
6.867 Machine learning

Mid-term exam

October 13, 2006

(2 points) Your name and MIT ID:

Problem 1

Suppose we are trying to solve an active learning problem, where the possible inputs you
can select form a discrete set. Specifically, we have a set of N unlabeled documents,
Φ1, . . . , ΦN , where each document is represented as a binary feature fector

Φ = [φ1, . . . , φm]T

and φi = 1 if word i appears in the document and zero otherwise. Our goal is to quickly label
these N documents with 0/1 labels. We can request a label for any of the N documents,
preferably as few as possible. We also have a small set of n already labeled documents to
get us started.

We use a logistic regression model to solve the classification task:

P (y = 1|Φ,w) = g(wT Φ )

where g(·) is the logistic function. Note that we do not include the bias term.

1. (T/F – 2 points) Any word that appears in all the N documents
would effectively provide a bias term for the logistic regression model.

2. (T/F – 2 points) Any word that appears only in the available n la-
beled documents used for initially training the logistic regression model,
would serve equally well as a bias term.
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3. Having trained the logistic regression model on the basis of the n labeled documents,
obtaining ŵn, we’d like to request additional labeled documents. For this, we will
use the following measure of uncertainty in our predictions:

Ey∼pt|y − pt| = pt|1− pt|+ (1− pt)|0− pt| = 2pt(1− pt)

where pt = P (y = 1|Φt, ŵn), our current prediction of the probability that y = 1 for
the tth unlabeled document Φt.

a) (4 points) We would request the label for the document/query point Φt that
has

( ) the smallest value of 2pt(1− pt)

( ) the largest value of 2pt(1− pt)

( ) an intermediate value of 2pt(1− pt)

Briefly explain the rationale behind the selection criterion that you chose.

b) (2 points) Sketch ŵn in Figure 1.1. Write down the equation, expressed solely
in terms of Φ and ŵn, that Φ has to satisfy for it to lie exactly on the decision
boundary:
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c) (4 points) In figure 1.2, circle the next point we would select according to the
criterion. Draw two decision boundaries that would result from incorporating
the new point in the training set, labeling the boundaries as y = 1 and y = 0,
depending on the outcome of the query.

+
o

Φt = [φt1, . . . , φtm]T

+
o

Figure 1.1. Two labeled points, unlabeled
points, and the decision boundary. The
point “+” corresponds to y = 1.

Figure 1.2. Two labeled points, unlabeled
points, and the decision boundary. The
point “+” corresponds to y = 1.

4. (T/F – 2 points) The criterion we have used here for active learning
guarantees that the measure of uncertainty about the labels of the
unlabeled points will decrease monotonically for each point after each
query.

Problem 2

Consider a regression problem where the two dimensional input points x = [x1, x2]
T are

constrained to lie within the unit square: xi ∈ [−1, 1], i = 1, 2. The training and test input
points x are sampled uniformly at random within the unit square. The target outputs y
are governed by the following model

y ∼ N(x3
1x

5
2 − 10x1x2 + 7x2

1 + 5x2 − 3, 1)

In other words, the outputs are normally distributed with mean given by

x3
1x

5
2 − 10x1x2 + 7x2

1 + 5x2 − 3

and variance 1.

We learn to predict y given x using linear regression models with 1st through 10th order
polynomial features. The models are nested in the sense that the higher order models will
include all the lower order features. The estimation criterion is the mean squared error.
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We first train a 1st, 2nd, 8th, and 10th order model using n = 20 training points, and then
test the predictions on a large number of independently sampled points.

1. (6 points) Select all the appropriate model(s) for each column. If you think the
highest, or lowest, error would be shared among several models, be sure to list all
models.

Lowest test error
Lowest training error Highest training error (typically)

1st order ( ) ( )
2nd order ( ) ( ) ( )
8th order ( ) ( )
10th order ( ) ( ) ( )

Briefly explain your selection in the last column, i.e., the model you would expect to
have the lowest test error:

2. (6 points) We now train the polynomial regression models using n = 106 (one
million) training points. Again select the appropriate model(s) for each column. If
you think the highest, or lowest, error would be shared among several models, be sure
to list all models.

