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Abstract— The usability of peer-to-peer (P2P) file sharing sys-
tems highly depends on their search (or query, content routing)
efficiency. In this paper, we present LiPS: an efficient P2P
search scheme with novel link prediction techniques. LiPS is a
natural combination of recent technical thrusts from two different
disciplines, namely 1) the exploitation of user interests in P2P
search field, and 2) the link prediction in the complex networks
field. Based on the experiential observation that people’s social
circle typically expands through friends’ friends, we propose a
novel neighbors’ common neighbor link predictor (NCNP) and its
two optimized variations. Trace-driven simulation results demon-
strate the proposed link predictors and the effectiveness of LiPS.
Specifically, the proposed refined and popularity-aware NCNP
algorithm can double or even triple the prediction accuracy, as
compared with normal common neighbor predictor. LiPS also
significantly outperforms (by as large a margin as 15%) the
original Shortcuts search method [1] and achieves up to 60% hit
rate. Meanwhile, the query traffic is also slightly reduced.

I. INTRODUCTION

The usability of peer-to-peer (P2P) file sharing systems
highly depends on how effective and efficient one can find
and retrieve data. Although it has attracted extensive studies in
recent years, efficient P2P search remains a most challenging
design problem. P2P networks appear in two different flavors,
namely structured and unstructured. In general, unstructured
networks is more preferable to the DHT-based structured ones
because the intrinsic exact key matching mechanism of the
latter, while providing other benefits, severely impairs its
search efficiency [4]. For unstructured overlay networks such
as Gnutella [2], researchers have mainly focused on improving
the original naive flooding query mechanism using controlled
flooding such as expanded ring search with random walks [3].
We refer readers to [4] for a comprehensive survey of P2P
search technologies.

Exploiting various localities has been approved as a viable
approach to improve the search efficiency in different applica-
tion contexts. For example, the temporal locality is utilized to
design efficient local file search algorithm [5]. Exploitation of
the locality embedded in human interests has also received a
lot of attention for its effectiveness in guiding search queries
[6], [7], [1], [8], [9]. For instance, in [9], the authors propose
to use partial index of shared data to reflect users’ interests
and to relate users with similar interests. In [8], the pattern and
properties of file sharing between peers with common interests

are also studied by using “data sharing graphs”. An interest-
based shortcuts algorithm (referred to Shortcuts hereafter) was
designed and laid on top of the original flooding based query
mechanism of Gnutella in [1].

It is observed in [1] that interest-based shortcuts result
in a graph with small world properties, which is a typical
characteristic of social networks, and this partially accounts for
its resultant high search efficiency. Social networks stand for
a specific class of network structures whose nodes represent
people or other entities embedded in a social context, and
whose edges represent interaction, collaboration, or influence
between entities. Handy examples of social networks include
the set of scientists in a certain discipline that co-author papers,
the collection of colleagues that collaborate on projects, the
collection of movie stars that collaborate on movies, etc. Social
networks have two prominent properties, namely small graph
diameter and high clustering coefficient, that are favorable
to, among others, efficient search. Many proposals have been
made to explicitly construct structures akin to social networks
to provide high search efficiency and/or handle flash crowd
more effectively [10], [11], [12].

In the discipline of complex networks, researchers have
devoted a considerable amount of attention to the computa-
tional analysis of social networks, especially on the network
evolution. In [13], the authors studied the link prediction
problem in social network. Link prediction problem essentially
focuses on efficient ways to exploit node proximity.

Motivated by the progresses in both threads (link prediction
in complex networks and interests locality exploitation for P2P
search) and also based on experiential observation that peo-
ple’s social circle typically expands through friends’ friends (to
be elaborated later on), in this paper, we propose novel link
prediction algorithms to predict possible future links between
peers to improve the search efficiency. We further design
the search scheme, LiPS, which stands for Link Prediction
and Shortcuts, by integrating the proposed link prediction
algorithms with the interest-based Shortcuts [1]. Note that
the proposed link prediction algorithms can be combined with
other query methods as well. To the best of our knowledge,
this is the first piece of work that explicitly studies the link
prediction problem in P2P scenario and applies it to help P2P
search.
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Trace-driven simulation results demonstrate the effective-
ness of LiPS. It can achieve up to 60% hit rate, significantly
outperforms (by a margin as large as 15%) the original
Shortcuts that has been proved to be most efficient P2P query
method in [1]. Moreover, the cost in terms of query traffic
is also slightly reduced. Note that LiPS improves the search
efficiency but does not affect the correctness and the reliability
of the underlying overlay since we can always resort to the
basic query mechanism, such as controlled flooding, of the
underlying overlay.

