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Abstract

Free style Chinese handwriting recognition continues to
pose a challenge to researchers due to the variety of Chi-
nese writing styles. To recognize handwritten characters in
an online mode, Hidden Markov Model (HMM) has been
naturally adopted to model the pen trajectory of a char-
acter and a decent recognition performance is achieved.
In this study, we start from a maximum likelihood trained
HMM model and focus on minimizing the errors on the rad-
ical (sub-character) level to optimize the recognition per-
formance. A novel Minimum Radical Error discrimina-
tive training criterion is proposed, and compared with the
discrimination on the character level, our new approach
further reduces the character error rate by 15.55% rela-
tively (totally 29.00% reduction from the maximum likeli-
hood baseline model) on a Chinese database,

1. Introduction

Online Chinese handwriting recognition continues to be
a challenging pattern recognition problem due to the highly
variable writing styles of a Chinese character: printed, flu-
ent and cursive. In past decades, researchers have devel-
oped different strategies to tackle this problem [8] mainly
in two directions. From the data perspective, characters in
Chinese and other Eastern-Asian languages can be consid-
ered as a stand-alone holistic figure [9], or can be decom-
posed into basic, sub-character units of radicals [12]. Fur-
ther decomposition is also possible, i.e., each radical can
be decomposed into predefined strokes or sub-strokes [2].
Holistic approach usually yields higher recognition accu-
racy [4] since it captures the entire character shape informa-
tion, but it is cumbersome to collect character specific train-
ing data for more than 20,000 Chinese characters. Also, the
model size becomes very large. On the other hand, stroke-
based approach defines basic units based upon the analysis

of printed fonts, which lead to more compact models. How-
ever, for more free-styled cursive writing, it is hard to align
the conceptual strokes with the pen trajectory, especially in
a writer independent mode. In Chinese and other Eastern-
Asian languages, radicals are relatively stable and they form
a compact set. With adequate number of basic radicals, we
can effectively characterize the entire character set, which
provides a promising alternative approach to Chinese on-
line handwriting modeling.

From the modeling perspective, Hidden Markov Model
(HMM) is intuitively suitable for modeling the temporal pen
trajectory [4] [6], and is expected to achieve a decent recog-
nition performance. Thus, we focus on radical-based trajec-
tory modeling by HMMs in this study. Although using the
online trajectory modeling approach, it is still a challenging
problem of how to normalize different writing styles and
different writing orders among different writers. A data-
driven approach is to build models aiming at achieving bet-
ter classification than better description of the training data,
or to train a discriminative HMM. In past years, discrimina-
tive criteria, such as Minimum Classification Error (MCE)
[5] and Maximum Mutual Information (MMI) [10], have
been shown to outperform the maximum likelihood crite-
rion in speech recognition. It is noted that in the frame-
work of minimum error training [11], by defining errors in
a higher resolution, we can further improve model discrimi-
nation, demonstrated in Minimum Phone Error (MPE) [11]
and Minimum Divergence (MD) [3]. In this research, we
apply the concept of minimum error training to handwriting
recognition. We investigate how to define recognition error
at the character and radical level, which leads to MMI train-
ing and a novel Minimum Radical Error (MRE) training.

The rest of the paper is organized as follows: in Section
2, we briefly introduce the radical-based Chinese character.
In Section 3, we propose the Minimum Radical Error crite-
rion to discriminatively train the radicals models. Next we
conduct experiments and analyze errors to demonstrate the
effectiveness of discriminative model training. Finally, in
Section 5 we conclude the paper and discuss future works.



2. Radical-based Chinese Character
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Figure 1. Chinese Character Decomposition

Chinese character is formed in a complex but hierarchi-
cal structure as illustrated in Figure 1. Radicals or sub-
character roots are commonly used as the basic semantic or
phonetic units to construct Chinese characters. Each Chi-
nese character consists of one or several radicals which are
similar to speech that each word can be decomposed into
one or several sub-word units, saying phones. With a rea-
sonable set of small number of radicals, we are able to rep-
resent all Chinese characters. Thus, the problem of mod-
eling all Chinese characters becomes easier since we only
need to model a relatively small number of radicals. An-
other advantage of this approach is that by using a character-
to-radical dictionary, we can synthesis, hence recognize
characters which are not included in the training data.

