed, even in single-item settings, where a

necessary and sufficient condition for feasibility of interim rules had been known for

a while [Bor91, Bor07, CKM11], it was only recently that efficient algorithms were

obtained [CDW12a, AFH+12]. These approaches also generalized to serving many

copies of an item with a matroid feasibility constraint on which bidders can be served

an item simultaneously [AFH+12], but for more general feasibility constraints there

seemed to be an obstacle in even defining necessary and sufficient conditions for

feasibility, let alone checking them efficiently.

In view of this difficulty, it is quite surprising that a general approach for the

problem exists (Chapter 4). The main realization was that, for arbitrary feasibility

2The interim rule of an auction, also called the reduced form auction, is the collection of marginal
allocation probabilities πij(ti), defined for each item j, bidder i, and type ti of that bidder, represent-
ing the probability that item j is allocated to bidder i when her type is ti, and in expectation over
the other bidders’ types, the randomness in the mechanism, and the bidders’ equilibrium behavior.
See Section 2.5.

127

constraints, the set of feasible interim rules is a convex polytope, whose facets are

accessible via black-box calls to an exact welfare optimizer for the same feasibility

constraints. Such an algorithm can be turned into a separation oracle for the polytope

and used to optimize over it with Ellipsoid. However, this approach requires use of an

exact optimizer for welfare, making it computationally intractable in settings where

optimal social welfare can only be tractably approximated.

Given only an approximation algorithm for optimizing social welfare, one cannot

pin down the facets of the polytope of feasible interim rules exactly. Still, a natural

approach could be to resign from the exact polytope of feasible interim rules, and let

the approximation algorithm define a large enough sub-polytope. Namely, whenever

the separation oracle in Chapter 4 uses the output of the social welfare optimizer

to define a facet, make instead a call to the social welfare approximator and use

its output to define the facet. Unfortunately, unless the approximation algorithm

is a maximal-in-range algorithm, the separation oracle obtained does not necessarily

define a polytope. In fact, the region is likely not even convex, taking away all the

geometry that is crucial for applying Ellipsoid.

Despite this, we show that ignoring the potential non-convexity, and running El-

lipsoid with this “weird separation oracle” (called “weird” because it does not define

a convex region) gives an approximation guarantee anyway, allowing us to find an

approximately optimal interim rule with black-box access to the social welfare ap-

proximator. The next difficulty is that, after we find the approximately optimal

interim rule, we still need to find an auction implementing it. In Chapter 4 this is

done via a geometric algorithm that decomposes a point in the polytope of feasible

interim rules into a convex combination of its corners. Now that we have no polytope

to work with, we have no hope of completing this task. Instead, we show that for

any point ~π deemed feasible by our weird separation oracle, the black-box calls made

during the execution to the social welfare approximator contain enough information

to decompose ~π into a convex combination of virtual implementations of the approxi-

mation algorithm (which are not necessarily extreme points, or even contained in the

region defined by our weird separation oracle). After replacing the separation oracle

128

in Chapter 4 with our weird separation oracle, and the decomposition algorithm with

this new decomposition approach, we obtain the proof of our main theorem (Infor-

mal Theorem 4 above, and Theorem 20 in Section 6.6). Our approach is detailed in

Sections 6.3, 6.4 and 6.5.

6.1.2 Previous Work

In his seminal paper, Myerson solved the single-item case of the MDMDP [Mye81].

Shortly after, the result was extended to all “single-dimensional settings,” where

the seller has multiple copies of the same item and some feasibility constraint F on

which of the bidders can simultaneously receive a copy. On the multi-dimensional

front, the progress has been slow. Our result in Chapter 5 offers the analog of Myer-

son’s result for multi-dimensional settings. Nevertheless, the question still remained

whether there is an approximation preserving reduction from revenue to (not neces-

sarily truthful) welfare optimization. This reduction is precisely what this chapter

provides, resulting in approximately optimal solutions to MDMDP for all settings

where maximizing welfare is intractable, but approximately optimizing welfare (with-

out concern for truthfulness) is tractable.

Black-Box Reductions in Mechanism Design.

Our reduction from approximate revenue optimization to non-truthful welfare ap-

proximation is a black-box reduction. Such reductions have been a recurring theme

in mechanism design literature but only for welfare, where approximation-preserving

reductions from truthful welfare maximization to non-truthful welfare maximization

have been provided [BKV05, BLP06, HL10, DR10, BH11, HKM11]. The techniques

used here are orthogonal to the main techniques of these works. In the realm of

black-box reductions in mechanism design, our work is best viewed as “catching up”

the field of revenue maximization to welfare maximization, for the settings covered

by the MDMDP framework.

129

Weird Separation Oracle, Approximation, and Revenue Optimization.

Grötschel et al. [GLS81] show that exactly optimizing any linear function over a

bounded polytope P is equivalent to having a separation oracle for P . This is known

as the equivalence of exact separation and optimization. Jansen extends this result

to accommodate approximation [Jan02]. He shows that given an approximation al-

gorithm A such that for any direction ~w, A returns an approximately extreme point

A(~w) ∈ P , where A(~w) · ~w ≥ α ·max~v∈P{~w · ~v}, one can construct a strong, approx-

imate separation oracle which either asserts that a given point ~x ∈ P or outputs a

hyperplane that separates ~x from αP (the polytope P shrunk by α). We show a simi-

lar but stronger result. Under the same conditions, our weird separation oracle either

outputs a hyperplane separating ~x from a polytope P1 that contains αP , or asserts

that ~x ∈ P2, where P2 is a polytope contained in P . A precise definition of P1 and P2

is given in Section 6.3.1. Moreover, for any point ~x that the weird separation oracle

asserts is in P2, we show how to decompose it into a convex combination of points of

the form A(~w). This is crucial for us, as our goal is not just to find an approximately

optimal reduced form, but also to implement it. The technology of [Jan02] is not

enough to accomplish this, which motivates our stronger results.

But there is another, crucial reason that prevents using the results of [Jan02], and

for that matter [GLS81] (for the case α = 1), as a black box for our purposes. Given

a computationally efficient, α-approximate social-welfare algorithm A for feasibility

constraints F , we are interested in obtaining a separation oracle for the polytope

P = F (F ,D) of feasible interim allocation rules of auctions that respect F when

bidder types are drawn from distribution D. To use [Jan02] we need to use A to

come up with an α-approximate linear optimization algorithm for P . But, in fact,

we do not know how to find such an algorithm efficiently for general F , due to the

exponentiality of the support of D (which is a product distribution over D1, . . . ,Dm).

Indeed, given ~w we only know how to query A to obtain some π∗(~w) such that

π∗(~w) · ~w ≥ α ·max~π∈P{~w ·~π}− ε, for some small ε > 0. This additive approximation

error that enters the approximation guarantee of our linear optimization algorithm

130

is not compatible with using the results of [Jan02] or [GLS81] as a black box, and

requires us to provide our own separation to optimization reduction, together with

additional optimization tools.

131

6.2 Preliminaries for Weird Separation Oracle

Throughout this chapter, we denote by A a (possibly randomized, non-truthful) social

welfare algorithm that achieves an α-fraction of the optimal welfare for feasibility

constraints F . We denote by A({fi}i) the virtual implementation of A with virtual

transformations fi (see Definition 12).

In our technical sections, we will make use of “running the ellipsoid algorithm

with a weird separation oracle.” A weird separation oracle is just an algorithm that,

on input ~x, either outputs “yes,” or a hyperplane that ~x violates. We call it “weird”

because the set of points that will it accepts is not necessarily convex, or even con-

nected, so it is not a priori clear what it means to run the ellipsoid algorithm with

a weird separation oracle. When we say “run the ellipsoid algorithm with a weird

separation oracle” we mean:

1. Find a meaningful ellipsoid to start with (this will be obvious for all weird

separation oracles we define, so we will not explicitly address this).

2. Query the weird separation oracle on the center of the current ellipsoid. If it is

accepted, output it as a feasible point. Otherwise, update the ellipsoid using the

violated hyperplane (in the same manner that the standard ellipsoid algorithm

works).

3. Repeat step 2) for a pre-determined number of iterations N (N will be chosen

appropriately for each weird separation oracle we define). If a feasible point is

not found after N iterations, output “infeasible.”

It is also important to note that we are not using the ellipsoid algorithm as a means

to learning whether some non-convex set is empty. We are using properties of the

ellipsoid algorithm with carefully chosen weird separation oracles to learn information,

not necessarily related to a feasibility question.

132

6.3 The Weird Separation Oracle (WSO)

In this section, we take a detour from mechanism design, showing how to construct a

weird separation oracle from an algorithm that approximately optimizes linear func-

tions over a convex polytope. Specifically, let P be a bounded polytope containing

the origin, and let A be any algorithm that takes as input a linear function f and

outputs a point ~x ∈ P that approximately optimizes f (over P). We will define our

weird separation oracle using black-box access toA and prove several useful properties

that will be used in future sections. We begin by discussing three interesting convex

regions related to P in Section 6.3.1. This discussion provides insight behind why we

might expect WSO to behave reasonably. In addition, the polytopes discussed will

appear in later proofs. In Section 6.3.2 we define WSO formally and prove several

useful facts about executing the ellipsoid algorithm with WSO. For this section, we

will not address running times, deferring this to Section 6.5. Our basic objects for

this section are encapsulated in the following definition.

Definition 13. P is a convex d-dimensional polytope contained in [−1, 1]d, α ≤ 1 is

an absolute constant, and A is an approximation algorithm such that for any ~w ∈ Rd,

A(~w) ∈ P and A(~w) · ~w ≥ α · max~x∈P{~x · ~w}. (Since ~0 ∈ P , this is always non-

negative.)

Notice that the restriction that P ⊆ [−1, 1]d is without loss of generality as long

as P is bounded, as in this section we deal with multiplicative approximations.

6.3.1 Three Convex Regions.

Consider the following convex regions, where Conv(S) denotes the convex hull of S.

• P0 = {~π | ~π
α
∈ P}.

• P1 = {~π | ~π · ~w ≤ A(~w) · ~w, ∀~w ∈ [−1, 1]d}.

• P2 = Conv({A(~w), ∀~w ∈ [−1, 1]d}).

