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ABSTRACT

In this paper, we explore the use of a Gaussian posteriorgrambased
representation for unsupervised discovery of speech patterns. Com-
pared with our previous work, the new approach provides signifi-
cant improvement towards speaker independence. The framework
consists of three main procedures: a Gaussian posteriorgram gen-
eration procedure which learns an unsupervised Gaussian mixture
model and labels each speech frame with a Gaussian posteriorgram
representation; a segmental dynamic time warping procedure which
locates pairs of similar sequences of Gaussian posteriorgram vectors;
and a graph clustering procedure which groups similar sequences
into clusters. We demonstrate the viability of using the posterior-
gram approach to handle many talkers by finding clusters of words
in the TIMIT corpus.

Index Terms— unsupervised learning, language acquisition

1. INTRODUCTION

Modern speech recognizers typically undergo a supervised training
process with annotated speech data before they can be deployed
on unseen test data. In our research we are interested in exploring
speech processing approaches that can acquire informationabout
the speech signal using unsupervised methods. There are many
reasons why such approaches could prove beneficial for speech
processing. Annotation of speech corpora is currently a very time
consuming and expensive endeavor and is a limiting factor inhow
quickly speech recognizers can be created for new problem areas
and languages. Given the relative ease of creating and storing large
quantities of audio-visual speech material these days, methods that
can process vast quantities of unannotated data to enable keyword
search [1], audio summarization etc. could be quite useful.Fi-
nally, unsupervised methods might ultimately be effectiveas part
of a larger speech recognition framework, especially if thestruc-
tures they learn complement existing approaches. For example,
our earlier research on unsupervised acoustic clustering was able to
find clusters of re-occurring instances of spoken words [2].Such
independently-determined clusters could be useful for consistency
checking of speech recognizer output.

Although our earlier unsupervised acoustic pattern discovery
work was effective in finding re-occurring instances of spoken
words, it used Mel-Frequency Cepstral Coefficients (MFCCs)as the
acoustic representation to perform pattern matching. It was not a
problem for the task of academic lecture data that we have explored,
since the majority of the lecture was recorded from a single talker.
However, the natural question to ask was how we could generalize
this procedure to handle multiple talkers. Although there are several
techniques to transform the MFCC representation to a more speaker
independent form (e.g., VTL [3]), in this paper, we describeour

recent research on replacing the MFCC-based representation with
the Gaussian posteriorgram representation of the speech signal [4].
Instead of the usual MFCC vector, each frame is represented by a
vector whoseith dimension indicates the posterior probability of
being generated by theith component of a Gaussian mixture model
(GMM). The GMM itself is created in an unsupervised fashion on
a large corpus of multi-talker data so that it models distributions of
sounds across a variety of talkers. By using a representation that
better accounts for the acoustic variation from multiple talkers, we
show that the unsupervised clustering procedure can work better in
a multi-talker environment.

The new speech pattern acquisition approach is comprised of
three steps: a Gaussian posteriorgram generation procedure which
learns a GMM in an unsupervised way and labels each speech frame
with a Gaussian posteriorgram representation; a segmentaldynamic
time warping (S-DTW) procedure which finds similar acousticseg-
ments based on the distance defined on the Gaussian posteriorgrams;
and a graph clustering procedure which groups the similar acoustic
segments and outputs the final discovery results. While the last two
procedures are essentially the same as our previous work [2], the first
procedure differs substantially in how to represent speechframes.

In the following sections we first describe the Gaussian poste-
riorgram concept, generation procedure, and review the segmental
DTW and graph clustering methods. We then report our experience
with clustering experiments we have performed on the multi-speaker
TIMIT corpus, and provide some analysis of the behavior of the clus-
tering algorithm. Finally, we discuss the results and suggest some
plans for future work.

2. SPEECH PATTERN DISCOVERY

2.1. Gaussian Posteriorgram Definition

The concept of the Gaussian posteriorgram is similar to the widely
used posterior feature vectors [5]. Specifically, a Gaussian posterior-
gram is a probability vector representing the posterior probabilities
of Gaussian components in a GMM for a speech frame. Formally,
if a speech utteranceS containsn framesS = (s1, s2, · · · , sn),
then the Gaussian posteriorgram for this utterance is defined by
GP (S) = (q1, q2, · · · , qn). The length ofqi is determined by
the number of Gaussian components in the GMM, and eachqi is
calculated by

qi = (P (C1|si), P (C2|si), · · · , P (Cm|si)) (1)

where thej-th dimension inqi represents the posterior probability of
the speech framesi on thej-th Gaussian component.m is the total
number of Gaussian components.