Lowest structural error Highest approx. error Lowest test error
1st order ( ) ( ) ( )
2nd order ( ) ( ) ( )
8th order ( ) ( ) ( )
10th order ( ) ( ) ( )

3. (T/F – 2 points) The approximation error of a polynomial regression
model depends on the number of training points.

4. (T/F – 2 points) The structural error of a polynomial regression
model depends on the number of training points.
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Problem 3

We consider here linear and non-linear support vector machines (SVM) of the form:

min w2
1/2 subject to yi(w1xi + w0)− 1 ≥ 0, i = 1, . . . , n, or

min wTw/2 subject to yi(w
T Φi + w0)− 1 ≥ 0, i = 1, . . . , n

where Φi is a feature vector constructed from the corresponding real valued input xi. We
wish to compare the simple linear SVM classifier (w1x + w0) and the non-linear classifier
(wT Φ + w0), where Φ = [x, x2]T .

1. (3 points) Provide three input points x1, x2, and x3 and their associated ±1 labels
such that they cannot be separated with the simple linear classifier, but are separable
by the non-linear classifer with Φ = [x, x2]T . You may find Figure 3.1. helpful in
answering this question.

2. (3 points) In the figure below (Figure 3.1), mark your three points x1, x2, and x3 as
points in the feature space with their associated labels. Draw the decision boundary
of the non-linear SVM classifier with Φ = [x, x2]T that separates the points.
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Figure 3.1. Feature space.
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3. (3 points) Consider two labeled points (x = 1, y = 1) and (x = 3, y = −1). Is the
margin we attain using feature vectors Φ = [x, x2]T

( ) greater

( ) equal

( ) smaller

than the margin resulting from using the input x directly?

4. (2 points) In general, is the margin we would attain using scaled feature vectors
Φ = [2x, 2x2]T

( ) greater

( ) equal

( ) smaller

( ) any of the above

in comparison to the margin resulting from using Φ = [x, x2]T ?

5. (T/F – 2 points) The values of the margins obtained by two different
kernels K(x, x′) and K̃(x, x′) on the same training set do not tells us
which classifier will perform better on the test set.
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Problem 4

We consider here generative and discriminative approaches for solving the classification
problem illustrated in Figure 4.1. Specifically, we will use a mixture of Gaussians model
and regularized logistic regression models.
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Figure 4.1. Labeled training set, where “+” corresponds to class y = 1.

1. We will first estimate a mixture of Gaussians model, one Gaussian per class, with the
constraint that the covariance matrices are identity matrices. The mixing proportions
(class frequencies) and the means of the two Gaussians are free parameters.

a) (3 points) Plot the maximum likelihood estimates of the means of the two class
conditional Gaussians in Figure 4.1. Mark the means as points “x” and label
them “0” and “1” according to the class.

b) (2 points) Draw the decision boundary in the same figure.
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2. We have also trained regularized linear logistic regression models

P (y = 1|x,w) = g(w0 + w1x1 + w2x2)

for the same data. The regularization penalties, used in penalized conditional log-
likelihood estimation, were −Cw2

i , where i = 0, 1, 2. In other words, only one of the
parameters were regularized in each case. Based on the data in Figure 4.1, we gen-
erated three plots, one for each regularized parameter, of the number of misclassified
training points as a function of C (Figure 4.2). The three plots are not identified
with the corresponding parameters, however. Please assign the “top”, “middle”, and
“bottom” plots to the correct parameter, w0, w1, or w2, the parameter that was
regularized in the plot. Provide a brief justification for each assignment.

• (3 points) “top” = ( )

• (3 points) “middle” = ( )

• (3 points) “bottom” = ( )
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Figure 4.1 Labeled training set Figure 4.2. Training errors as a function
(reproduced here for clarity) of regularization penalty
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Additional set of figures

+
o

Φt = [φt1, . . . , φtm]T

+
o

Figure 1.1. Two labeled points, unlabeled
points, and the decision boundary. The
point “+” corresponds to y = 1.

Figure 1.2. Two labeled points, unlabeled
points, and the decision boundary. The
point “+” corresponds to y = 1.
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Figure 3.1. Feature space.
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Figure 4.1. Labeled training set, where “+” corresponds to class y = 1.
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Figure 4.1 Labeled training set Figure 4.2. Training errors as a function
(reproduced here for clarity) of regularization penalty
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