The rest of the paper is organized as follows: in Section
II, we present some works that are related to and have
motivated this work. We describe the rationale of link pre-
diction, formulate the link prediction problem, design a new
neighbors’ common neighbor predictor and present the LiPS
query procedure in Section III, followed by two link prediction
optimization algorithms in Section IV. Extensive experiments
using trace data from real P2P systems were performed and
the results are presented in Section V. Finally, Section VI
concludes the paper and talks about future works.

II. RELATED WORKS

In this section, we provide more detailed review of some
related works to reveal their insights and rationale, which are
also motivations of this work.

A. Utilizing locality for efficient search

Based on the observation that if a peer has a particular
piece of content that one is interested in, it is very likely that
it will have other items that one might be interested in as
well, the interest-based shortcuts algorithm was designed and
laid on top of the original flooding-based query mechanism
of Gnutella in [1]. Simulation results demonstrated significant
savings in search traffic. One interesting finding in the work
is that Shortcuts results in a graph with high clustering
coefficient, a typical characteristic of “social networks”. This
partially accounts for significant search efficiency improve-
ment.

In [9], the authors propose assisted search by using partial
index of shared data to reflect users interest and to relate
users with similar interest. The partial index is maintained
by a logically separate overlay on behalf of the peers. As in
Shortcuts, assisted search also leverages the interest locality,
but instead of gradually learning from history, peers express
their interests explicitly and actively seek partners via the
intermediate index overlay.

In [12], the authors used latent-variable clustering with
Hierarchical Dirichlet Processes to model user preferences on
music styles. The model is utilized to create social network
akin overlay networks by connecting users with same music
style preference. They demonstrated that overlay networks
based on social characteristics indeed improve the performance
of P2P networks. Clearly, they are also exploring the locality
among user preferences. However, the user preference locality
is used in a static way.

In this work, we also exploit the locality of user interest.
However, unlike Shortcuts, we seek to actively and explicitly
perform predictions for new possible queries. The rationale is
based on another real world observation which is also different
from that of Shortcuts.

B. Predicting links in social networks

Predicting the evolution of networks is hard and largely
based on the network’s topology and there is no universal
models in the theory of evolving networks. In [13] the authors
performed comprehensive study on the link prediction problem
in social networks. They propose and evaluate several predic-
tion models which can be classified into different categories
according to whether they are based on information of paths, or
based on information of node’s neighborhood, or some high-
level approaches such as clustering. According to experiments
in [13], the successful rate of the best model does not exceed
16% in the co-authors’ network.

Note that not all models fit for the P2P environment. For in-
stance, some models require globe information and some other
models take a long time to compute for a prediction, which
are unacceptable for real P2P applications. More specifically,
the prediction models for P2P networks should have good
prediction accuracy, require only local or a very limited range
of information and be easy to compute. In our study, we found
that prediction models using only neighborhood information
may satisfy such requirements. We propose several modified
link prediction algorithms based on the common neighbor
predictor to make them better fit the requirement of more
efficient query over P2P networks. Furthermore, the proposed
link prediction algorithms expedite the evolution for the P2P
network towards the one with social network properties.1

III. LIPS: LINK PREDICTION AND SHORTCUTS

A. The idea of link prediction

Shortcuts [1] is based on the observation that if a peer has
a particular piece of content that one is interested in, it is very
likely that it will have other items that one is interested in as
well. Therefore, it makes connections between peers having
successful query-reply relations. In this work, link prediction
is based on another observation from the real world that
people make new friends through their existing friends. Only
very occasionally, people will make new friends impromptu.
Even in this situation, people tends to explore something in
common, such as they both know someone or are from same
town, etc., to consolidate the new friendship. Therefore, such
kind of evolution is someway predictable.

In P2P applications, we can also find the similar kind of
evolution. If we link two peers if they have common interests.
Then, the common interest relation is highly transitive. That
is, if peer A has a shortcut to peer B and peer B has a shortcut
to peer C, we can predict, with high probability, that peer A
may share some interests with C. This is exactly the common
neighbor link prediction (CNP) concept [13] which predicts a

1Due to space limit, we are not able to present the results on this respect.
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link between A and C from the fact that they have a common
neighbor B.

B. Problem statement

Our goal is to predict a peer’s future links based on his
existing ones. Mathematically, the link prediction problem can
be stated as follows: given a snapshot of a P2P network at time
t1, represented as a graph Gt1(V1, E1), where V1 is the set of
online peers at time t1 and E1 ⊂ V1×V1 is the set of existing
shortcuts between these online peers. Link prediction is an
algorithm with input Gt1(V1, E1) and output Epre ⊂ V1×V1.