133

It is not hard to see that, if A always outputs the exact optimum (i.e. α = 1),

then all three regions are the same. It is this fact that enables the equivalence of

separation and optimization [GLS81]. It is not obvious, but perhaps not difficult to

see also that if A is a maximal-in-range algorithm,3 then P1 = P2. It turns out that

in this case, WSO (as defined in Section 6.3.2) actually defines a polytope. We will

not prove this as it is not relevant to our results, but it is worth observing where the

complexity comes from. We conclude this section with a quick lemma about these

regions.

Lemma 13. P0 ⊆ P1 ⊆ P2.

Proof. If ~π ∈ P0, then ~π · ~w ≤ αmaxx∈P{x · ~w} ≤ A(~w) · ~w for all ~w ∈ [−1, 1]d, since

A is an α-approximation algorithm. Therefore, ~π ∈ P1 as well. So P0 ⊆ P1.

Recall now that a point ~π is in the convex hull of S if and only if for all ~w ∈ [−1, 1]d,

there exists a point ~x(~w) ∈ S such that ~π · ~w ≤ ~x(~w) · ~w. If ~π ∈ P1, then we may

simply let ~x(~w) = A(~w) to bear witness that ~π ∈ P2(A,D).

6.3.2 WSO.

Before defining WSO, let’s state the properties we want it to have. First, for any

challenge ~π, WSO should either assert ~π ∈ P2 or output a hyperplane separating

~π from P1. Second, for any ~π such that WSO(~π) = “yes′′, we should be able to

decompose ~π into a convex combination of points of the form A(~w). Why do we want

these properties? Our goal in later sections is to write a LP that will use WSO for

F (F ,D) to find a reduced form auction whose revenue is at least αOPT. Afterwards,

we have to find an actual mechanism that implements this reduced form. So WSO

needs to guarantee two things: First, running a revenue maximizing LP with WSO

must terminate in a reduced form with good revenue. Second, we must be able to

implement any reduced form that WSO deems feasible. Both claims will be proved

in Section 6.4 using lemmas proved here. That using WSO achieves good revenue

3Let S denote the set of vectors that are ever output by A on any input. Then A is maximal-in-
range if, for all ~w, A(~w) ∈ argmax~x∈S{A(~x) · ~w}.

134

begins with Fact 1. That we can implement any reduced form deemed feasible by

WSO begins with Lemma 14. We define WSO in Figure 6-1.

WSO(~π) =

• “Yes” if the ellipsoid algorithm with N iterationsa outputs “infeasible” on the
following problem:

variables: ~w, t;

constraints:

– ~w ∈ [−1, 1]d;

– t− ~π · ~w ≤ −δ;b

– ŴSO(~w, t) =

∗ “yes” if t ≥ A(~w) · ~w;c

∗ the violated hyperplane t′ ≥ A(~w) · ~w′ otherwise.

• If a feasible point (t∗, ~w∗) is found, output the violated hyperplane ~w∗ · ~π′ ≤ t∗.

aThe appropriate choice of N for our use of WSO is provided in Corollary 12 of Section 6.5. The
only place that requires an appropriate choice of N is the proof of Lemma 14.

bThe appropriate choice of δ for our use of WSO is provided in Lemma 16 of Section 6.5. The
only place that requires an appropriate choice of δ is the proof of Lemma 14.

cNotice that the set {(~w, t)|ŴSO(~w, t) = “Yes”} is not necessarily convex or even connected.

Figure 6-1: A “weird” separation oracle.

Let’s now understand what exactly WSO is trying to do. What WSO really wants

is to act as a separation oracle for P2. As P2 is a polytope, if ~π /∈ P2, then there is

some weight vector ~w such that ~π · ~w > max~x∈P2{~x · ~w}. WSO wants to find such a

weight vector or prove that none exists (and therefore ~π ∈ P2). It is shown in [GLS81]

that if we replace A(~w) with argmax~x∈P2
{~x · ~w} inside ŴSO, then WSO would be a

separation oracle for P2. Unfortunately, unless A is maximal-in-range, we cannot find

argmax~x∈P2
{~x · ~w} with only black-box access to A.4 So WSO makes its best guess

that A(~w) is the maximizer it is looking for. Of course, this is not necessarily the

case, and this is why the set of points accepted by WSO is not necessarily a convex

region. Now, we need to prove some facts about WSO despite this.

4If A is maximal-in-range, then this is exactly A(~w).

135

Fact 1. Consider an execution of the ellipsoid algorithm using WSO, possibly to-

gether with additional variables and constraints. Let Q be the polytope defined by the

halfspaces output by WSO during its execution. Then during the entire execution,

P1 ⊆ Q.

Proof. Any hyperplane output by WSO is of the form ~w∗ · ~π ≤ t∗. Because ~w∗, t∗

was accepted by ŴSO, we must have t∗ ≥ A(~w∗) · ~w∗. As every point in P1 satisfies

~π · ~w∗ ≤ A(~w∗) · ~w∗ ≤ t∗, we get that P1 ⊆ Q.

Fact 2. If ~π ∈ P1, then WSO(~π) = “yes.”

Proof. In order for WSO to reject ~π, its internal ellipsoid algorithm that uses ŴSO

must find some feasible point (t∗, ~w∗). As ŴSO accepts (t∗, ~w∗), such a point clearly

satisfies the following two equations:

t∗ < ~π · ~w∗

t∗ ≥ A(~w∗) · ~w∗

Together, this implies that ~π · ~w∗ > A(~w∗) · ~w∗, so ~π /∈ P1.

Corollary 8. When WSO rejects ~π, it acts as a valid separation oracle for P1, or

any polytope contained in P1 (i.e. the hyerplane output truly separates ~π from P1).

In other words, the only difference between WSO and a valid separation oracle for P1

is that WSO may accept points outside of P1.

Proof. By Fact 2, whenever WSO rejects ~π, ~π /∈ P1. By Fact 1, any halfspace output

by WSO contains P1. This is all that is necessary in order for WSO to act as a valid

separation oracle for P1 when it rejects ~π.

Lemma 14. Let WSO(~π) = “yes” and let S denote the set of weights ~w such that

WSO queried ŴSO(~w, t) for some t during its execution. Then ~π ∈ Conv({A(~w)|~w ∈

S}).

136

Proof. Define the polytope P (S) as the set of t, ~w that satisfy the following inequal-

ities:

t− ~π · ~w ≤ −δ

t ≥ A(~w′) · ~w, ∀~w′ ∈ S

~w ∈ [−1, 1]d

We first claim that if ~π /∈ Conv({A(~w)|~w ∈ S}), then P (S) is non-empty. This is

because when ~π /∈ Conv({A(~w)|~w ∈ S}), there is some weight vector ~w∗ ∈ [−1, 1]d

such that ~w∗ · ~π > max~w′∈S{~w∗ · A(~w′)}. For appropriately chosen δ (Lemma 16 in

Section 6.5 provides one), there is also a ~w∗ such that ~w∗ ·~π ≥ max~w′∈S{~w∗ ·A(~w′)}+δ.

Set t∗ := max~w′∈S{~w∗ · A(~w′)} and consider the point (t∗, ~w∗). As t∗ is larger than

A(~w′) · ~w∗ for all ~w′ ∈ S by definition, and ~w∗ ∈ [−1, 1]d by definition, we have found

a point in P (S).

Now, consider that in the execution of WSO(~π), ŴSO outputs several halfspaces.

As S is exactly the set of weights ~w that WSO queries to ŴSO, these are exactly

the halfspaces:

t ≥ A(~w′) · ~w, ∀~w′ ∈ S

During the execution of WSO(~π), other halfspaces may be learned not from ŴSO,

but of the form t−~π · ~w ≤ −δ or −1 ≤ wi, wi ≤ 1 for some i ∈ [d]. Call the polytope

defined by the intersection of all these halfspaces P (WSO). As all of these halfspaces

contain P (S), it is clear that P (WSO) contains P (S).

Now we just need to argue that if N is sufficiently large, and WSO(~π) could not

find a feasible point in N iterations, then P (S) is empty. Corollary 12 in Section 6.5

provides an appropriate choice of N . Basically, if P (S) is non-empty, we can lower

bound its volume with some value V (independent of S). If N = poly(log(1/V)),

then the volume of the ellipsoid containing P (WSO) after N iterations will be strictly

smaller than V . As P (WSO) contains P (S), this implies that P (S) is empty. There-

fore, we may conclude that ~π ∈ Conv({A(~w)|~w ∈ S}).

137

6.4 Approximately Maximizing Revenue using WSO

In this section, we show that running the revenue maximizing LP in Figure 5-1 using

the weird separation oracle of the previous section obtains good revenue, and outputs

a reduced form that can be implemented with only black-box access to a social welfare

algorithm A.

In brush strokes, the approach in Chapter 5 is the following. We start by creating

a proxy distribution D′ that is a (correlated across bidders) uniform distribution over

poly(n, T, 1/ε) type profiles. Roughly, D′ is obtained by sampling the same number of

profiles from D, and forming the uniform distribution over them, and its advantage

over D is that its support is polynomial. With D′ at hand, it shown that the LP

in Figure 5-1 outputs a reduced form whose revenue is at least OPT − ε. This is

proved by showing that the polytopes F (F ,D) and F (F ,D′) are “ε-close” in some

meaningful way. To show how we adapt this approach to our setting, we need a

definition.

Definition 14. Let ~w ∈ RT , and D̂ be a (possibly correlated) distribution over bidder

type profiles. Define fi : Ti → Rn so that fij(B) =
wij(B)

Pr[ti=B]
. Then AD̂(~w) denotes the

allocation rule A({fi}i), RA
D̂(~w) denotes the reduced form of AD̂(~w), and WA

D̂ (~w) :=

RA
D̂(~w) · ~w is exactly the expected virtual welfare obtained by algorithm A under the

virtual transformations {fi}i. For the purpose of the dot product, recall that we may

view reduced forms as T -dimensional vectors

Given this definition, and for the same D′ used in Chapter 5, we let P = F (F ,D′),

and A(~w) be the algorithm that on input ~w ∈ RT returns RA
D′(~w). Because taking a

dot product with ~w is exactly computing expected virtual welfare (as in Definition 14),

it is clear that A is an α-factor approximation algorithm for optimizing any linear

function ~w · ~x over ~x ∈ P . Using A, we define P0, P1 and P2 as in Section 6.3.

We continue to bound the revenue of the reduced form output by our LP of in

Figure 5-1. Denote by Rev(F) the revenue obtained by the LP of in Figure 5-1, and

by Rev(Pi) the revenue obtained by replacing P with Pi.

Lemma 15. Rev(P0) ≥ αRev(F) ≥ α(OPT− ε).

