
6.867 Exam 1
Fall 2011

Answer the questions in the spaces provided on the question sheets. If you run
out of room for an answer, continue on the back of the page. Show your work

neatly.

Name and MIT ID:

Question Points Score

1 35

2 25

3 25

4 15

Total: 100
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1 Estimation and decision theory (35 points)

In all parts of the following question, feel free to leave any complex numerical expressions unevaluated: you
can just write them down, and then give them a name if you need to use them later.

You have just bought a copy machine at a garage sale. You know it is one of two possible
models,m1 orm2, but the tag has fallen off, so you’re not sure which.

You do know thatm1 machines have a 0.1 “error” (bad copy) rate andm2 machines have a 0.2
error rate.

1. (a) (5 points) You use your machine to make 1000 copies, and 140 of them are bad. What is
the maximum likelihood estimate of the machine’s error rate? Explain why. (Remember
that you’re sure it’s one of those two types of machines).

Solution:
We first solve the MLE of the type of the machine, which we denote by b ∈ {1, 2}.
Using a particular machine, the number of bad copies, denoted by k, is a random
variable, as k ∼ Binomial(n, pb). Thus,

P(k | b) =

(
n

k

)
pkb(1− pb)

n−k ⇒ logP(k|b) = logC+ k logpb + (n− k) log(1− pb).

Here, C is the value of n choose k. With n = 1000, k = 140, p1 = 0.1 and p2 = 0.2, we
have

logP(k|b = 1) = logC+ 140 log(0.1) + 860 log(0.9) = logC− 412.97

logP(k|b = 2) = logC+ 140 log(0.2) + 860 log(0.8) = logC− 417.22

We can see that logP(k|b = 1) > logP(k|b = 2), which implies that the MLE of the
type of the machine is b̂ = 1. It follows that the machine’s error rate is pb̂ = 0.1.

(b) (10 points) Looking more closely, you can see part of the label, and so you think that, just
based on the label it has a probability 0.2 of being an m1 type machine and a probability
0.8 of being an m2 type machine. If you take that to be your prior, and incorporate the
data from part a, what is your posterior distribution on the type of the machine?

Solution: Under the condition that the total number of copies that we made is n =

1000, the posterior distribution of the type of the machine, denoted by b, is

p(b = 1 | k) =
p(k | b = 1)p(b = 1)

p(k | b = 1)p(b = 1) + p(k | b = 2)p(b = 2)
=

0.2

0.2+ 0.8
p(k|b=2)
p(k|b=1)

.

We note that logp(k | b = 2) − logp(k | b = 1) = −4.25. Hence

p(k | b = 2)

p(k|b = 1)
= exp(−4.25) = 0.0142.

As a result, we have

p(b = 1 | k) = 0.946, and p(b = 2 | k) = 0.054.
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(c) (5 points) Given that posterior, what is the probability that the next copy will be a failure?

Solution: Given the posterior, the predictive probability of the next copy being bad
is

p(b = 1 | k)p1 + p(b = 2 | k)p2 = 0.946 · 0.1+ 0.054 · 0.2 = 0.1054.

(d) (10 points) You intend to sell this machine on the web. Because it’s used, you have to sell
it with a warrantee. You can offer a gold or a silver warrantee. If it has a gold warrantee
and the buyer runs it for 1000 copies and gets more than 150 bad copies, then you are
obliged to pay $1000 in damages; if it has a silver warrantee, you have to pay damages if
it generates more than 300 bad copies in 1000 copies. Your maximum reasonable asking
price for a machine with a gold warrantee is $300; for a machine with a silver warrantee,
it is $100. You can assume the machine will sell at these prices. What type of warrantee
should you offer on this machine?

Solution: Let k = 140 denote the number of bad copies that we have observed, and
k ′ denote the number of bad copies the machine will generate when the buyer runs it
for 1000 new copies. The probability that k ′ > 150 is

p(k ′ > 150 | k) = p(k ′ > 150 | b = 1)p(b = 1 | k) + p(k ′ > 150 | b = 2)p(b = 2 | k).

When n = 1000, the binomial distribution is extremely peaky, with most probability
mass falling around np. Hence, p(k ′ > 150 | b = 1) ' 0, and p(k ′ > 150 | b = 2) ' 1.
Hence p(k ′ > 150 | k) ' p(b = 2 | k) = 0.054.
Similarly, we have

p(k ′ > 300 | k) = p(k ′ > 300 | b = 1)p(b = 1 | k)+p(k ′ > 300 | b = 2)p(b = 2 | k) ' 0.