Fig. 1. An illustration of segmental dynamic time warping between
two utterances withR = 2. The blue and red regions outline possi-
ble DTW warping spaces for two different starting times.

2.2. Gaussian Posteriorgram Generation

To generate Gaussian posteriorgrams, a GMM is trained on all
speech frames without any transcription, and each frame is decoded
by the trained GMM to obtain a raw posterior probability vector.
Then, a discounting-based smoothing method is employed to each
posterior probability vector to produce a Gaussian posteriorgram.

In our work, each speech frame is represented by the first 13
MFCCs. After pre-selecting the number of desired Gaussian com-
ponents, the K-means algorithm is used to determine an initial set of
mean vectors. A GMM is then trained on all speech frames. Since
we have observed uneven clustering results caused by the presence
of noise and non-speech artifacts, we use a speech/non-speech detec-
tor to remove all non-speech segments longer than one secondprior
to clustering.

Once a GMM is trained, a raw Gaussian posteriorgram vector is
calculated by Equation 1. To avoid approximation errors, a proba-
bility floor is set to eliminate dimensions (i.e., set them tozero) with
very small probability values. Then, a discounting based smooth-
ing method is used to move a small portion of the probability mass
from non-zero dimensions to zero dimensions. This smoothing helps
during the time warping pairwise distance matching.

2.3. Segmental DTW

Segmental dynamic time warping (S-DTW) has been successfully
used in our prior speaker-dependent pattern discovery work[2] and
in our recent unsupervised keyword spotting research [4]. After
generating the Gaussian posteriorgrams for all speech utterances,
S-DTW is performed on every utterance pair to find candidate co-
occurring subsequences in the two utterances.

To employ S-DTW, the difference functionD between Gaus-
sian posterior probability vectorsp andq is defined asD(p, q) =
− log(p · q). The dot product assumes these two probability vec-
tors are drawn from the same underlying probability distribution.
Given two Gaussian posteriorgramsGPi = (p1, p2, · · · , pm) and
GPj = (q1, q2, · · · , qn), the warping functionw(ik, jk) can pro-
duce am × n timing difference matrix, whereik andjk denote the
k-th coordinate of the warping path.

Two constraints are applied to the S-DTW search. One is the ad-
justment window condition that prevents the warping process from
going too far ahead or behind in eitherGPi or GPj . Formally, an in-
tegerR is set to ensure|ik−jk| ≤ R. The other constraint is the step
length condition. It is clear that the adjustment window condition re-
stricts the shape and the ending coordinates of a warping path. Given
different start coordinates, the difference matrix can be naturally di-
vided into several continuous diagonal regions with width2R + 1,

Fig. 2. Converting all matched fragment pairs to a graph. Each
numbered node corresponds to a temporal local maximum in frag-
ment similarity in a particular utterance (e.g., 1-5). Eachmatching
fragment is represented by a connection between two nodes inthe
graph (e.g., 1-4, 2-4, 3-5).

as shown in Figure 1. The red warping regions2 denotes the warp-
ing process along with thej axis, while the blue warping regions3

denotes the warping process along thei axis. To avoid redundant
computation and take into account warping paths across segmenta-
tion boundaries, an overlapped sliding window moving strategy is
applied for the start coordinates, shown in the Figure 1.

2.4. Path Refinement

By moving the start coordinate along thei andj axis, for every pair
of speech utterances, we can obtain a total of
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ing paths, each of which represents a warping between two subse-
quences in each utterance pair. Since our goal is to find sequences of
similarity within the utterance pairs, we look for a fragment of each
warping path that has a low distortion score [2].

The warping path refinement is done in two steps. In the first
step, a lengthL constrained minimum average subsequence finding
algorithm [6] is used to extract consecutive warping fragments with
low distortion scores. In the second step, the extracted fragments are
extended by including neighboring frames below a certain distortion
thresholdα. Specifically, we include neighboring frames with dis-
tortion scores within1 + α percent of the average distortion of the
original fragment. The reason is that we found that the path of ex-
tracted fragments often missed several frames at the onset or offset
of a matching acoustic pattern (i.e., a particular word or words) [2].

2.5. Graph Clustering

After collecting refined warping fragments for every pair ofspeech
utterances, we can try to cluster similar fragments. Since each warp-
ing fragment provides an alignment between two segments, ifone of
the two segments is a common speech pattern (i.e., a frequently used
word), it should appear in multiple utterance pair fragments.