138

Proof. Let (~π∗, ~p∗) denote the reduced form output by the LP in Figure 5-1. Then we

claim that the reduced form (α~π∗, α~p∗) is a feasible solution after replacing F (F ,D′)

with P0. It is clear that this mechanism is still IR and BIC, as we have simply

multiplied both sides of every incentive constraint by α. It is also clear that α~π∗ ∈ P0

by definition. As we have multiplied all of the payments by α, and the original LP

had revenue OPT− ε, it is clear that revenue of the reduced form output in the new

LP is at least α(OPT− ε).

Now, denote by Rev(WSO) the revenue obtained by replacing P with WSO in

Figure 5-1. By “replace P with WSO,” we mean run the optimization version of

the ellipsoid algorithm that does a binary search on possible values for the objective

function. On each subproblem (i.e. for a guess x of the revenue), run the ellipsoid

algorithm using a new weird separation oracle WSO′, which does the following. For

challenge (~π, ~p), first check if it satisfies the IR and BIC constraints in Figure 5-1

and the revenue constraint
∑m

i=1

∑
~vi∈Ti Pr[ti = ~vi] · pi(~vi) ≥ x, for the guessed value

x of revenue. If not, output the hyperplane it violates. If yes, output WSO(~π).

The ellipsoid algorithm will use exactly the same parameters as if WSO was a

separation oracle for P0. In particular, we can calculate the number of iterations

and the precision that Ellipsoid would use if it truly had access to a separation oracle

for P0,5 and use the same number of iterations here. Moreover, we use here the same

criterion for deeming the feasible region lower-dimensional that the Ellipsoid with

separation oracle for P0 would use. Similarly, the bit complexity over values of x that

the binary search will search over is taken to be the same as if binary search and

the ellipsoid algorithm were used to solve the LP of Figure 5-1 with P0 in place of

F (F ,D′).

We now want to use Lemma 15 to lower bound Rev(WSO). This is almost a

direct corollary of Fact 1. The only remaining step is understanding the ellipsoid

algorithm.

5These parameters were computed in Chapter 4 except for F (F ,D′) rather than P0. As the
latter is just the former scaled by α it is easy to modify these parameters to accommodate α. This
is addressed in Lemma 17 in Section 6.5.

139

Proposition 8. If x ≤ Rev(P0), then the ellipsoid algorithm using WSO′ (with the

same parameters as if WSO was a separation oracle for P0) will always find a feasible

point.

Proof. Let Q0 be the set of (~π, ~p) that satisfy ~π ∈ P0, the BIC and IR constraints, as

well as the revenue constraint
∑m

i=1

∑
~vi∈Ti Pr[ti = ~vi] · pi(~vi) ≥ x. As x ≤ Rev(P0),

we know that there is some feasible point (~π∗, ~p∗) ∈ Q0. Therefore, the ellipsoid

algorithm using a valid separation oracle for Q0 and the correct parameters will find

a feasible point.

Now, what is the difference between a valid separtion oracle for Q0 and WSO′

as used in Proposition 8? A separation oracle for Q0 first checks the BIC, IR, and

revenue constraints, then executes a true separation oracle for P0. WSO′ first checks

the BIC, IR, and revenue constraints, then executes WSO. So let us assume for

contradiction that the Ellipsoid using WSO′ outputs infeasible, but Q0 is non-empty.

It has to be then that WSO rejected every point that was queried to it.6 However,

Corollary 8 guarantees that when rejecting points, WSO acts as a valid separation

oracle for P0 (i.e. provides a valid hyperplane separating ~π from P0). As the only

difference between a separation oracle for Q0 and WSO′ was the use of WSO, and

WSO acted as a valid separation oracle for P0, this means that in fact WSO′ behaved

as a valid separation oracle for Q0. So we ran the ellipsoid algorithm using a valid

separation oracle for Q0 with the correct parameters, but output “infeasible” when

Q0 was non-empty, contradicting the correctness of the ellipsoid algorithm.

Therefore, whenever Q0 is non-empty, WSO′ must find a feasible point. As Q0 is

non-empty whenever x ≤ Rev(P0), this means that WSO′ will find a feasible point

whenever x ≤ Rev(P0), proving the proposition.

Corollary 9. Rev(WSO) ≥ Rev(P0).

Proof. Consider running the LP of Figure 5-1 with WSO. The optimization version

of the ellipsoid algorithm will do a binary search on possible values for the objective

6In particular, even if Ellipsoid deems the feasible region lower-dimensional, and continues in a
lower-dimensional space, etc., then still if the final output of Ellipsoid is infeasible, then all points
that it queried to WSO were rejected.

140

function and solve a separate feasibility subproblem for each. Proposition 8 guarantees

that on every feasibility subproblem with x ≤ Rev(P0), the ellipsoid algorithm will

find a feasible point. Therefore, the binary search will stop at some value x∗ ≥

Rev(P0), and we get that Rev(WSO) ≥ Rev(P0).

Corollary 10. Rev(WSO) ≥ α(OPT− ε).

Finally, we need to argue that we can implement any reduced form output by the

LP with WSO, as otherwise the reduced form is useless. This is a direct consequence

of Lemma 14:

Corollary 11. Let ~π∗ denote the reduced form output by the LP of Figure 5-1 using

WSO instead of F (F ,D′), and let S be the set of weights ~w that are queried to ŴSO

during the execution. Then ~π∗ can be implemented (for bidders sampled from D′) as

a distribution over virtual implementations of A using only virtual transformations

corresponding to weights in S.

Proof. Because ~π∗ is output, we have WSO(~π∗) = “yes.” Lemma 14 tells us that

~π∗ is therefore in the convex hull of {RA
D′(~w)|~w ∈ S}. As a convex combination of

reduced forms can be implemented as a distribution over the allocation rules that

implement them, we have proven the corollary.

At this point, we have shown that the reduced form ~π∗ and pricing rule p∗ com-

puted by the LP of Figure 5-1 after replacing F (F ,D′) with WSO achieves good

revenue when bidders are sampled from D, and define a BIC mechanism when bid-

ders are sampled from D′. We have also shown that we can implement ~π∗ as a

distribution over virtual implementations of A using only weights that were queried

during the execution of the LP, albeit for bidders are sampled from D′.

The remaining step for correctness (we still have not addressed running time) is to

show that, with high probability, the same distribution over virtual implementations

of A implements some reduced form ~π′ when the bidders are sampled from D that

satisfies |~π∗ − ~π′|1 ≤ ε. Once we show this, we will have proved that our distribution

over virtual implementations of A and our pricing rule p∗ define an ε-BIC, ε-IR mech-

anism when bidders are sampled from D with good revenue. We will refer the reader

141

to Section 4.4.1 for a formal proof of the same fact when using F (F ,D′) rather than

WSO in the LP of Figure 5-1 as the proof is nearly identical. In addition, we can

give every bidder type an ε rebate in order to get an ε-BIC, IR mechanism for bidders

sampled from D for an additional hit of mε in revenue. (Recall that the runtime

we are shooting for is polynomial in 1/ε, so ε can be made small enough to cancel

the additional factor of m.) With this discussion, we have shown that our algorithm

is correct: we have implemented some ε-BIC, IR mechanism (~π′, ~p∗ − ε) whose rev-

enue is at least α(OPT− ε). We show that our approach runs in polynomial time in

Section 6.5.

142

6.5 Runtime

Until now, we have only established that our algorithms are correct, up to maybe

choosing the right parameters in WSO, which was deferred to this section. Here,

we set these parameters appropriately and analyze the running times of all our algo-

rithms. In particular, we show that all reduced forms required in Section 6.4 can be

computed in polynomial time, and that both WSO from Section 6.3 and our revenue

maximizing LP from Section 6.4 run in polynomial time.

Analyzing WSO from Section 6.3. We start with the appropriate choice of δ.

The proof of the following lemma is in Section 6.8.1.

Lemma 16. Let S be any subset of weight vectors in [−1, 1]d, b be the bit complexity

of ~π, and ` be an upper bound on the bit complexity of A(~w) for all ~w ∈ [−1, 1]d.

Then if ~π /∈ Conv({A(~w)|~w ∈ S}), there exists a weight vector ~w∗ such that ~π · ~w∗ ≥

max~w∈S{A(~w) · ~w∗}+ 4δ, where δ = 2−poly(d,`,b) (does not depend on S).

The requirement that δ is chosen appropriately only appears in the proof of Lemma 14.

As Lemma 16 describes an appropriate choice of δ for the proof to be correct, we take

δ = 2−poly(d,`,b) in the definition of WSO.

Next we address the appropriate choice of N for the number of iterations used in

WSO. This is stated in Corollary 12, and proved in Section 6.8.1.

Corollary 12. There exists some N = poly(d, `, b) such that, if WSO has not found

a feasible point after N iterations of the ellipsoid algorithm, the following polytope

(P (S)) is empty:

t− ~π · ~w ≤ −δ;

t ≥ A(~w′) · ~w, ∀~w′ ∈ S;

~w ∈ [−1, 1]d;

where S is the set of weights ~w′ such that WSO queried ŴSO on (t, ~w′) for some

143

t during its execution, b is the bit complexity of ~π, ` is an upper bound on the bit

complexity of A(~w) for all ~w ∈ [−1, 1]d, and δ is chosen as in Lemma 16.

Note that Lemma 16 and Corollary 12 complete the description of WSO, and

establish the truth of Lemma 14.

It remains to bound the running time of WSO. Let rtA(x) be the running time of

algorithm A on input whose bit complexity is x. With Lemma 16 and Corollary 12,

we can bound the running time of WSO. This is stated below as Corollary 13 and

proved in Section 6.8.1.

Corollary 13. Let b denote the bit complexity of ~π and ` be an upper bound of the

bit complexity of A(~w) for all ~w ∈ [−1, 1]d. Then on input ~π, WSO terminates in

time poly(d, `, b, rtA(poly(d, `, b))).