Epre = LinkPred(Gt1(V1, E1)) (1)

where Epre denotes the set of links predicted by the link
prediction algorithm. Applying Epre onto the original graph
Gt1(V1, E1), we will get G

′
t1(V1, E1 ∪ Epre). Suppose that

we take another snapshot of this P2P network at t2, where
t1 < t2, represented as Gt2(V2, E2). It is clear that we can use
Gt2(V2, E2) as the ground truth to verify the prediction result
and calculate the prediction successful rate of the prediction
algorithm, which is defined as follows:

α =
|Epre ∩ E2|
|Epre| (2)

Clearly, we need to find an appropriate prediction algorithm
to maximize the prediction accuracy α.

C. Neighbors’ common neighbor predictor

The simple common neighbor based predictor (i.e., CNP)
leads to exponential growth of predicted links across gener-
ations of prediction and the results will inevitably become
overly noisy. We therefore propose a more stringent link pre-
diction method called neighbors’ common neighbor predictor
(NCNP), which is defined formally as follows:

NCNP γ(p) =
⋂

pi∈∆(p)

∆(pi) (3)

In the equation, γ is the iteration parameter, NCNP γ(p)
represents the set of predicted links after γ-th iteration. ∆(p)
denotes the set of neighbors of peer p prior to the γ-th iteration.
Evidently, the larger γ is, the more selective the prediction
will be. This fact makes the prediction converge and stabilize
quickly.

We give a simple example in Figure 1 to illustrate our idea
and show the difference between CNP and NCNP. Suppose
peer A has shortcuts to peer B and C, and both peer B and C
have a shortcut to peer D, respectively. When peer A observes
that both peer B and C have a shortcut to D, it is more
possible that peer A has some common interests with peer D.
Therefore, we can predict the shortcut from peer A to peer
D for peer A by computing one peer’s neighbors’ common
neighbor. In a second iteration, if using NCNP, peer A will
not add new neighbors since his neighbors (peer B, C, and D)
do not have in common any other neighbor. On the contrary,
if CNP is applied, then peer A will add peer E and F as new
neighbors in a second round and peer G and H in a third
round, and so on.

A

H

G

E

F

D

C

B

Fig. 1. Example of shortcuts prediction

Algorithm 1: The LiPS procedure
Input: query (Query term)
Result: hitList (Query result)
begin

hitList←− searchExpressList(query)
if hitList == NULL then

hitList←− goUnderlyingOverlay(query)
if hitList == NULL then

noRecordFound()
return

updateExpressList(hitList)
predictionList←− doPrediction()
replaceExpressList(predictionList, n)

else
shuffleExpressList(hitList)

end

D. Proposed LiPS query procedure

The proposed LiPS query procedure contains the following
three simple steps, as listed in Algorithm 1:

1) Perform search over the express search list. If hit, shuffle
the express search list by reordering according to the
successful hit value, and then procedure terminates.

2) Perform search over the underlying overlay (using basic
flooding-based search scheme). If not hit, prompt “no
record found” message and terminate the procedure.

3) Update the express search list with the replying peers (i.e.,
Shortcuts idea). Then perform link prediction algorithm
to generate a set of n predicted links and replace last n
entries.

Clearly, the key idea here is to form the express search
list with Shortcuts and the predicted links, and always first
search the express search list with an expectation of early
hit. Note that, in doPrediction(), we apply the proposed
link prediction algorithms. In order to perform prediction,
peers need to exchange express lists information with their
neighbors. Such exchange of neighbor information is the
actual cost we paid for using prediction. Fortunately, the
cost is affordable and tolerable because 1) such information
can be piggybacked in the keeping alive information that is
regularly exchanged between neighboring peers; 2) based on
the observation from real data set and empirical analysis, most
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peers do not frequently issue queries.

IV. LINK PREDICTOR OPTIMIZATION

Equation 3 implies very stringent condition for a successful
prediction. Peers may fail to generate any prediction result, i.e.,
the resulting intersection set is empty, because their neighbors
do not have neighbors in common. This is not what we
want. Therefore, we loosen the intersection rules by counting
the occurrences of peers, instead of performing strict set
intersection, of all neighbors’ neighbor lists and select the first
k most frequently appeared peers as prediction results. We call
this algorithm Refined NCNP (RNCNP). More specifically,
for each peer p, we generate the set of candidate peers by
combining its neighbors’ neighbor list.