Actually, using either machine, it is very unlikely to generate over 300 bad copies for
1000 runs.
Hence, the expected profit of offering gold warrantee is

300− 1000 · p(k ′ > 150 | k) ' 300− 1000 · 0.054 = 246.

The expected profit of offering silver warrantee is

100− 1000 · p(k ′ > 300 | k) ' 100.

Therefore, offering gold warrantee would generate higher expected profit, which is
what we should do.
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(e) (5 points) Under what conditions would it be better to just throw the machine away,
rather than try to sell it?

Solution: We should just throw it away when the expected profit is zero or even negative
for both warrantee that we can offer. (You can get full points if you see the above, but
it is great if you see the following.)
For this particular problem, even for the worst case scenario where we are sure with
probability 1 that the machine is the worse one (with error rate 0.2), it is still very
unlikely that it produces over 300 bad copies for 1000 runs (you can verify this by
computing the CDF). In this (worst) case, it is still profitable to sell the machine with
silver warrantee.
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2 Weighted least squares regression (25 points)

You are trying to build a classifier with data that you gathered on two different days with two
different instruments. We know that data set 1, consisting of n pairs, (xi, yi) has a conditional
Gaussian distribution

y ∼ Normal(x · θ, σ21) ,
and data set 2, consisting ofm pairs (ui, vi) has a conditional Gaussian distribution that differs
only in the variance:

v ∼ Normal(u · θ, σ22) ,
The parameter vector θ and all of the xi and ui are vectors in Rd, and the yi and vi are in R.

2. (a) (20 points) Derive the maximum-likelihood estimator for θ ∈ Rd. You can assume that
there is no special θ0. We strongly recommend that you do this in matrix-vector form.

Solution: For dataset 1

logL1(X; θ) =
1

2σ21

n∑
i=1

(< θ, xi > −yi)
2 + C1 =

1

2σ21
||Xθ− Y||2 + C1

For dataset 2

logL1(U; θ) =
1

2σ22

m∑
i=1

(< θ,ui > −vi)
2 + C2 =

1

2σ22
||Uθ− V ||2 + C2

where X = [x1, · · · , xn]T , Y = [y1, · · · , yn]T , V = [v1, · · · , vm]T , U = [u1, · · · , um]T and
C1, C2 are constants from the Gaussian PDF.
The joint objective of MLE is

J = logL1 + logL2

=
1

2σ21
(Xθ− Y)T (Xθ− Y) +

1

2σ22
(Uθ− V)T (Uθ− V) + C1 + C2

=
1

2
θT
[
1

σ21
XTX+

1

σ22
UTU

]
θ−

[
1

σ21
θTXTy+

1

σ22
θTUTV

]
+ C

Maximizing Jwith respect to θ

∂J

∂θ
=

[
1

σ21
XTX+

1

σ22
UTU

]
θ−

[
1

σ21
θTXTy+

1

σ22
θTUTV

]
= 0

The solution is

θ̂ =

[
1

σ21
XTX+

1

σ22
UTU

]−1 [
1

σ21
θTXTy+

1

σ22
θTUTV

]
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(b) (5 points) Argue that it makes sense for extreme relative values of σ1 and σ2.

Solution: Since σ1 and σ2 can be viewed as weighting coefficients, if
σ1 = σ2 −→ unweighted (or equally weighted) least square regression
σ1 � σ2 −→ least square regression on (ui, vi)

σ1 � σ2 −→ least square regression on (xi, yi)
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3 SVMs with multiple data sources (25 points)

You are still trying to build a classifier with data that you gathered on two different days with
two different instruments. You trust the labels of the data gathered with instrument 1 twice
as much as the labels of the data gathered with instrument 2. You have lots of friends with
different opinions about how to handle this.

We will use (xi, yi), i = 1 . . . n to denote data from instrument 1 (more accurate) and (ui, vi)

to denote data from instrument 2. Slack variables for the instrument 1 data will be ξ and for
the instrument 2 data will be ζ. Lagrange multipliers for the instrument 1 data will be α and
for the instrument 2 data will be β.