Computing Reduced Forms. In Section 6.4 we need to use a possibly random-

ized social-welfare algorithm A (to which we have black-box access) to obtain an

α-approximation algorithm A for optimizing any linear function ~w · ~x over ~x ∈

P = F (F ,D′), where D′ is a (correlated across bidders) uniform distribution over

poly(n, T, 1/ε) type profiles. We need to argue that for a given input ~w ∈ RT we

can compute A(~w) ≡ RA
D′(~w) in time polynomial in the description of ~w and the

description of the distribution D′. If A is randomized we cannot do this exactly, but

we do get with high probability a good enough approximation for our purposes. We

explain how to do this in Section 6.8.2. The outcome is an algorithm A, which has

the following properties with probability at least 1 − η, and for arbitrary choices of

η ∈ (0, 1) and γ ∈ (0, α):

• for all ~w for which our algorithm from Section 6.4 may possibly query A, A

approximately optimizes the linear objective ~w · ~x over ~x ∈ F (F ,D′) to within

a factor of (α− γ);

• the bit complexity of A(~w) is always polynomial in the dimension T and the

logarithm of the size, poly(n, T, 1/ε), of the support of D′;

144

• on input ~w of bit complexity y, the running time of A is

rtA(y) = poly(n, T, ˆ̀, 1/ε, log 1/η, 1/γ, y)

· rtA(poly(n, T, ˆ̀, log 1/ε, y)),

where rtA(·) represents the running time of A and ˆ̀ the bit complexity of the

coordinates of the points in ×iTi.

Note that replacing α with α−γ in Section 6.4 does not affect our guarantees, except

for a loss of a small amount in revenue and truthfulness, which can be made arbitrar-

ily small with γ.

Analyzing the Revenue Optimizing LP. First we show that the WSO used

in Section 6.4 as a proxy for a separation oracle for F (F ,D′) runs in polynomial

time. Recall that the dimension is d = T , the bit complexity of A(~w) for any ~w can

be bounded by ` = poly(n, T, log 1/ε), and that γ and η are constants used in the

definition of A. Hence, we immediately get the following corollary of Corollary 13.

Corollary 14. Let b denote the bit complexity of ~π. Then on input ~π, WSO termi-

nates in time

poly(b, n, T, ˆ̀, 1/ε, log 1/η, 1/γ)

· rtA(poly(n, T, ˆ̀, log 1/ε, b)),

where ˆ̀ is an upper bound on the bit complexity of the coordinates of the points in

×iTi.

Now that we have shown that WSO runs in polynomial time, we need to show that

our revenue maximizing LP does as well. The proof of the following is in Section 6.8.3.

Lemma 17. Let ˆ̀ denote an upper bound on the bit complexity of α, vij(B) and

Pr[ti = B] for all i, j, B. Then the revenue maximizing LP (if we replace P with

145

WSO)7 terminates in time

poly(n, T, ˆ̀, 1/ε, log 1/η, 1/γ)

· rtA(poly(n, T, ˆ̀, log 1/ε)).

With this lemma we complete our proof that our algorithm from Section 6.4 is

both correct and computationally efficient.

7See what we mean by “replacing P with WSO” in Section 6.4.

146

6.6 Formal Theorem Statements

In this section we provide our main theorem, formalizing Informal Theorem 4. In

Section 6.7, we also provide two extensions of our theorem to item-symmetric set-

tings using the techniques of [DW12]. These extensions are Theorems 21 and 22 of

Section 6.7. In all cases, the allocation rule of the mechanism output by our algorithm

is a distribution over virtual implementations of the given social-welfare algorithm A.

Moreover, the mechanisms are ε-BIC and not truly-BIC, as we only know how to im-

plement the target reduced forms exactly when consumers are sampled from D′ (see

discussion in Section 6.4). Theorems 20, 21 and 22 follow directly from Sections 6.3

through 6.5 in the same way that their corresponding theorems (Theorems 17 through

19) in Chapter 5 follow, after replacing the separation oracle for F (F ,D′) with WSO

in the LP of Figure 5-1. In all theorem statements, rtA(x) denotes the runtime of

algorithm A on inputs of bit complexity x.

Theorem 20. For all ε, η > 0, all D of finite support in [0, 1]nm, and all F , given

black-box access to a (non-truthful) α-approximation algorithm, A, for finding the

welfare-maximizing allocation in F , there is a polynomial-time randomized approxi-

mation algorithm for MDMDP with the following properties: the algorithm obtains

expected revenue α(OPT − ε), with probability at least 1 − η, in time polynomial in

`, n, T, 1/ε, log(1/η) and rtA(poly(`, n, T, log 1/ε, log log(1/η))), where ` is an upper

bound on the bit complexity of the coordinates of the points in the support of D, as

well as of the probabilities assigned by D1, . . . ,Dm to the points in their support. The

output mechanism is ε-BIC, and can be implemented in the same running time.

We remark that we can easily modify Theorem 20 and its extensions (Theorems 21

and 22) to accommodate bidders with hard budget constraints. We simply add into

the revenue-maximizing LP constraints of the form pi(~vi) ≤ Bi, where Bi is bidder

i’s budget. It is easy to see that this approach works; this is addressed formally in

Section 5.3.

147

6.7 Extensions of Theorem 20

This section contains extensions of Theorem 20 enabled by the techniques of [DW12].

Theorem 21. For all ε, η > 0, item-symmetric D of finite support in [0, 1]nm, item-

symmetric F , and given black-box access to a (non-truthful) α-approximation algo-

rithm, A, for finding the welfare-maximizing allocation in F , there is a polynomial-

time randomized approximation algorithm for MDMDP with the following properties:

the algorithm obtains expected revenue α(OPT− ε), with probability at least 1− η, in

time polynomial in `, m,nc, 1/ε, log(1/η) and rtA(poly(nc,m, log 1/ε, log log(1/η), `)),

where c = maxi,j |Dij|, and |Dij| is the cardinality of the support of the marginal of

D on bidder i and item j, and ` is as in the statement of Theorem 20. The output

mechanism is ε-BIC, and can be implemented in the same running time.

Theorem 22. For all ε, η, δ > 0, item-symmetric D supported on [0, 1]nm, item-

symmetric F , and given black-box access to a (non-truthful) α-approximation algo-

rithm, A, for finding the welfare-maximizing allocation in F , there is a polynomial-

time randomized approximation algorithm for MDMDP with the following properties:

If C is the maximum number of items that are allowed to be allocated simultaneously by

F , the algorithm obtains expected revenue α(OPT−(
√
ε+
√
δ)C), with probability 1−

η, in time polynomial in m,n1/δ, 1/ε, log(1/η), and rtA(poly(n1/δm, log 1/ε, log log 1/η)).

In particular, the runtime does not depend on |D| at all). The output mechanism is

ε-BIC, and can be implemented in the same running time.

Remark 3. The assumption that D is supported in [0, 1]mn as opposed to some other

bounded set is w.l.o.g., as we could just scale the values down by a multiplicative vmax.

This would cause the additive approximation error to be εvmax. In addition, the point

of the additive error in the revenue of Theorem 22 is not to set ε, δ so small that

they cancel out the factor of C, but rather to accept the factor of C as lost revenue.

For “reasonable” distributions, the optimal revenue scales with C, so it is natural to

expect that the additive loss should scale with C as well.

148

6.8 Omitted Proofs from Section 6.5

6.8.1 The Runtime of WSO

Proof of Lemma 16: Consider the polytope P ′(S) with respect to variables t′ and ~w′

that is the intersection of the following half-spaces (similar to P (S) from the proof of

Lemma 14):

t′ ≤ d

t′ ≥ A(~w) · ~w′, ∀~w ∈ S

~w′ ∈ [−1, 1]d

If ~π /∈ Conv({A(~w)|~w ∈ S}), there exists some weight vector ~w′ such that ~π · ~w′ >

max~w∈S{A(~w) · ~w′}. This bears witness that there is a point in P ′(S) satisfying

~π · ~w′ > t′. If such a point exists, then clearly we may take (~w′, t′) to be a corner

of P ′(S) satisfying the same inequality. As the bit complexity of every halfspace

defining P ′(S) is poly(d, `), the corner also has bit complexity poly(d, `). Therefore,

if t′ − ~π · ~w′ < 0, t′ − ~π · ~w′ ≤ −4δ, for some δ = 2−poly(d,`,b). �

Lemma 18. Let S be any subset of weights. Let also b be the bit complexity of ~π,

and ` an upper bound on the bit complexity of A(~w) for all ~w. Then, if we choose

δ as prescribed by Lemma 16, the following polytope (P (S)) is either empty, or has

volume at least 2−poly(d,`,b):

t− ~π · ~w ≤ −δ

t ≥ A(~w′) · ~w, ∀~w′ ∈ S

~w ∈ [−1, 1]d

Proof of Lemma 18: First, it will be convenient to add the vacuous constraint t ≤ d

to the definition of the polytope. It is vacuous because it is implied by the existing

constraints,8 but useful for the analysis. Define P ′(S) by removing the first constraint.

8Since P ∈ [−1, 1]d, WLOG we can also assume ~π ∈ [−1, 1]d, thus from the constraints of P (S)

149

That is, P ′(S) is the intersection of the following halfspaces (this is the same as P ′(S)

from the proof of Lemma 16):

t ≤ d

t ≥ A(~w′) · ~w, ∀~w′ ∈ S

~w ∈ [−1, 1]d

If there is a point in P (S), then there is some point in P ′(S) satisfying t−~π · ~w ≤

−δ. If such a point exists, then clearly there is also a corner of P ′(S) satisfying

t − ~π · ~w ≤ −δ. Call this corner (t∗, ~w∗). Recall that δ was chosen in the proof of

Lemma 16 so that we are actually guaranteed t− ~π · ~w ≤ −4δ. Therefore, the point

(t∗/2, ~w∗/2) is also clearly in P (S), and satisfies t− ~π · ~w ≤ −2δ.

Now, consider the box B = [t
∗

2
+ δ

2
, t
∗

2
+ 3δ

4
] × (×di=1[

w∗i
2
,
w∗i
2

+ δ
4d

]). We claim

that B ⊆ P (S). Let (t, ~w) denote an arbitrary point in B. It is clear that we have

~w ∈ [−1, 1]d, as we had ~w∗/2 ∈ [−1/2, 1/2]d to start with. As each coordinate of ~π

and A(~w′) for all ~w′ is in [−1, 1], it is easy to see that:

(~w∗/2) · ~π − δ

4
≤ ~w · ~π ≤ (~w∗/2) · ~π +

δ

4
,

and for all ~w′ ∈ S,

(~w∗/2) · A(~w′)− δ

4
≤ ~w · A(~w′) ≤ (~w∗/2) · A(~w′) +

δ

4
.

As we must have t ≥ t∗

2
+ δ

2
, and we started with t∗ ≥ ~w∗ · A(~w′) for all ~w′ ∈ S, it

is clear that we still have t ≥ ~w · A(~w′) for all ~w′ ∈ S. Finally, since we started with

t∗/2− ~π · ~w∗/2 ≤ −2δ, and t ≤ t∗/2 + 3δ
4

, we still have t− ~π · ~w ≤ −δ.