3. Minimum Radical Error Training

Given S training samples, the objective function of min-
imum error training can be represented as:

F =
1
S

S∑

i=1

f

(
log

∑
C Pκ

λ (Oi|C)P (C)A(C,Cref
i )∑

C Pκ
λ (Oi|C)P (C)

)

where i is the index of a training sample, C denotes a hy-
pothesis class (Chinese character), λ denotes the set of pa-
rameters of the HMM model, Oi and Cref

i represents the
observation and reference class of the i’th training sample,
respectively. f is a smooth function and κ is a scaling fac-
tor to normalize the probability. A key difference between
the various criteria in this framework is the accuracy term
A, which measures the similarity between hypotheses and
the reference class. In speech recognition, by increasing the
error resolution from sentence level to phone level, a new
criterion of MPE is introduced and outperforms sentences
level criteria such as MMI [11].

In the radical based online handwriting modeling, we
can intuitively adopt the concept of minimum error train-
ing. When defining error at the character level, the criterion

Table 1. Comparison of MMI and MRE training

Criteria f(x) A
MMI x δ(C,Cref

i )
MRE exp(x) |Cref
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Figure 2. Example

of MMI can be directly used. Inspired by MPE, we can also
use the radical level accuracy between a hypothesis charac-
ter and the reference to increase the error resolution. Cor-
respondingly, the criterion is termed as Minimum Radical
Error (MRE). A brief comparison between MMI and MRE
is listed in Table 1, where δ(C, Cref

i ) is a binary function
that is equal to 1 if C and Cref

i are identical, LEV(C, Cref
i )

represents the Levenshtein distance [7] between the radical
sequence of C and that of Cref

i , and |Cref
i | represents the

number of radicals of which |Cref
i | is composed.

Both MMI and MRE are to maximize posterior proba-
bility of the reference, which can be directly related to the
recognition error in Bayesian sense. By counting radical er-
rors in the accuracy function, we maximize the sum of pos-
terior probability of all the radicals in the reference, which
can be illustrated by the example showed in Figure 2. Sup-
pose that we are recognizing a character labeled with Cref

and come up with three hypotheses results C1, C2 and C3

with the corresponding probabilities p1, p2 and p3, respec-
tively. Here the probability is defined by Pκ

λ (Oi|C)P (C).
Assuming all the hypotheses have the same number of rad-
icals as in the reference, and the radical boundaries are
aligned, the objective function of MRE can be written as:

FMRE =
2p1 + p2 + 2p3

p1 + p2 + p3

On the other hand, the posterior probabilities of a radical R
starting from time s and ending at e is defined as:

P ([R, s, e]|O) =

∑
C:[R,s,e]∈C Pκ

λ (O|C)P (C)∑
C Pκ

λ (O|C)P (C)



Accordingly, the sum of the posterior probabilities of all
reference radicals is SPP =

∑
[R,s,e]∈Cref P ([R, s, e]|O).

In the special case depicted in Figure 2, we obtain:

SPP =
2p1 + p2 + 2p3

p1 + p2 + p3
= FMRE

which means the objective function of MRE is to maximize
the radical posterior. In other words, the error measure is
refined to the radical level.

Practically, we can conduct minimum error training in
two steps: first, we concentrate on character level errors and
applying MMI to train the model discriminatively; second,
based upon the model trained by MMI, we apply MRE to
refine errors at a higher resolution.

4. Experiments

4.1. Data Set

We use a large database of online Chinese handwritten
characters collected from the Tablet-PC platform. The data
set for training contains a total of 563,250 samples of 3,755
(150 samples per character) most frequently used Chinese
characters in printed, fluent and cursive writing styles. The
samples from these three writing styles are non-uniformly
distributed over the whole data set. 1,142 radicals are se-
lected to form the radical set to represent all these charac-
ters. There are 8 special imaginary radicals which repre-
sent the direction of connection between two radicals. In
the testing stage, we use a database of 56,325 samples over
these 3,755 characters (15 samples per character). The sam-
ples from the three writing styles are also non-uniformly
distributed over the test set.

4.2. Baseline System

To build a baseline HMM model, we use a sequence of
four dimensional feature vector to represent the pen trajec-
tories of a radical. The four dimensional feature is com-
posed of slope features (cos θ, sin θ) and curvature related
features (cos∆θ, sin∆θ), as illustrated in Figure 3.

