
6.867 Machine learning

Mid-term exam

October 17, 2007

(2 points) Your name and MIT ID:
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Problem 1

Figure 1 plots SVM decision boundaries resulting from using different kernels and/or dif-
ferent slack penalties. The methods used to generate the plots are listed below but (the
absent minded) professor forgot to label them. Please assign the plots to the right method.
Oh, we also forgot to list one of the methods.

1.1 (2 points) min
1

2
‖θ‖2 + C

n∑
t=1

ξt s.t.

ξt ≥ 0, yt(θ
T xt + θ0)− 1 + ξt ≥ 0, t = 1, . . . , n

where C = 0.1.

1.2 (2 points) min
1

2
‖θ‖2 + C

n∑
t=1

ξt s.t.

ξt ≥ 0, yt(θ
T xt + θ0)− 1 + ξt ≥ 0, t = 1, . . . , n

where C = 1.

1.3 (2 points) max
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi, xj)

αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αiyi = 0

where K(x, x′) = xT x′ + (xT x′)2.

1.4 (2 points) max
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi, xj)

αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αiyi = 0

where K(x, x′) = exp(−1/2‖x− x′‖2).

1.5 (2 points) max
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi, xj)

αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αiyi = 0

where K(x, x′) = exp(−‖x−x′‖2) (only the kernel is different from 1.4)
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Figure 1: plots of SVM decision boundaries with different kernels and/or slack penalties

1.6 (4 points) Consider the linear SVM with slack penalties

min
1

2
‖θ‖2 + C

n∑
t=1

ξt s.t.

ξt ≥ 0, yt(θ
T xt + θ0)− 1 + ξt ≥ 0, t = 1, . . . , n
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Indicate which of the following statements hold as we increase the parameter C from any
starting value. Use ’Y’ for statements that will necessarily hold, ’N’ if the statement is never
true, and ’D’ if the validity of the statement depends on the situation when C increases.

( ) θ0 will not increase

( ) ‖θ̂‖ increases

( ) ‖θ̂‖ will not decrease

( ) more points will be misclassified

( ) the geometric margin will not increase

Problem 2

We are interested in modeling the relationship between real inputs x and responses y. We
will use a simple linear regression model for this purpose. So, according to our model

y = θ1x + θ0 + ε = βT

[
x
1

]
+ ε

where β = [θ1, θ0]
T and ε ∼ N(0, σ2). We were a bit unlucky in choosing our model,

however, since the inputs and responses are actually related quadratically:

y = θ∗2x
2 + θ∗1x + θ∗0 + ε = β∗T

 x2

x
1

 + ε

where β∗ = [θ∗2, θ
∗
1, θ

∗
0]

T and ε ∼ N(0, σ∗2). In other words, we are modeling the underlying
and unknown quadratic relation with a linear model.

In a context of a specific training set of inputs x1, . . . , xn and responses y1, . . . , yn, we define

Xn =

 x1 1
· · · · · ·
xn 1

 , X∗
n =

 x2
1 x1 1

· · · · · · · · ·
x2

n xn 1

 , y =

 y1

· · ·
yn


The least squares estimates for the parameters in our model are then given by

β̂ = (XT
n Xn)−1XT

n y, β̂
T

= yT Xn(XT
n Xn)−1
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2.1 (2 points) What is the predicted response ŷ(x) from our model at a new point x?

2.2 (3 points) Write down an expression for the bias of ŷ(x) at a fixed input x when
the expectation is taken over the possible responses y1, . . . , yn for fixed training inputs
x1, . . . , xn. (the final expression should not involve expectations)

2.3 (4 points) Specify a possible training set with five points in Figure 2.3
that illustrates why the predicted responses cannot be expected to be
unbiased for all x in our setting. Indicate a rough value of σ∗ that you
are assuming for your sampled training data.
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Figure 2.3: Your answer training set for problem 2.3.
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2.4 (3 points) Which of the following input selection criteria are likely to work in our
setting in terms of leading to the best linear approximation? Assume that x ∈ [−1, 1].

a) ( ) Randomly select each x from within the interval [−1, 1]

b) ( ) Sequentially select points so as to minimize the trace of (XT
n Xn)−1

c) ( ) Select the next input to be x that maximizes the mean squared prediction error

E{(ŷ(x)− y∗(x))2 |x}

(3 points) Briefly justify your answer to part c)

Problem 3
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Figure 3: a) Kernel K(x, 0) for problem 3. b) data for problems 3.2 and 3.3.