C(p) =
⋃

pi∈∆(p)

∆(pi) (4)

Let F (a) represents the frequency that a peer a appears in
C(p), then

F (a) =
∑

pi∈C(p)

f(a,∆(pi)) (5)

where

f(a,∆(pi)) =
{

1 if a ∈ ∆(pi)
0 if a �∈ ∆(pi)

For each peer in the candidate set, we apply a ranking
function, denoted as s(a). We first simply let s(a) = F (a).
The prediction results are the peers whose score are greater
than or equal to a given threshold TH . That is,

RCNP (p) = {a : a ∈ C(p), s(a) ≥ TH} (6)

The RNCNP algorithm is detailed in Algorithm 2.
To further explore the impact of different ranking functions,

we propose another ranking function, taking into account the
popularity of a given peer. It is widely accepted that the pow-
erful and stable peers often play a critical role to the success

Algorithm 2: Refined/Popularity-aware NCNP

Data: Graph G(V,E)
Result: PSet (set of prediction links)
begin

wList←− NULL
while i < γ do

for n ∈ V do
for p ∈ ∆(n) do

for pi ∈ ∆(p) do
if s(pi) ≥ Threshold then

wList←− wList ∪ {pi}

Tmp←− First(wList)
for pi ∈ Tmp do

addLink(n, pi)
PSet ←− PSet ∪ Tmp

end

of any P2P system. The popularity of a peer is measured by
counting the number of times it uploads files to others. The
resulting link prediction algorithm, called Popularity-aware
NCNP (PANCNP), is the same as that of RNCNP, except the
ranking function is changed to s(a) = F (a) · Pop(a), where
Pop(a) is the popularity of a peer a. Note that the threshold
here is typically magnitude of order greater than that in the
RNCNP algorithm.

V. EXPERIMENTAL RESULTS

We performs extensive experiments to verify our prediction
ideas. The whole evaluation is divided into two parts: 1) we
first verify the effectiveness of the proposed link prediction
algorithms, and 2) we emulate a real case of Gnutella [14]
through trace-driven simulation.

A. Effectiveness of link prediction algorithms

We use the data set Can-o-Sleep collected from the Open-
Nap system which contains the data over an 81 days period
between February 28 and May 21, 2003. The data set records
all the transactions for every participants and is organized in a
relational database structure with four distinct object types and
seven link types, which suffices our experiment requirement.

We divided the Can-o-Sleep data set into two subsets G1

and G2 based on their time stamps. G1 is created with data
collected from day 1 to day 39 and G2 with the data from day
40 to day 79. Let Gw and Gt be the working set and test set,
respectively. Gw consists of the nodes in G1∩G2 and the links
from G1 by removing the ones which either the start node or
the end node is not in G1 ∩ G2, and Gt contains the nodes
from G1∩G2 and the links from G2 after the same removing
process as for Gw. The resulting statistics of the data set is
shown in Table I.

TABLE I

STATISTICS OF THE CAN-O-SLEEP DATA SET

Graph Nodes Links
G1 1595 21318
G2 5902 79306

G1 ∩ G2 1357 5958
Gw 1357 19108
Gt 1357 33889

We run the three link prediction algorithms (NCNP,
RNCNP, and PANCNP) on Gw. Each algorithm generates a
predicted link set Epre based on the input graph Gw. Then, for
every predicted link in Epre, we verify its appearance in graph
Gt. As stated before, the prediction accuracy is defined as the
ratio of the number of predicted links that appear in Gt to the
total number of predicted links. In RNCNP and PANCNP, we
set the threshold to be one and zero, respectively. The results
are shown in Table II.

From Table II, we see that the successful rates of proposed
link predictors are already much higher than the results in [13]
of which the highest one is about 16% only. This confirms that
the simple interest relation in P2P network is easier to be pre-
dicted than the complex relation between individuals. Among
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TABLE II

PREDICTION SUCCESSFUL RATE

Algorithms Successful Rate Correct / Total
NCNP 19.5% 38 / 195
RNCNP 23.0% 210 / 916
PANCNP 34.6% 311 / 916
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Fig. 2. Number of resulting predictions of RNCNP and the prediction
successful rate versus threshold.

the three proposed link prediction algorithms, NCNP leads to
the lowest successful rate, mainly due to the strict common
neighbor condition. As we will see below, the successful
rate can be further improved if we set proper thresholds. In
fact, the proposed link predictors can double or even triple
the performance of normal common neighbor predictor (see
Figure 2 and 3).

To find out the proper threshold, we study the resulting
number of predictions and the prediction accuracy against
different thresholds for RNCNP and PANCNP algorithms, as
shown in Figure 2 and 3.