We use HTK (v3.2.1) [1] to train the maximum likeli-
hood (ML) HMM model as our baseline system. Left-to-
right HMMs are adopted to model each radical, and the
output distributions are Gaussian. There are a total of 3,374
untied states over these 1,142 models. Since the training
database is mixed with three kinds of writing styles and
no special method is adopted to deal with various writing
orders and styles, ML based trajectory modeling is not so
successful in building effective models. Accordingly, the
character error rate (CER) of this baseline model is 18.79%.
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Figure 3. Features
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Figure 4. MMI Training Results

4.3. MMI training

We apply MMI training on the baseline model. The scal-
ing parameter is set to κ = 1/15 and we perform isolated
character recognition without any context information. Fig-
ure 4 shows the result. The training process converges after
three iterations (the following curve is omitted). Finally,
we reduce the CER to 15.75%, with a the relative reduction
of 16.18%. Compared with ML training, MMI training pro-
cess takes into account the samples of other competitive cat-
egories other than just describes them individually, which
will give better classification performance on some samples
that are easy to be confused on the ML trained model. That
is possibly the main reason why MMI training leads to bet-
ter recognition performance. We report the detailed results
in Table 2.

4.4. MRE training

MMI criterion investigates the error resolution on the
character level, while, to further localizing the error reso-
lution to a lower level – radical level, we apply our MRE
training by using the resultant model got from the MMI
training as the seed model. We still set the scaling factor
κ = 1/15. The training process converges after six itera-
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Figure 5. MRE Training Results

Table 2. Result(Character Error Rate)
1-best 3-best 5-best 10-best

Baseline 18.79% 10.36% 8.23% 6.18%
3rd MMI 15.75% 8.10% 6.28% 4.50%
Impr.(rel) 16.18% 21.81% 23.69% 27.45%
6th MRE 13.34% 6.83% 5.34% 3.91%
Impr.(rel) 29.00% 34.07% 35.12% 36.73%

tions. The result illustrated in Figure 5 shows that we fur-
ther reduce the CER from 15.75% to 13.34%, with a relative
reduction of 15.30%. The reduction proves that MRE train-
ing criterion gives a more accurate measurement of the sim-
ilarity between a hypothesis recognition result and the ref-
erence class than MMI training criterion, which better im-
proves the discrimination among confusable radical models.

In sum, after two stages of discriminative training, a
CER reduction of 29.00% is achieved , as listed in Table 2.
When considering N-best results, the improvement is even
larger, which shows that the models become more reason-
able.

4.5. Result Analysis

To illustrate the difference between the ML trained
model and the MRE refined model, we visualize them for
comparison. An ideal sample according to a HMM is con-
structed by connecting stroke pieces corresponding to each
state in the HMM: The stroke piece runs along the direc-
tions indicated by the model mean of (cos θ, sin θ), and the
lengths is determined by the expected duration of the state.
Two comparison pairs are shown in Figure 6. In general,
we observe that MRE refined model is more smooth and

Figure 6. Radical Comparison

pays more attention to those distinguishing segments, e.g.
the start, the end of a radical and transitions between stokes
within a radical. As a result, the model becomes more ro-
bust and powerful in dealing with the variety of writing
styles from different writers.

To further reveal how discriminative training improve the
recognition performance, we analyze the recognition results
and the corresponding discriminative models. We observe
the Log-Likelihood Ratio (LLR) on the testing set. The
measure is defined as:

LLR = log
P (O|Cref)

max
C 6=Cref P (O|C)

We compute the LLR of each test sample using both ML
trained model and the MRE refined model. The test set is
divided to four sub-sets and their histograms of LLR are
shown in Figure 7. The “Correct-Correct” set is composed
of those correct recognized samples both on ML model and
MRE model, while the “Incorrect-Correct” set represents
those mis-recognized samples on ML model but they are
corrected after MRE refinement, and so on. A promising
way of optimizing a model is to let the correct samples
keep ahead and continuously increase the distance from its
competitors, and to let the falsely recognized samples catch
up the leader as early as possible. Accordingly, sub-figure
(a) and (b) demonstrate us these trends. Sub-figure (c) and
(d) illustrate why the recognition performance is improved
after discriminative training. It is easy to find that much
more samples are corrected (c) while only a few ones which
get the correct recognition result on ML model are mis-
recognized after MRE refinement (d).
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Figure 7. Log-Likelihood Distribution

5. Conclusions

In this paper, we present a novel Minimum Radical Er-
ror discriminative training criterion and apply it to a radical-
based online Chinese handwriting recognition system. The
results show that by using the new MRE training criterion,
the recognition performance improves by 29.0% compared
with the maximum likelihood trained baseline system. By
visualizing models and investigating the Log-Likelihood
Ratio changes on each test sample, we provide a clear anal-
ysis of how MRE training improves the recognition accu-
racy. The effective HMMs to characterize pen trajectory. In
future work, we plan to apply our MRE training on a larger
character database and do more comparison with other dis-
criminative training criteria. Moreover, we try to define er-
rors in a more higher resolution, such as on sub-radical or
stroke level, to further refine the models.
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