• Pat suggests that you can insert a multiplier of 2 into the slack penalties for the data
points gathered with instrument 1, so that the optimization problem is

min
θ,ξ,ζ

1

2
||θ||2 + 2c

n∑
i=1

ξi + c

m∑
j=1

ζj

subject to

yi(θ · xi + θ0) ≥ 1− ξi for all i ∈ {1, . . . , n}

vj(θ · uj + θ0) ≥ 1− ζj for all j ∈ {1, . . . ,m}

ξi ≥ 0 for all i ∈ {1, . . . , n}

ζj ≥ 0 for all j ∈ {1, . . . ,m}

• Dana suggests that you can insert a multiplier of 2 into the Lagrange multipliers of data
points gathered with instrument 1, so that the dual optimization problem is:

max
α,β

n∑
i=1

2αi+

m∑
j=1

βj−2

n∑
i=1

n∑
j=1

αiαjy
iyj(xi·xj)−2

n∑
i=1

m∑
j=1

αiβjy
ivj(xi·uj)−1

2

m∑
i=1

m∑
j=1

βiβjv
ivj(ui·uj)

subject to

c ≥ 2αi ≥ 0 for all i ∈ {1, . . . , n}

c ≥ βj ≥ 0 for all j ∈ {1, . . . ,m}
n∑
i=1

2αiy
i +

m∑
j=1

βjv
j = 0

• Robin suggests that you can duplicate the points that you gathered with instrument 1 in
the data set, and then proceed as usual.
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3. (25 points) Are these approaches equivalent, in the sense of resulting in the same separator?
For each pair, show that they are equivalent or not.

Solution: We begin with deriving the dual form of Pat’s suggestion. Using Lagrange
multipliers, the new objective function is

L(θ, θ0, a, b, e, f) =
1

2
||θ||2 + 2c

n∑
i=1

ξi + c

m∑
j=1

ζj −

n∑
i=1

ai

[
yi(θ · xi + θ0) − 1+ ξi

]
−

m∑
i=1

bi

[
vi(θ · ui + θ0) − 1+ ζi

]
−

n∑
i=1

eiξi −

m∑
i=1

fiζi

subject to

ai ≥ 0, bi ≥ 0, ei ≥ 0, fi ≥ 0
yi(θ · xi + θ0) − 1+ ξi ≥ 0
vi(θ · ui + θ0) − 1+ ζi ≥ 0
eiξi = 0, fiζi = 0

ai

[
yi(θ · xi + θ0) − 1+ ξi

]
= 0

bi

[
vi(θ · ui + θ0) − 1+ ζi

]
= 0

Optimizing θ, θ0, ξi, ζi

∂L

∂θ
= 0 =⇒ θ =

n∑
i=1

aiy
ixi +

m∑
i=1

biv
iui (1)

∂L

∂θ0
= 0 =⇒ n∑

i=1

aiy
i +

m∑
i=1

biv
i = 0 (2)

∂L

∂ξi
= 0 =⇒ ai = 2c− ei (3)

∂L

∂ζi
= 0 =⇒ bi = c− fi (4)

Since ai ≥ 0, bi ≥ 0, ei ≥ 0, fi ≥ 0, Eq. 3 and 4 become

2c ≥ ai ≥ 0
c ≥ bi ≥ 0

Use these results to eliminate θ, θ0, ξi, ζi from the Lagrangian, we obtain the dual La-
grangian in the form

L̄(a, b) =

n∑
i=1

ai +

m∑
i=1

bi −
1

2

n∑
i=1

n∑
j=1

aiajy
iyj(xi · xj) −

n∑
i=1

m∑
j=1

aibjy
ivj(xi · uj)

−
1

2

m∑
i=1

m∑
j=1

bibjv
ivj(ui · uj)
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with constraints

2c ≥ ai ≥ 0
c ≥ bi ≥ 0
n∑
i=1

aiy
i +

m∑
i=1

biv
i = 0

Let αi = ai
4 , βi = bi, the dual form can be rewritten as

max
α,β

n∑
i=1

4αi +

m∑
i=1

βi − 8

n∑
i=1

n∑
j=1

αiαjy
iyj(xi · xj) − 4

n∑
i=1

m∑
j=1

αiβjy
ivj(xi · uj)

−
1

2

m∑
i=1

m∑
j=1

βiβjv
ivj(ui · uj)

subject to

c ≥ 2αi ≥ 0
c ≥ βi ≥ 0
n∑
i=1

4αiy
i +

m∑
i=1

βiv
i = 0

It is clear that Dana’s suggestion is different from Pat’s. Therefore, Dana 6= Pat.