Now, we simply observe that the volume of B is δd+1

dd4d+1 , which is 2−poly(d,`,b). There-

fore, if P (S) is non-empty, it contains this box B, and therefore has volume at least

2−poly(d,`,b). �

it follows that t ≤ d.

150

Proof of Corollary 12: By Lemma 18, if P (S) is non-empty, P (S) has volume at least

some V = 2−poly(d,`,b). Since P ⊆ [−1, 1]d, the starting ellipsoid in the execution of

WSO can be taken to have volume 2O(d). As the volume of the maintained ellipsoid

shrinks by a multiplicative factor of at least 1− 1
poly(d)

in every iteration of the ellip-

soid algorithm, after some N = poly(d, `, b) iterations, we will have an ellipsoid with

volume smaller than V that contains P (S) (by the proof of Lemma 14), a contradic-

tion. Hence P (S) must be empty, if we use the N chosen above for the definition of

WSO and the ellipsoid algorithm in the execution of WSO does not find a feasible

point after N iterations. �

Proof of Corollary 13: By the choice of N in Corollary 12, WSO only does poly(d, `, b)

iterations of the ellipsoid algorithm. Note that the starting ellipsoid can be taken to

be the sphere of radius
√
d centered at ~0, as P ⊆ [−1, 1]d. Moreover, the hyperplanes

output by ŴSO have bit complexity O(`), while all other hyperplanes that may be

used by the ellipsoid algorithm have bit complexity poly(d, `, b) given our choice of

δ. So by [GLS88], ŴSO will only be queried at points of bit complexity poly(d, `, b),

and every such query will take time poly(poly(d, `, b), rtA(poly(d, `, b)) as it involves

checking one inequality for numbers of bit complexity poly(d, `, b) and making one

call to A on numbers of bit complexity poly(d, `, b). Therefore, WSO terminates in

the promised running time. �

We use the following theorem to summarize our results for WSO.

Theorem 23. Let P be a d-dimensional bounded polytope containing the origin, and

let A be any algorithm that takes any direction ~w ∈ [−1, 1]d as input and outputs

a point A ∈ P such that A(~w) · ~w ≥ α · max~x∈P ~x · ~w for some absolute constant

α ∈ (0, 1], then we can design a “weird” separation oracle WSO such that,

1. Every halfspace output by the WSO will contain αP = {α · ~π | ~π ∈ P}.

2. Whenever WSO(~x) = “yes,” the execution of WSO explicitly finds directions

~w1, . . . , ~wk such that ~x ∈ Conv{A(~w1), . . . ,A(~wk)}.

151

3. Let b be the bit complexity of ~x, ` be an upper bound of the bit complexity

of A(~w) for all ~w ∈ [−1, 1]d, rtA(y) be the running time of algorithm A on

some input with bit complexity y, then on input ~x, WSO terminates in time

poly(d, b, `, rtA(poly(d, b, `))) and makes at most poly(d, b, `) many queries to A.

Proof. In fact, we have already proved all three claims in some previous Lemmas

and Corollaries. For each claim, we point out where the proof is. For the first claim,

using Corollary 8 we know P1 is contained in all halfspaces output by WSO, therefore

αP ∈ P1 is also contained in all halfspaces. The second claim is proved in Lemma 14,

and the third claim is proved in Corollary 13.

6.8.2 Computing Reduced Forms of (Randomized) Alloca-

tion Rules.

For distributions that are explicitly represented (such as D′), it is easy to compute

the reduced form of a deterministic allocation rule: simply iterate over every profile

in the support of D′, run the allocation rule, and see who receives what items. For

randomized allocation rules, this is trickier as computing the reduced form exactly

would require enumerating over the randomness of the allocation rule. One approach

is to approximate the reduced form. This approach works, but is messy to verify

formally, due to the fact that the bit complexity of reduced forms of randomized

allocations takes effort to bound. The technically cleanest approach is to get our

hands on a deterministic allocation rule instead.

Let A be a randomized allocation rule that obtains an α-fraction of the maximum

welfare in expectation. Because the welfare of the allocation output by A cannot

be larger than the maximum welfare, the probability that A obtains less than an

(α− γ)-fraction of the maximum welfare is at most 1− γ. So let A′ be the allocation

rule that runs several independent trials of A and chooses (of the allocations output

in each trial) the one with maximum welfare. If the number of trials is x/γ, we can

guarantee that A′ obtains at least an (α − γ)-fraction of the maximum welfare with

probability 1− e−x. From this it follows that, if O((`+ τ)/γ) independent trials of A

152

are used for A′, then A′ obtains an (α − γ)-fraction of the maximum welfare for all

input vectors of bit complexity `, with probability at least 1 − 2−τ . This follows by

taking a union bound over all 2` possible vectors of bit complexity `. For `, τ to be

determined later, we fix the randomness used by A′ in running A ahead of time so

that A′ is a deterministic algorithm. Define A′ using A′ in the same way that A is

defined using A.

AsA′ is a deterministic algorithm andD′ a uniform distribution over poly(n, T, 1/ε)

profiles, we can compute RA
′

D′(~w) for a given ~w by enumerating over the support of

D′ as described above. The resulting RA
′

D′(~w) has bit complexity polynomial in the

dimension T and the logarithm of poly(n, T, 1/ε).9

Now let us address the choice of `. We basically want to guarantee the following.

Suppose that we use A′ inside WSO. We want to guarantee that A′ will work well

for any vector ~w that our algorithm will possibly ask A′.10 We argue in the proof of

Lemma 17 that, regardless of the bit complexity of the hyperplanes output by WSO,

throughout the execution of our algorithm WSO will only be queried on points of

bit complexity poly(n, T, ˆ̀, log 1/ε), where ˆ̀ is the bit complexity of the coordinates

of the points in ×iTi. From Corollary 13 it follows then that A′ will only be queried

on inputs of bit complexity poly(n, T, ˆ̀, log 1/ε). This in turns implies that A′ will

only be queried on inputs of bit complexity poly(n, T, ˆ̀, log 1/ε). So setting ` to some

poly(n, T, ˆ̀, log 1/ε) guarantees that A′ achieves an (α− γ)-fraction of the maximum

welfare, for all possible inputs it may be queried simultaneously, with probability at

least 1− 2−τ .

Finally, for every input ~w of bit complexity x, the running time of A′ is polynomial

in x, the support size and the bit complexity of D′ (which is poly(n, T, ˆ̀, 1/ε)), and

the running time of A′ on inputs of bit complexity poly(n, T, ˆ̀, log 1/ε, x). The latter

is just a factor of poly(n, T, ˆ̀, log 1/ε, τ, 1/γ) larger than that of A on inputs of bit

9This is because the probability that bidder i gets item j conditioned on being type B is just the
number of profiles in the support of D′ where ti = B and bidder i receives item j divided by the
number of profiles where ti = B. The definition of D′ (see Chapter 4) makes sure that the latter is
non-zero.

10Namely, we want that A′ approximately optimizes the linear objective ~w · ~x over ~x ∈ F (F ,D′)
to within a multiplicative factor α− γ.

153

complexity poly(n, T, ˆ̀, log 1/ε, x). Overall,

rtA′(x) = poly(n, T, ˆ̀, 1/ε, τ, 1/γ, x)

· rtA(poly(n, T, ˆ̀, log 1/ε, x)).

6.8.3 The Runtime of the Revenue-Maximizing LP

Proof of Lemma 17: Ignoring computational efficiency, we can use the construction in

Chapter 4 to build a separation oracle for P0, defined as in Section 6.4. Suppose that

we built this separation oracle, SO, and used it to solve the LP of Figure 5-1 with P0

in place of F (F ,D′) using the ellipsoid algorithm. It follows from [GLS88] that the

ellipsoid algorithm using SO would terminate in time polynomial in n, T, ˆ̀, log 1/ε

and the running time of SO on points of bit complexity poly(n, T, ˆ̀, log 1/ε).11 As we

are running exactly this algorithm (i.e. with the same parameters and criterion for

deeming the feasible region lower-dimensional), except replacing the separation oracle

for P0 with WSO, our solution will also terminate in time polynomial in n, T, ˆ̀, log 1/ε

and the runtime of WSO on points of bit complexity poly(n, T, ˆ̀, log 1/ε). Indeed,

for every guess on the revenue and as long as the Ellipsoid algorithm for that guess

has not terminated, it must be that WSO has been rejecting the points that it has

been queried, and by Corollary 8 in this case it acts as a valid separation oracle for

P0, and hence is input points of the same bit complexity that could have been input

to SO, namely poly(n, T, ˆ̀, log 1/ε). Corollary 13 shows that the runtime of WSO on

points of bit complexity poly(n, T, ˆ̀, log 1/ε) is

poly(n, T, ˆ̀, 1/ε, log 1/η, 1/γ)

· rtA(poly(n, T, ˆ̀, log 1/ε)),

so the entire running time of our algorithm is as promised. �

11Note that for any guess x on the revenue, we can upper bound the volume of the resulting
polytope by 2O(T) and lower bound it by some 2−poly(n,T,ˆ̀,log 1/ε), whatever its dimension is. We
can also take the precision to be poly(n, T, ˆ̀, log 1/ε).

154

6.9 Additive Dimension

Here we discuss the notion of additive dimension and show some interesting examples

of settings with low additive dimension. Consider two settings, both with the same

possible type-space for each bidder, T̂i (i.e. T̂i is the entire set of types that the settings

model, Ti ⊆ T̂i is the set of types that will ever be realized for the given distribution.

As a concrete example, T̂i = Rn for additive settings.): the first is the “real” setting,

with the actual items and actual bidder valuations. The real setting has n items, m

bidders, feasibility constraints F , and valuation functions Vi,B(S) : F → R for all

i, B ∈ T̂i that map S ∈ F to a value of bidder i of type B for the allocation of items

S. The second is the “meta” setting, with meta-items. The meta-setting has d meta-

items, m bidders, feasibility constraints F ′, and valuation functions V ′i,B(S ′) : F ′ → R

for all i, B ∈ T̂i that map S ′ ∈ F ′ to the value of bidder i of type B for the allocation of

meta-items S ′. We now define what it means for a meta-setting to faithfully represent

the real setting.

