
6.867 Machine learning

Mid-term exam

October 18, 2006

(2 points) Your name and MIT ID:

1



a)
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

x

y

b)
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

x

y

c)
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

x

y

d)
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

x

y

Figure 1: Plots of linear regression results with different types of regularization

Problem 1

Figure 1 plots linear regression results on the basis of only three data points. We used
various types of regularization to obtain the plots (see below) but got confused about
which plot corresponds to which regularization method. Please assign each plot to one
(and only one) of the following regularization method.
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1.1 (2 points)
∑3

t=1(yt − θxt − θ0)
2 + λθ2 where λ = 1

1.2 (4 points)
∑3

t=1(yt − θxt − θ0)
2 + λθ2 where λ = 10

Briefly explain why

1.3 (2 points)
∑3

t=1(yt − θxt − θ0)
2 + λ(θ2 + θ2

0) where λ = 1

1.4 (2 points)
∑3

t=1(yt − θxt − θ0)
2 + λ(θ2 + θ2

0) where λ = 10

Problem 2

We are trying to solve a regression problem with kernel linear regression models using
different degree polynomial kernels. Our regression problem is a little unusual in the sense
that the training input points are 1-dimensional and fixed, x1, . . . , xn (all distinct). Our
task is to find the underlying function values at the same points and specifically at x1.
The underlying function is f ∗(x) = E{y|x}, where the expectation is over the underlying
distribution (pdf) p(y|x) governing how y depends probabilistically on x. We have no
knowledge of f ∗(x) or p(y|x) beyond real valued training responses y1, . . . , yn, sampled
from p(y|x) at the training inputs.

Let’s assume that our linear regression model (not in the kernel form) is given by

f(x; θ, θ0) = θT φ(x) + θ0

where φ(x) is the feature vector corresponding to our choice of the kernel function. We will
estimate the parameter θ and θ0 (or α and θ0 in a kernel form) by minimizing the mean
squared prediction error without regularization:

1

n

n∑
i=1

(
yi − f(xi; θ, θ0)

)2
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We will then use f(x1; θ̂, θ̂0) as an estimator of f ∗(x1). In other words, all we care about is
the prediction at x1. Assume that n = 3.

2.1 (3 points) Write down an expression for the bias of this estimator. Your expression
should involve just f(x1; θ̂, θ̂0), E{·}, and f ∗(x1), as well as an explanation for what the
expectation is over.

2.2 (2 points) Which degree polynomial kernel would we need to get zero
training error, i.e., fit the three training responses perfectly?

2.3 (2 points) Would we get an unbiased estimator at x1 if we achieve
zero training error (Y/N)?

2.4 (3 points) Suppose the noise variance at x1 is E{(y1 − f ∗(x1))
2} = σ2. What is the

variance of our “zero training error estimator”, again at x1?

Problem 3

We are trying to solve a classification problem with support vector machines. In our prob-
lem there are only a few positive training examples and we are certain that they are classified
correctly. We also have a large number of negative training examples, some of which may
be misclassified. We’d like to modify the basic dual form of the SVM optimization problem,

(1) minimize
n∑

i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi,xj)

(2) subject to αi ≥ 0,
n∑

i=1

αiyi = 0

to better solve this type of problem. We would like to ensure that we won’t misclassify any
of the positive examples but could misclassify some of the negative examples. We believe
you have to introduce additional parameter(s) (or constants for the purpose of solving the
quadratic programming problem) in order to achieve this.
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In your solution, please use I+ to index positively labeled examples (yi = +1) and I− for
negative examples (yi = −1). In other words, i ∈ I+ means that yi = +1, and |I+| is the
number of positive examples.

3.1 (6 points) Your solution must be in the dual form. You can refer to (1) and (2) above.

Minimize

subject to

3.2 (6 points) Check (Y/N) which of the following alternative criteria would work for opti-
mizing your new parameters. We have underlined any differences between the alternatives.

( ) We train your SVM algorithm |I+| times, each time leaving out one of the positive
examples, and testing the classifier on the left out example. The parameter(s) are set
to minimize the resulting number of misclassified examples.

( ) We train your SVM algorithm |I−| times, each time leaving out one of the negative
examples, and testing the classifier on the left out example. The parameter(s) are set
to minimize the resulting number of misclassified examples.

Briefly explain why this would or would not work:

( ) We train your SVM algorithm n times, each time leaving out one of the examples,
positive or negative, and testing the classifier on the left out example. The constant
is set to minimize the resulting number of misclassified examples.
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Figure 2: a) Points that should be separable with a normalized linear kernel. b) feature
space with the original points overlaid with their original coordinate values.

Problem 4

A student in a machine learning course claimed that the points in Figure 2a can be separated
with “almost a linear kernel”. Hard to believe, we responded, since the points are clearly
not linearly separable. But the student insisted. The “almost a linear kernel” they had in
mind was the following normalized kernel:

Knorm(x,x′) =
xTx′

‖x‖‖x′‖

4.1 (2 points) What are the feature vectors corresponding to this kernel?

4.2 (4 points) Using Figure 2b (right), graphically map the points to their new feature
representation using the figure as the feature space.

4.3 (4 points) Draw the resulting maximum margin decision boundary in the feature
space. Use the same Figure 2b (right). The student was right, the points are separable!
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4.4 (2 points) Does the value of the discriminant function corresponding
to your solution change if we scale any point, i.e., evaluate it at sx
instead of x for some s > 0? (Y/N)

4.5 (4 points) Draw the decision boundary in the original input space resulting from the
normalized linear kernel. Use Figure 2a (left).

Problem 5

There are many criteria for active learning. In particular, in the context of linear regression,
we derived such criteria by assuming that the underlying model was also linear (in the fea-
ture space). One of the resulting criteria was based on finding points where our predictions
varied the most (relative to resampled training sets from an assumed underlying model).

We will focus here on simple active learning methods for classification tasks with the
perceptron algorithm. We assume that you can only ask labels for the training examples
x1, . . . ,xn (those we don’t already have labels for). The labels are fixed once revealed so
there’s no reason to query the same point multiple times. The perceptron algorithm, in
response to mistakes, updates its parameters according to

θ ← θ + ytxt iff ytθ
Txt ≤ 0

5.1 (2 points) In our setting, would it be useful to get a label for a point
that we can classify correctly? (Y/N)

5.2 (6 points) Given the current θ we have to select which example x1, . . . ,xn would be
the most useful to label. Check all of the following criteria you believe would work as a
selection criterion. We could select the point xt with

( ) the largest norm ‖xt‖

( ) the largest value of |θTxt|

( ) the smallest value of |θTxt|

Briefly explain why your chosen criterion (criteria) would work in our active learning setting:
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Additional set of figures
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