The two figures reveal that most of wrong predictions indeed
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Fig. 3. Number of resulting predictions of PANCNP and the prediction
successful versus threshold.
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Fig. 4. Comparison of successful hit rate between Shortcuts and LiPS versus
overall time passed.

occurred when the threshold is too loose. Setting a larger
threshold, more prediction noise can be filtered out. As a
result, the successful rate improves while the total number of
predictions decreased. Clearly, there exist a tradeoff between
the prediction accuracy and the number of predictions. We are
still working on effective means to obtain the optimal tradeoff.

B. Search Efficiency and Comparison with Shortcuts

We use Gnutella as the underlying overlay structure to
perform the search efficiency test. The data is collected from a
real Gnutella’s network over a extended time period, consisting
of 4,447 distinct users, 845,454 shared files and 11,075 queries
issued by users. Each query record contains a time stamp
denoting when the query is made by a user. We sort the query
events by their time stamp, start the simulation at the time
the first query is issued and end the simulation when the last
query finishes. In the experiments, the query routing table size
is set to 15 for Shortcuts. Accordingly, we set the replacement
length to be 5 (i.e., n = 5 in the query procedure in Algorithm
1) and the size of express search list to be 15 for LiPS for fair
comparisons.

The experimental results are shown in Figure 4. The hori-
zontal axis represents the time sampling point. The interval
between two subsequent ticks is approximately 0.87 days
and the whole data set lasts for 13 days. The vertical axis
represents the average successful hit rate of Shortcuts and
LiPS, which is the ratio of the number of hit on link in
the list and the total number of link visited, i.e., excluding
the hits that are obtained through the underlying flooding-
bases query mechanism of Gnutella. From the results, LiPS
obviously outperforms the Shortcuts in terms of successful
rate by as large a margin up to 15%. We did not perform the
NCNP predictor since based on the results got from the first
part of the experiment, NCNP predicts too few links which
consequently brings little gains of the prediction successful
rate.

Detailed analysis reveals that LiPS successfully predicts and
preserves many powerful peers which Shortcuts cannot keep
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because its shortcut replacement policy is very sensitive to the
peer’s sudden change of interest. When the peer occasionally
changes his interest for a short time period (i.e., transient
interest), those already built shortcuts to the powerful and
popular peers that have similar interest to his primary interest
will soon be replaced by some other peers fulfilling the
transient query. On the contrary, LiPS reacts to the sudden
change in interest more smoothly because it is unlikely that
all neighboring peers change their tastes synchronously. There-
fore, when user changes back to his primary interest, some of
previous powerful peers still exist and are certainly helpful.
This also accounts for the result that the performance of
LiPS is close to that of Shortcuts at beginning because the
knowledge of neighbors have not been accumulated yet.

For quantify the query traffic cost, we measure the number
of the involved peers for each query event. The involved peers
are defined as the set of peers visited during a query session.
Note that for LiPS, the number of involved peers includes the
number of neighbors of the predicting peer in order to take
into account of traffic overhead for prediction. The results are
shown in Figure 5. In the figure, the PANCNP link prediction
algorithm is adopted in LiPS. At the beginning, there is no
big difference between Shortcuts and LiPS. However, LiPS
gradually shows more savings in the query traffic because of
the built-up of express search list and the improvement on
successful rate.

VI. CONCLUSIONS AND FUTURE WORK

Motivated by the progresses in both threads (link prediction
in complex networks and interest locality exploitation for P2P
search) and also based on experiential observation that peo-
ple’s social circle typically expands through friends’ friends
(to be elaborated later on), in this paper, we present LiPS,
an efficient P2P search scheme, by integrating the several
proposed novel neighbors’ common neighbor link predictors
with the interest-based Shortcuts scheme. To our best of
knowledge, it is the first time that link prediction techniques
are applied into P2P applications.

The effectiveness of LiPS was demonstrated through trace-
driven simulation where the Can-o-Sleep data set is used
to verify the efficiency of proposed link predictors and the
Gnutella data set for its effectiveness when applying to P2P
search. Specifically, both the refined NCNP and popularity-
aware NCNP can double or even triple the performance of
normal common neighbor predictor. The hit rate of LiPS can
achieve up to 60% and exceeds the original Shortcuts by as
large a margin as 15%. In the mean time, the query traffic is
slightly reduced.

We are working on effective means to obtain the optimal
tradeoff between number of predictions versus the prediction
accuracy. We are also implementing a real P2P application
using the mechanisms proposed in this paper. In a longer term,
we plan to find out the root causes for link predictability in
P2P network and perform some theoretical study.
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