Definition 15. A meta-setting is equivalent to a real setting if there is a mapping

from F to F ′, g, and another from F ′ to F , h, such that Vi,B(S) = V ′i,B(g(S)), and

V ′i,B(S ′) = Vi,B(h(S ′)) for all i, B ∈ T̂i, S ∈ F , S ′ ∈ F ′.

When two settings are equivalent, there is a natural mapping between mechanisms

in each setting. Specifically, let M be any mechanism in the real setting. Then in the

meta-setting, have M ′ run M , and if M selects allocation S of items, M ′ selects the

allocation g(S) of meta-items and charges exactly the same prices. It is clear that

when bidders are sampled from the same distribution, M is BIC/IC/IR if and only

if M ′ is as well. It is also clear that M and M ′ achieve the same expected revenue.

The mapping in the other direction is also obvious, just use h. We now define the

additive dimension of an auction setting.

Definition 16. The additive dimension of an auction setting is the minimum d such

that there is an equivalent (by Definition 15) meta-setting with additive bidders and d

meta-items (i.e. due to the feasibility constraints, all bidders valuations can be models

as additive over their values for each meta-item).

155

In Section 6.1, we observed that all of our results also apply to settings with addi-

tive dimension d after multiplying the runtimes by a poly(d) factor. This is because a

black-box algorithm for approximately maximizing welfare in the real setting is also a

black-box algorithm for approximately maximizing welfare in the meta-setting (just

apply g to whatever the algorithm outputs). So if we have black-box access to a social

welfare algorithm for the real setting, we have black-box access to a social welfare

algorithm for the meta-setting. As the meta-setting is additve, all of our techniques

apply. We then just apply h at the end and obtain a feasible allocation in the real

setting.

We stress that important properties of the setting are not necessarily preserved

under the transformation from the real to meta setting. Importantly, when the real

setting is downwards closed, this is not necessarily true for the meta-setting. The

user of this transformation should be careful of issues arising due to negative weights

if the desired meta-setting is not downwards-closed.

Respecting the required care, we argued in Section 6.1 that single-minded combi-

natorial auctions had additive dimension 1 (and the meta-setting is still downwards-

closed, and therefore can accommodate negative values). Now we will show that two

other natural models have low additive dimension, and that their corresponding meta-

settings are downwards-closed. The discussions below are not intended to be formal

proofs. The point of this discussion is to show that interesting non-additive settings

have low additive dimension (via meta-settings where approximation algorithms can

accommodate negative values) and can be solved using our techniques.

6.9.1 d-minded Combinatorial Auctions

A d-minded combinatorial auction setting is where each bidder i has at most d (pub-

lic) subsets of items that they are interested in, and a (private) value vij for receiving

the jth subset in their list, Sij, and value 0 for receiving any other subset. Such bidders

are clearly not additive over their value for the items, but have additive dimension d.

Specifically, make dmeta-items. Define g(S) so that if bidder i receives subset Sij in S,

they receive item j in g(S). Define h(S ′) so that if bidder i receives item j in S ′, they

156

receive the subset of items Sij in h(S ′). Also define F ′ so that an allocation is feasible

iff it assigns each bidder at most 1 meta-item, and when bidder i is assigned meta-

item ji, the sets {Siji |i ∈ [m]} are pairwise disjoint. Finally, set V ′i,B(j) = Vi,B(Sij).

Then it is clear that these two settings are equivalent. It is also clear that bidders

are additive in the meta-setting as they are unit-demand (i.e. they can never feasibly

receive more than one item). Therefore, d-minded Combinatorial Auctions have ad-

ditive dimension d, and any (not necessarily truthful) α-approximation algorithm for

maximizing welfare implies a (truthful) (α−ε)-approximation algorithm for maximiz-

ing revenue whose runtime is poly(d, T, 1/ε, b). It is also clear that the meta-setting

is downwards-closed, and therefore all (not necessarily truthful) α-approximation al-

gorithms for maximizing welfare can accommodate negative values.

6.9.2 Combinatorial Auctions with Symmetric Bidders.

A bidder is symmetric if their value Vi,B(S) = Vi,B(U) whenever |S| = |U | (i.e. bidders

only care about the cardinality of sets they receive). Such bidders (with the extra con-

straint of submodularity) are studied in [BKS12]. Such bidders are again clearly not

additive over their values for the items, but have additive dimension n. Specifically,

make n meta-items. Define g(S) to assign bidder i item j if they received exactly j

items in S. Define h(S ′) to assign bidder i exactly j items if they were awarded item

j in S ′ (it doesn’t matter in what order the items are handed out, lexicographically

works). Also define F ′ so that an allocation is feasible iff it assigns each bidder at

most 1 meta-item and when bidder i is assigned meta-item ji, we have
∑

i ji ≤ n. Fi-

nally, set V ′i,B(j) = Vi,B(S) where S is any set with cardinality j. It is again clear that

the two settings are equivalent. It is also clear that the meta-setting is unit-demand,

so bidders are again additive. Therefore, combinatorial auctions with symmetric bid-

ders have additive dimension n, and any (not necessarily truthful) α-approximation

algorithm for maximizing welfare implies a (truthful) (α − ε)-approximation algo-

rithm for maximizing revenue whose runtime is poly(n, T, 1/ε, b). It is also clear that

the meta-setting is downwards-closed, and therefore all (not necessarily truthful) α-

approximation algorithms for maximizing welfare can accomodate negative values.

157

In addition, we note here that it is possible to exactly optimize welfare in time

poly(n,m) for symmetric bidders (even with negative, not necessarily submodular

values) using a simple dynamic program. We do not describe the algorithm as that

is not the focus of this work. We make this note to support that this is another

interesting non-additive setting that can be solved using our techniques.

158

Chapter 7

Conclusion and Open Problems

Motivated by the importance of Mechanism Design for the study of large systems with

strategic agents, we investigate one of the its central open problems – how to optimize

revenue in multi-dimensional Bayesian mechanisms. After Myerson’s seminal work for

the single item setting [Mye81], no major progress had been made on this problem for

more than 30 years. We generalize Myerson’s result to the general case, where there

are multiple heterogeneous items for sale. A key contribution of our result is the new

framework we have provided for mechanism design by reducing mechanism design

problems to algorithm design problems via Linear programming and the ellipsoid

method.

We conclude with some open problems raised by the results of this thesis. We begin

with the problem motivated by our additive assumption about bidders’ valuations.

• What is the broadest class of bidder valuations such that (approximate) revenue-

maximization is tractable?

Our result applies to additive valuations, or more generally valuation functions

with low additive dimension. It is already a fairly general class, but it does not cover

an interesting class – monotone submodular functions. This class has been broadly

studied for the welfare-optimal mechanism design problem. In the Bayesian setting,

a computational efficient constant factor approximation is known for welfare maxi-

mization with only value oracles for monotone submodular functions [HL10, BH11,

159

HKM11, Von08]. However, in recent work we have shown that revenue maximiza-

tion is not tractable for all monotone submodular functions. In particular, we show

that optimizing revenue with a single monotone submodular bidder is NP-hard to ap-

proximate within any polynomial factor [CDW13b]. An interesting future direction

is to identify important special classes of monotone submodular functions that still

allow efficient revenue maximization. A few potential candidates are budget-additive

functions, coverage functions and OXS functions.

Next, we consider a problem motivated by the dependence of our runtime on the

number of bidders’ types.

• Can we speed up our algorithm when every bidder’s values for the items are

drawn independently?

In the general case, a bidder’s value for different items could be correlated and the

natural description for such a distribution is the size of its support. However, when

this joint distribution is a product distribution ×nj=1Fj, where Fj is the bidder’s value

distribution for item j, simply describing the Fjs is a much more succinct description.

In fact, its size could be smaller by an exponential factor.1 As our algorithm is highly

inefficient for these inputs, the revenue-optimal mechanism design problem for this

special case remains largely open.

In a recent result, it was shown that an exact solution can not be found in poly-

nomial time, unless ZPP = P#P , even for a very simple case, where there is a single

additive bidder whose values for the items are independently distributed on two ra-

tional numbers with rational probabilities [DDT13]. However, their hardness result is

obtained via a reduction from subset-sum problems, therefore does not exclude even

an FPTAS. In fact, PTASes have been found for two related problems: 1) Find the

optimal pricing scheme for a single unit demand bidder whose values for the items

are MHR2 independently distributed [CD11]; 2) find the revenue-optimal auction

1For example suppose that, for each j, Fj ’s support size is 2. O(n) numbers suffice to describe
×nj=1Fj , but the total support size of the joint distribution is 2n.

2Monotone Hazard Rate (MHR) is a commonly used class of distributions in Economics containing
familiar distributions like Gaussian, exponential and uniform. The formal definition is that f(x)

1−F (x)

is monotonically decreasing, where f(·) is the density function and F (·) is the cumulative function.

160

with a constant number of additive bidders whose values are MHR independently

distributed [CH13]. Both results heavily rely on a powerful probability theorem, an

Extreme-Value theorem showing that the maximum of a group of independent MHR

random variables is concentrated [CD11]. We believe such probability tools will be

useful for extending our result to a more general case.

So far, we have raised two problems related to revenue maximization. How about

other objectives? Motivated by our framework, we want to ask a more general and

important problem.

• What other objectives can be efficiently optimized, maybe via a reduction from

mechanism design to algorithm design?

The only objective we have considered in this thesis is revenue, but it is not hard

to see that our framework applies to a broader class of objectives. In particular,

the same reduction will work for any objective function that is concave over the

reduced form auctions, e.g. social welfare, any convex combination of social welfare

and revenue. This already covers a large family of important objectives, however,

some interesting objectives are still missing, for example the makespan on unrelated

machines and the max-min fairness. These objectives are sometimes called non-linear

in order to distinguish them from social welfare and revenue, which are linear in the

allocation and pricing rules.