The basic idea is to cast this problem into a graph clustering
framework, illustrated in Figure 2. Consider one pair of utterances
in which S-DTW determines three matching fragments (illustrated
in different colors and line styles). Each fragment corresponds to
two segments in the two speech utterances, one per utterance. Since
in general there could be many matching fragments with different
start and end times covering ever utterance, a simplification is made
to find local maxima of matching similarity in each utterance, and
to use these local maxima as the basis of nodes in the corresponding
graph [2]. As a result, each node in the graph can represent one or
more matching fragments in an utterance. Edges in the graph then
correspond to fragments occurring between utterance pairs, with an
associated weight that corresponds to a normalized matching score.
After the conversion, a graph clustering algorithm proposed by New-
man [7] is used to discover groups of nodes (segments) in terms of



graph distance. The role of the clustering algorithm is to decide
which edges to group together, and which edges to eliminate.This
latter point is especially important since it is possible tohave partial
overlapping matches ending at the same node that are essentially un-
related to each other. The clustering output is a list of disjoint groups
of nodes which represent the underlying speech fragments.

3. EVALUATION

To assess the behavior of the posteriorgram representationin a multi-
talker environment, we examined its performance on the TIMIT cor-
pus. While TIMIT has some drawbacks for these purposes, we
thought it would be a useful place to start since it has a smallnumber
of utterances from a relatively large number of talkers.

The evaluation consists of two steps. In the first step, we exam-
ined the effects of the different setting of parameters for the S-DTW
search and the path refinement. In the second step, we performed
the graph clustering on the extracted S-DTW fragments usingthe
best parameter setting obtained in step one. Using our distributed
computing system (200 CPUs), it takes ten minutes to processone
hour of speech data.

3.1. TIMIT Experiment Setup

The TIMIT experiment was performed on a pool of 580 speakers
(we combined the standard 462 speaker training set, and the larger
118 speaker test set). We excluded the dialect “sa” utterances since
they were spoken by all speakers, and used the remaining 5 “sx”
and 3 “si” utterances per speaker. A single GMM was created from
all these data using 13 dimensional MFCC feature vectors that were
computed every 10ms. Based on our recent experiments which used
GMMs to represent speech [4], we computed 50 Gaussian compo-
nents. Since TIMIT consists of read speech in quiet environment,
the non-speech removal process was not applied.

3.2. Parameter Tuning

Three main parameters in the S-DTW search and the path refine-
ment were investigated. They were the adjustment window condi-
tion R, the length constraintL, and the path extension thresholdα.
The evaluation metric we used was the match rate of the path re-
finement output. After the path fragment refinement stage, a list of
warping fragments is obtained. Each fragment corresponds to an
alignment between two subsequences of frames in a pair of utter-
ances. Based on the underlying orthographic transcription, we can
represent each fragment by the closest matching underlyingword
sequence. A match rate between a set of fragments can then be cal-
culated. Note that in this experiment, we were interested infinding
speech patterns representing words or phrases. Therefore,the match
rate was only calculated on fragments longer than 100 ms.

We first examined the effect of using different S-DTW adjust-
ment window sizesR, shown in the sub-figure (a) of Figure 3. We
fixed the length constraintL = 500 ms and the path extension
thresholdα = 0.3. The results showed that a small S-DTW window
size could overly restrict the warping path between two Gaussian
posteriorgrams, while a big window size could relax the restriction
too much and cause many problematic alignments. We found that a
window size equal to 6 (i.e., 60ms) was the best choice, whichwas
also the result we obtained in [4].

In sub-figure (b) of Figure 3, the length constraint,L, in the path
refinement was changed from 400 ms to 600 ms while fixingR = 6
andα = 0.3. The choice ofL = 500 ms appeared to be optimal.

Table 1. TIMIT experiment results

Method # Clusters Avg. Purity # Speakers F/M
MFCC 11 9.1% 457 0.42

GP 264 79.3% 408 0.43

The result for the path extension thresholdα is shown in the
sub-figure (c) of Figure 3.α is varied from 0.1 to 0.5 while fixing
L = 500 ms andR = 6. Whenα > 0.3, the match rate begins to
fall. Therefore, we chose 0.3 as the best setting, which indicates a
fragment is extended by including neighboring frames with distor-
tion scores within 130% of the average distortion of the fragment.