If we use the same slack variable for points after duplicating, Robin’s suggestion can be
written as

min
θ,ξ,ζ

1

2
||θ||2 + c

n∑
i=1

ξi + c

2n∑
i=n+1

ξi + c

m∑
j=1

ζj

subject to

yi(θ · xi + θ0) ≥ 1− ξi for all i ∈ {1, . . . , 2n}

vj(θ · uj + θ0) ≥ 1− ζj for all j ∈ {1, . . . ,m}

ξi ≥ 0 for all i ∈ {1, . . . , 2n}

ζj ≥ 0 for all j ∈ {1, . . . ,m}

which is essentially equal to Pat’s suggestion. Therefore, Robin = Pat.

In summary, we have Pat 6= Dana, Robin = Pat and Dana 6= Robin.
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4 Error bounds (15 points)

You have a data set of size n drawn from some data distribution PD. You consider two hy-
pothesis classes H1 ⊂ H2, with VC dimensions h1 and h2. You find f1 that minimizes Rn on
H1 with empirical risk er1 and f2 that minimizes Rn onH2 with empirical risk er2.

4. (a) (5 points) Describe a theoretical method for selecting a hypothesis and under what cir-
cumstances it would select f1.

Solution: Here we are trying to select a hypothesis from a nested set of hypothesis
classes. We can apply the structural risk minimization (SRM) framework for this
problem. In particular, we find and compare the bounds for the risk of fi (i = 1, 2):

R(fi) ≤ eri +

√
hi(log(2nhi

) + 1) + log(4δ)

n

SRM selects the fi with the lowest value of the bound. In particular, f1 will be selected
if its bound is less than that of f2. Note that we used the bound that involves the VC
dimension hi. A common error was to use the bound for finite hypothesis classes.

(b) (5 points) Describe an empirical method for selecting a hypothesis and under what cir-
cumstances it would select f1.

Solution: By ‘empirical’ we mean ‘experimental’ or ‘in practice’. There are many
reasonable and acceptable schemes to select a hypothesis. If we assumed access to
more data, we can test hypothesis under new data and pick the one that performed
the best (under 0-1 loss, or some other loss). If we did not have more data, we can also
use cross validation in a number of ways. The essential operation is to split the given
data into a training set and holdout set. We learn parameters with training set data,
and evaluate the resulting hypotheses on the holdout set. This can either be used to
decide the best hypothesis directly, or to decide the suitable hypothesis class and then
choose the best hypothesis from within that class using all the given data. This can be
extended to k-fold or leave-one-out CV if we repeat it on different partitions on the
given data. f1 is chosen if it performs the best on new/held out data.
Any similar approach is acceptable, as long as it was briefly explained. A common
error was to say choose the hypothesis with lowest training error; this is not advisable
in practice due to overfitting. Also, note that in our problem this always chooses f2
(and hence f1 only if they are the same hypothesis).
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(c) (5 points) You have a competitor who was given a different data set of size n, also drawn
from PD. Imagine that you and your competitor are both limited to hypotheses in H1.
Give a bound on how much better the generalization performance of your competitor’s
best hypothesis might be than your f1, so that the bound will hold with probability at
least 0.9.

Solution: We derive a bound similar to that in HW3 (Q11). Let our hypothesis be f1,
and the competitor’s be fc. Then:

R(f1) − R(fc) = [R(f1) − Rn(f1)] + [Rn(f1) − R(fc)]

So far the above holds regardless of which training set Rn is evaluated on. Ultimately
this will not matter because the bounds we use work as long as the training sets come
from the same distribution PD, which is the case here. However, if we evaluate it on
our data set, we can take advantage of the fact that f1 is the empirical risk minimizer
for our data set, so Rn(f1) ≤ Rn(fc). Applying this to the second Rn(f1) term above:

R(f1) − R(fc) ≤ [R(f1) − Rn(f1)] + [Rn(fc) − R(fc)] ≤ 2

√
h1(log(2nh1

) + 1) + log(4/0.1)

n

with probability at least (1− 0.1) = 0.9. (We applied the usual bound twice.)
One common error was trying to apply the bounds directly to compare f1 and fc. This
is incorrect because the bound only holds if the same hypothesis is involved. (The
Chernoff bound applies when comparing an empirical estimate with its expectation.)
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