Non-linear objectives have already been studied in the literature. Indeed, the

seminal paper of Nisan and Ronen has already studied minimizing makespan when

scheduling jobs to selfish machines, in a non-Bayesian setting [NR99]. Following this

work, a lot of AMD research has focused on non-linear objectives in non-Bayesian set-

tings (see, e.g., [CKV07, ADL12] and their references), but positive results have been

scarce. Recently, it is shown in [CIL12] that no polynomial-time black-box reduction

from truthfully maximizing a non-linear objective to non-truthfully maximizing the

same non-linear objective exists without losing a polynomial factor in the approxima-

tion ratio, even in Bayesian settings. Even more recently, a non-black box approach

was developed in [CHMS13] to approximately minimize makespan in certain Bayesian

161

settings. 3

A modified version of our black-box approach sidesteps the hardness result of

[CIL12] by reducing the problem of truthfully maximizing an objective to non-truthfully

maximizing a modified objective [CDW13b]. Using this reduction, we design an op-

timal mechanism for fractional max-min fairness. For makespan, our reduction will

reduce it to an algorithmic optimization problem. Our new approach also works for

makespan. However, the algorithmic problem it reduces it to involves solving an inte-

gral program which we do not know how to efficiently approximate. But if given any

solution to this algorithmic optimization problem, we can turn it into a solution for

the makespan problem with the same approximation ratio. We believe our approach

will be useful for obtaining a better solution for the makespan problem, and possibly

many other non-linear objectives.

3Their mechanism provides a super-constant approximation.

162

Appendix A

Omitted Details from Chapter 4

A.1 Omitted Details from Section 4.2

Before giving the proof of Theorem 11 we present a useful lemma.

Lemma 19. Let P be a polytope and H1, . . . , Hi be i hyperplanes of the form ~wj ·~v = hj

such that every point ~x ∈ P satisfies ~x · ~wj ≤ hj. Then for any c1, . . . , ci > 0, any

~a ∈ P satisfying:

~a ·

(
i∑

j=1

cj ~wj

)
=

i∑
j=1

cjhj

is in ∩ij=1Hj.

Proof. Because all ~a ∈ P satisfy ~a · ~wj ≤ hj for all j and cj > 0 ∀j, the only way to

have ~a ·
(∑

j cj ~wj

)
=
∑

j cjhj is to have ~a · cj ~wj = cjhj for all j. Thus, we must have

~a · ~wj = hj for all j, meaning that ~a ∈ ∩jHj.

Proof of Theorem 11: Let ~π, ~w′ denote the output of the corner oracle. First, we

observe that if H1, . . . , Ha intersect inside F (F ,D), there is some reduced form ~π′

satisfying ~π′ · ~wj = hj for all j. Therefore, such a reduced form must also satisfy

~π′ · ~w = 1
a

∑a
j=1 hj. Second, as no feasible reduced form can have ~v · ~wj > hj, we also

get that no feasible reduced form has ~v·~w > 1
a

∑a
j=1 hj. Putting these two observations

together, we see that there exists a ~π′ with ~π′· ~w = 1
a

∑a
j=1 hj, and this is the maximum

163

over all feasible reduced forms. Therefore, the reduced form RF(~w) of V V CGF(~w)

necessarily has RF(~w) · ~w = 1
a

∑a
j=1 hj. Lemma 4 tells us that ~π is the reduced form

of a simple virtual VCG allocation rule V V CGF(~w′), which also maximizes ~x · ~w

over all feasible reduced forms ~x. Therefore, ~π · ~w = 1
a

∑a
j=1 hj and by Lemma 19,

~π is in ∩aj=1Hj. From Proposition 6, we know ~π is a corner. As each coordinate

of ~wj is a rational number of bit complexity b, and a ≤ n
∑m

i=1 |Ti|, we see that

each coefficient of ~w is a rational number of bit complexity poly(log(n
∑m

i=1 |Ti|), b).

Lemma 4 then guarantees that each coefficient of ~w′ is a rational number of bit

complexity poly(n
∑m

i=1 |Ti|, b, `). �

164

A.2 Proofs Omitted From Section 4.3.1: Exact

Implementation

We bound the running time of the algorithms of Section 4.2 when D is a possibly

correlated, uniform distribution. Before doing this, we establish a useful lemma.

Lemma 20. For all F and D, if every corner of F (F ,D) is a vector of rational

numbers of bit complexity b, the probabilities used by D have bit complexity `, and

SO’s input ~π is a vector of rational numbers of bit complexity c, then the following

are true.

1. The separation oracle SO of Section 4.2.1 can be implemented to run in time

polynomial in n
∑m

i=1 |Ti|, b, c, `, |D|, and rtF (poly(n
∑m

i=1 |Ti|, b, c, `)). Fur-

thermore, the coefficients of any hyperplane that can be possibly output by SO

have bit complexity poly(n
∑m

i=1 |Ti|, b).

2. If the corner oracle CO of Section 4.2.2 only takes as input hyperplanes output

by SO, it can be implemented to run in time polynomial in n
∑m

i=1 |Ti|, b, `,

|D|, and rtF (poly(n
∑m

i=1 |Ti|, b, `)).

Proof. We first bound the runtime of SO, using Theorem 1. The separation oracle

is a linear program with 1 + n
∑m

i=1 |Ti| variables, 2n
∑m

i=1 |Ti| constraints, and an

internal separation oracle ŜO. ŜO on input (~w, t) simply checks if RF(~w′) · ~w, where

~w′ is the perturbation of ~w according to Lemma 4, is smaller than or equal to t.

If not, it outputs the separation hyperplane (RF(~w′),−1)(~w, y) ≤ 0. Given that

RF(~w′) is a corner of the polytope and corners have bit complexity b, Theorem 1

tells us that ŜO will only be called on ~w, t whose coordinates are rational numbers of

bit complexity at most poly(n
∑m

i=1 |Ti|,max{b, c}). To compute RF(~w′) exactly we

can enumerate every profile in the support of D, run V V CGF(~w′), and see if bidder

i was awarded item j, for all i, j. As the coordinates of ~w′ are rational numbers

of bit complexity poly(n
∑m

i=1 |Ti|,max{b, c, `}) (after Lemma 4 was applied to ~w)),

this method exactly computes RF(~w′) in time polynomial in n
∑m

i=1 |Ti|, |D|, b, c, `

165

and rtF(poly(n
∑m

i=1 |Ti|,max{b, c, `})). After computing RF(~w′), ŜO simply takes

a dot product and makes a comparison, so the total runtime of SO is polynomial in

n
∑m

i=1 |Ti|, b, c, `, |D| and rtF(poly(n
∑m

i=1 |Ti|,max{b, c, `})). Also, by Lemma 5, we

know that all hyperplanes output by SO have coefficients that are rational numbers

of bit complexity poly(n
∑m

i=1 |Ti|, b), which is independent of c.

The corner oracle of Section 4.2.2 has three steps. The first step is simply com-

puting the average of at most n
∑m

i=1 |Ti| vectors in Rn
Pm
i=1 |Ti|, whose coordinates are

rational numbers of bit complexity poly(n
∑m

i=1 |Ti|, b) (by the previous paragraph).

The second step is applying Lemma 4 to the averaged weight vector to get ~w′. So

each weight of ~w′ is a rational number of bit complexity poly(n
∑m

i=1 |Ti|, `, b). The

last step is computing RF(~w′). It is clear that the first two steps can be imple-

mented in the desired runtime. As the coordinates of ~w′ are rational numbers of

bit complexity poly(n
∑m

i=1 |Ti|, b, `), we can use the same method as in the previ-

ous paragraph to compute RF(~w′) in time polynomial in n
∑m

i=1 |Ti|, |D|, b, ` and

rtF(poly(n
∑m

i=1 |Ti|, b, `)), to implement CO in the desired runtime.

Corollary 15. For all F , if D is a (possibly correlated) uniform distribution over k

profiles (possibly with repetitions), and SO’s input ~π is a vector of rational numbers

of bit complexity c, then the following are true.

1. The separation oracle SO of Section 4.2.1 can be implemented to run in time

polynomial in n
∑m

i=1 |Ti|, k, c and rtF(poly(n
∑m

i=1 |Ti|, log k, c)). Furthermore,

the coefficients of any hyperplane that can be possibly output by SO have bit

complexity poly(n
∑m

i=1 |Ti|, log k).

2. If the corner oracle CO of Section 4.2.2 only takes as inputs hyperplanes output

by SO as input, it can be implemented in time polynomial in n
∑m

i=1 |Ti|, k, and

rtF(poly(n
∑m

i=1 |Ti|, log k)).

Proof of Corollary 15: Every corner of F (F ,D) is the reduced form of a determin-

istic mechanism. So let us bound the bit complexity of the reduced form π of a

deterministic mechanism M . We may let nij(A) denote the number of profiles (with

repetition) in the support of D where bidder i’s type is A, and M awards item j to i,

166

and let dij(A) denote the number of profiles where bidder i’s type is A. Then for all

i, j, A ∈ Ti, πij(A) =
nij(A)

dij(A)
. As nij(A) and dij(A) are integral and at most k, πij(A)

has bit complexity O(log k). So we may take b = O(log k), ` = O(log k), |D| = k,

and apply Lemma 20. �

Next we bound the running time of the decomposition algorithm.

Corollary 16. For all F , if D is a (possibly correlated) uniform distribution over

k profiles (possibly with repetitions), then given a reduced form ~π ∈ F (F ,D), which

is a vector of rational numbers with bit complexity c, we can rewrite ~π as a convex

combination of corners of F (F ,D) using the geometric algorithm of Theorem 2 with

running time polynomial in n
∑m

i=1 |Ti|, k, c and rtF(poly(n
∑m

i=1 |Ti|, log k, c)).

Proof of Corollary 16: From Corollary 15 it follows that the coefficients of any hyper-

plane that can be possibly output by SO have bit complexity poly(n
∑m

i=1 |Ti|, log k).

So to apply Theorem 2 it suffices to bound the running time of SO and CO on

vectors of rational numbers of bit complexity c′ = poly(n
∑m

i=1 |Ti|, log k, c). Using

Corollary 15 this is polynomial in n
∑m

i=1 |Ti|, k, c and rtF(poly(n
∑m

i=1 |Ti|, log k, c)).

Combining this bound with Theorem 2 finishes the proof. �

167

Bibliography

[ADL12] Itai Ashlagi, Shahar Dobzinski, and Ron Lavi. Optimal lower bounds for

anonymous scheduling mechanisms. Mathematics of Operations Research,

37(2):244–258, 2012.

[AFH+12] Saeed Alaei, Hu Fu, Nima Haghpanah, Jason Hartline, and Azarakhsh

Malekian. Bayesian Optimal Auctions via Multi- to Single-agent Reduc-

tion. In the 13th ACM Conference on Electronic Commerce (EC), 2012.

[Ala11] Saeed Alaei. Bayesian Combinatorial Auctions: Expanding Single Buyer

Mechanisms to Many Buyers. In the 52nd Annual IEEE Symposium on

Foundations of Computer Science (FOCS), 2011.