3.3. Clustering Results and Analysis

By settingR = 6, L = 500ms, andα = 0.3, we ran the graph
conversion and clustering on the warping fragments from thepath re-
finement output for both the original whitened MFCC representation
and the Gaussian posteriorgram representation. The clustering result
is shown in Table 1. MFCC represents the speaker dependent frame-
work in with default settings (R = 5, L = 500ms, α = 0.1) [2].
GP stands for the Gaussian posteriorgram based method. Eachclus-
ter is given a purity score which represents the percent agreement of
the underlying word label of each node in a cluster with the majority
vote (e.g., a cluster with 2 nodes out of 4 with the same label would
have a purity of 50%). From the table it is clear that the TIMITtask is
very difficult for the original MFCC-based method due to the small
number of utterances spoken by every talker, and the large num-
ber of talkers in the pool. The results did not change significantly
when the clustering parameters were modified. Both the number of
clusters that were automatically found, and the purity of the clusters
increased substantially with the posteriorgram-based representation.
Within each cluster, on average nearly 80% of the nodes agreewith
the majority word identity of the cluster.

Since one of the properties we wished to explore was speaker
variation, we also calculated the number of speakers covered by the
clusters. The clusters determined using the Gaussian posteriorgram
representation covered over 70% of the 580 speakers. Although the
clusters obtained by the MFCC representation incorporatedmore
speakers, the corresponding low purity score indicated that the clus-
ters were fairly random. The gender ratio (Female/Male) of the en-
tire corpus is 174/406=0.43, so it appeared that there was noobvious
gender bias for the Gaussian posteriorgram method.

Table 2 shows the top 5 clusters ranked by increasing average
distortion score. The transcription column represents theword iden-
tity of the cluster. These top 5 clusters all have a purity score of
100% and they are all from different speakers. Note that since we
ranked the clusters by distortion, the cluster sizes are small, even
though we observed that several clusters had the same underlying
word identity. Since the goal of this work was to demonstratethat the
Gaussian posteriorgram representation can solve the multi-speaker
case which our earlier work cannot handle, we leave the improve-
ment of the clustering algorithm as future work. Another interesting
point is that the top 5 clusters are identical for different parame-
ter settings, which indicates that the phrases/words in each cluster
are acoustically similar using the Gaussian posteriorgramrepresen-
tation. Since each “sx” sentence in TIMIT was said by seven talkers,
we believe this contributed to the multi-word clusters thatwere ob-
served, although the “si” data made up approximately 40% of the
cluster data, which is the same proportion that it had in the overall
corpus.
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Fig. 3. Fragment match rate for different parameter settings for the S-DTW and path refinement.

Table 2. Top 5 clusters

ID Cluster Size Avg. Distortion Transcription
1 2 0.87 shredded cheese
2 2 0.94 stylish shoes
3 3 1.02 each stag
4 3 1.06 the lack of heat
5 2 1.18 iris

3.4. Confusion Matrix Comparison

To better understand why using the Gaussian posteriorgram rep-
resentation reduces the speaker variation issue, we calculated the
alignment cost matrices of two speech segments of the word “or-
ganizations”, produced by a male and a female talker, respectively,
using the S-DTW search, illustrated in Figure 4. The top and bottom
sub-figures correspond to the cost matrix generated by MFCC and
the Gaussian posteriorgram representation, respectively. The cost
values were normalized into a grey scale for the purposes of the
figure. The lighter the pixel is, the more similar the corresponding
two frames are. The red line in each sub-figure corresponds tothe
is best-scoring alignment path. From the figures, it appearsthat on
the MFCC-based representation, the cost values around the warping
path show no strong difference from the values away from the warp-
ing path, especially at the end of the warping path. However,on the
Gaussian posteriorgram representation, there is a better delineation
between the low-cost alignment path and the region around the
warping path. This observation suggests that the Gaussian posterior-
gram representation is better modeling phonetic similarities across
talkers, and is thus better able to make distinctions between phones.

4. CONCLUSION AND FUTURE WORK

In this paper, we applied a Gaussian posteriorgram based approach
to automatic acoustic pattern discovery in speech data. Theentire ac-
quisition process is completely unsupervised, and does notdepend
on speakers or languages. Compared with our previous work [2],
the most important difference is that the Gaussian posteriorgrams
are used to represent speech frames. The segmental dynamic time
warping is then applied to speech frames represented by Gaussian
posteriorgrams. By converting the warping results to a graph, a clus-
tering algorithm is used to discover acoustic pattern clusters. On
the TIMIT dataset, we successfully demonstrated the viability of our
framework in a multi-talker environment.

For future work, we plan to explore these clustering resultson
larger multi-speaker corpora. We also plan to more thoroughly ex-
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Fig. 4. Cost matrix comparison for a male and female speech frag-
ment.

plore the use of this framework on different languages. To date, we
have performed some preliminary experiments on the OGI multi-
language dataset with encouraging results.
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