[Arm96] Mark Armstrong. Multiproduct nonlinear pricing. Econometrica,

64(1):51–75, January 1996.

[Arm99] Mark Armstrong. Price discrimination by a many-product firm. Review

of Economic Studies, 66(1):151–68, January 1999.

[Bas01] Suren Basov. Hamiltonian approach to multi-dimensional screening.

Journal of Mathematical Economics, 36(1):77–94, September 2001.

[BCKW10] Patrick Briest, Shuchi Chawla, Robert Kleinberg, and S. Matthew Wein-

berg. Pricing Randomized Allocations. In the Twenty-First Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), 2010.

168

[BGGM10] Sayan Bhattacharya, Gagan Goel, Sreenivas Gollapudi, and Kamesh Mu-

nagala. Budget Constrained Auctions with Heterogeneous Items. In the

42nd ACM Symposium on Theory of Computing (STOC), 2010.

[BH11] Xiaohui Bei and Zhiyi Huang. Bayesian Incentive Compatibility via Frac-

tional Assignments. In the Twenty-Second Annual ACM-SIAM Sympo-

sium on Discrete Algorithms (SODA), 2011.

[BKS12] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Yaron Singer. Learn-

ing on a budget: posted price mechanisms for online procurement. In the

13th ACM Conference on Electronic Commerce (EC), 2012.

[BKV05] Patrick Briest, Piotr Krysta, and Berthold Vöcking. Approximation tech-

niques for utilitarian mechanism design. In the 37th Annual ACM Sym-

posium on Theory of Computing (STOC), 2005.

[BLP06] Moshe Babaioff, Ron Lavi, and Elan Pavlov. Single-value combinatorial

auctions and implementation in undominated strategies. In the Seven-

teenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

2006.

[Bor91] Kim C. Border. Implementation of reduced form auctions: A geometric

approach. Econometrica, 59(4):1175–1187, 1991.

[Bor07] Kim C. Border. Reduced Form Auctions Revisited. Economic Theory,

31:167–181, 2007.

[CD11] Yang Cai and Constantinos Daskalakis. Extreme-Value Theorems for

Optimal Multidimensional Pricing. In the 52nd Annual IEEE Symposium

on Foundations of Computer Science (FOCS), 2011.

[CDW12a] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. An Algo-

rithmic Characterization of Multi-Dimensional Mechanisms. In the 44th

Annual ACM Symposium on Theory of Computing (STOC), 2012.

169

[CDW12b] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Opti-

mal Multi-Dimensional Mechanism Design: Reducing Revenue to Welfare

Maximization. In the 53rd Annual IEEE Symposium on Foundations of

Computer Science (FOCS), 2012.

[CDW13a] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Reducing

Revenue to Welfare Maximization : Approximation Algorithms and other

Generalizations. In the 24th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2013.

[CDW13b] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Under-

standing Incentives: Mechanism Design becomes Algorithm Design. In

the 54th Annual IEEE Symposium on Foundations of Computer Science

(FOCS), 2013.

[CH13] Yang Cai and Zhiyi Huang. Simple and Nearly Optimal Multi-Item Auc-

tions. In the 24th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2013.

[CHK07] Shuchi Chawla, Jason D. Hartline, and Robert D. Kleinberg. Algorithmic

Pricing via Virtual Valuations. In the 8th ACM Conference on Electronic

Commerce (EC), 2007.

[CHMS10] Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubrama-

nian Sivan. Multi-Parameter Mechanism Design and Sequential Posted

Pricing. In the 42nd ACM Symposium on Theory of Computing (STOC),

2010.

[CHMS13] Shuchi Chawla, Jason Hartline, David Malec, and Balasubramanian

Sivan. Prior-Independent Mechanisms for Scheduling. In Proceedings

of 45th ACM Symposium on Theory of Computing (STOC), 2013.

170

[CIL12] Shuchi Chawla, Nicole Immorlica, and Brendan Lucier. On the limits

of black-box reductions in mechanism design. In Proceedings of the 44th

Symposium on Theory of Computing (STOC), 2012.

[CKM11] Yeon-Koo Che, Jinwoo Kim, and Konrad Mierendorff. Generalized

Reduced-Form Auctions: A Network-Flow Approach. University of

Zürich, ECON-Working Papers, 2011.

[CKV07] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A lower

bound for scheduling mechanisms. In Proceedings of the eighteenth annual

ACM-SIAM symposium on Discrete algorithms, pages 1163–1170. Society

for Industrial and Applied Mathematics, 2007.

[Cla71] Edward H. Clarke. Multipart pricing of public goods. Public Choice,

11(1):17–33, 1971.

[CM85] Jacques Cremer and Richard P. McLean. Optimal selling strategies under

uncertainty for a discriminating monopolist when demands are interde-

pendent. Econometrica, 53(2):345–361, 1985.

[CM88] Jacques Cremer and Richard P. McLean. Full extraction of the surplus

in bayesian and dominant strategy auctions. Econometrica, 56(6):1247–

1257, 1988.

[CMS10] Shuchi Chawla, David L. Malec, and Balasubramanian Sivan. The Power

of Randomness in Bayesian Optimal Mechanism Design. In the 11th ACM

Conference on Electronic Commerce (EC), 2010.

[DD09] Shahar Dobzinski and Shaddin Dughmi. On the power of randomization

in algorithmic mechanism design. In FOCS, pages 505–514, 2009.

[DDT13] Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos.

The Complexity of Optimal Mechanism Design. Manuscript:

http://arxiv.org/pdf/1211.1703v2.pdf, 2013.

171

[DN07] Shahar Dobzinski and Noam Nisan. Mechanisms for multi-unit auctions.

In ACM Conference on Electronic Commerce, pages 346–351, 2007.

[DNS05] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation

algorithms for combinatorial auctions with complement-free bidders. In

STOC, pages 610–618, 2005.

[DNS06] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Truthful random-

ized mechanisms for combinatorial auctions. In STOC, pages 644–652,

2006.

[DR10] Shaddin Dughmi and Tim Roughgarden. Black-box randomized reduc-

tions in algorithmic mechanism design. In 51st Annual IEEE Symposium

on Foundations of Computer Science (FOCS), 2010.

[DW12] Constantinos Daskalakis and S. Matthew Weinberg. Symmetries and

Optimal Multi-Dimensional Mechanism Design. In the 13th ACM Con-

ference on Electronic Commerce (EC), 2012.

[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid

method and its consequences in combinatorial optimization. Combina-

torica, 1(2):169–197, 1981.

[GLS88] Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric

Algorithms and Combinatorial Optimization, volume 2 of Algorithms and

Combinatorics. Springer, 1988.

[Gro73] Theodore Groves. Incentives in teams. Econometrica, 41(4):617–631,

1973.

[HKM11] Jason D. Hartline, Robert Kleinberg, and Azarakhsh Malekian. Bayesian

Incentive Compatibility via Matchings. In the Twenty-Second Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011.

172

[HL10] Jason D. Hartline and Brendan Lucier. Bayesian Algorithmic Mechanism

Design. In the 42nd ACM Symposium on Theory of Computing (STOC),

2010.

[HN12] Sergiu Hart and Noam Nisan. Approximate Revenue Maximization with

Multiple Items. In the 13th ACM Conference on Electronic Commerce

(EC), 2012.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random

variables. Journal of the American Statistical Association, 58(301):13–30,

1963.

[Jan02] Klaus Jansen. Approximate Strong Separation with Application in Frac-

tional Graph Coloring and Preemptive Scheduling. In the 19th Annual

Symposium on Theoretical Aspects of Computer Science (STACS), 2002.

[Kaz01] Eiichiro Kazumori. Optimal auction for heterogeneous objects. Working

papers, 2001.

[KW12] Robert Kleinberg and S. Matthew Weinberg. Matroid Prophet Inequal-

ities. In the 44th Annual ACM Symposium on Theory of Computing

(STOC), 2012.

[LOS02] Daniel J. Lehmann, Liadan O’Callaghan, and Yoav Shoham. Truth

revelation in approximately efficient combinatorial auctions. J. ACM,

49(5):577–602, 2002.

[LS05] Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism

design via linear programming. In FOCS, pages 595–604, 2005.

[Mat84] Steven Matthews. On the Implementability of Reduced Form Auctions.

Econometrica, 52(6):1519–1522, 1984.

[MM88] R. Preston McAfee and John McMillan. Multidimensional incentive

compatibility and mechanism design. Journal of Economic Theory,

46(2):335–354, December 1988.

173

[MR84] Eric Maskin and John Riley. Optimal Auctions with Risk Averse Buyers.

Econometrica, 52(6):1473–1518, 1984.

[MR92] R. Preston McAfee and Philip J. Reny. Correlated information and mech-

anism design. Econometrica, 60(2):395–421, 1992.

[MV06] Alejandro M. Manelli and Daniel R. Vincent. Bundling as an optimal

selling mechanism for a multiple-good monopolist. Journal of Economic

Theory, 127(1):1–35, March 2006.

[MV07] A. M. Manelli and D. R. Vincent. Multidimensional Mechanism Design:

Revenue Maximization and the Multiple-Good Monopoly. Journal of

Economic Theory, 137(1):153–185, 2007.

[Mye79] Roger B Myerson. Incentive compatibility and the bargaining problem.

Econometrica, 47(1):61–73, January 1979.

[Mye81] Roger B. Myerson. Optimal Auction Design. Mathematics of Operations

Research, 6(1):58–73, 1981.

[NR99] Noam Nisan and Amir Ronen. Algorithmic Mechanism Design (Extended

Abstract). In Proceedings of the Thirty-First Annual ACM Symposium

on Theory of Computing (STOC), 1999.

[RC98] Jean-Charles Rochet and Philippe Chone. Ironing, sweeping, and multi-

dimensional screening. Econometrica, 66(4):783–826, July 1998.

[Sto] Brad Stone. Pakistan cuts access to youtube worldwide. New York Times.

[Tha04] John Thanassoulis. Haggling over substitutes. Journal of Economic The-

ory, 117(2):217–245, August 2004.

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive sealed

tenders. The Journal of Finance, 16(1):8–37, 1961.

[Von08] Jan Vondrák. Optimal approximation for the submodular welfare prob-

lem in the value oracle model. In STOC, pages 67–74, 2008.

174

[Wil93] Robert Wilson. Nonlinear Pricing. New York: Oxford University Press,

1993.

[Zhe00] Charles Z. Zheng. Optimal auction in a multidimensional world. Working

papers, January 2000.

175