Consider solving a 1-dimensional classification problem with SVMs and the kernel

K(x, x′) = (1− |x− x′|)+ = max {0, 1− |x− x′|}

Figure 3a) illustrates this kernel K(x, 0) as a function of x. The feature “vectors” corre-
sponding to this kernel are actually functions φ(· ; x) such that

K(x, x′) =

∫ ∞

−∞
φ(z ; x)φ(z ; x′)dz
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3.1 (2 points) What is the value of ‖φ(· ; x)‖ at x = 0?

3.2 (3 points) What is the dual objective function for training SVMs (no slack) when we
do not include the offset term θ0 in the classifier? We maximize

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi, xj)

subject to ?

3.3 (3 points) What is the value of the discriminant function∑
i∈n α̂iyiK(x, xi) on the test point in Figure 3b)? Assume that α̂i

are estimated on the basis of the training data in the figure without an
offset parameter.

3.4 (2 points) Would the test point in Figure 3b) become a support vector
if it were included in the training set?

3.5 (2 points) We can improve the kernel function a bit by introducing a width parameter
σ such that

K(x, x′) = (1− |x− x′|/σ)+

What would be a reasonable method for choosing σ?
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3.6 (4 points) Would your method solve the problem identified in 3.3? Briefly explain
why or why not.

3.7 (4 points) It is sometimes useful to incorporate test inputs (if available) in some
manner in training the classifier. How could you include the test points in selecting the
kernel width parameter σ?

Problem 4

We consider here a logistic regression model for classifying midterm exams. The class labels
indicate whether the exam is good (y = 1) or bad (y = −1). The probabilities over the
labels, given the exam x, are assigned according to

P (y = 1|x, θ) = g( θT φ(x) )

where g(z) = (1 + e−z)−1 is the logistic function. The feature vectors simply indicate
whether a word w appears in the exam x:

φw(x) =

{
1, if x contains word w
0, otherwise

There are only two words we are interested in so that w ∈ {svm, kernel}. The exams are
first turned into all lowercase letters before evaluating the corresponding feature vectors.

We would like to train the logistic regression model based on past exams x1, . . . , xn and
labels y1, . . . , yn (from student ratings) by maximizing the penalized log-likelihood of the
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labels:

n∑
t=1

log P (yt|xt, θ)−
λ

2
‖θ‖2 =

n∑
t=1

log g( ytθ
T φ(xt) )− λ

2
‖θ‖2

The problem is a bit hard to solve well, however, since we only have three labeled exams:

φ(x1) = [1, 1]T y1 = 1
φ(x2) = [1, 0]T y2 = −1
φ(x3) = [0, 0]T y3 = 1

4.1 (2 points) Does it matter how the third exam is labeled? (Y/N)

4.2 (2 points) What would be the value of the resulting training log-
likelihood be if we set λ = 0?

4.3 (2 points) The logistic regression model associates class probabilities
with each point. Does the effect of the regularization penalty on these
probabilities depend on the norms ‖φ(xt)‖? (Y/N)

4.4 (4 points) For large λ (strong regularization), the log-likelihood terms will behave as
linear functions of θ (see Figure 4).

log g( ytθ
T φ(xt) ) ≈ 1

2
ytθ

T φ(xt)

In this regime (large λ), draw in Figure 4 how θ̂ behaves as a function of λ. In other
words, draw θ̂ (at any scale) and its direction of change with increasing λ. We will classify
correctly only one of the training examples. Why?

4.5 (3 points) For general λ > 0, will the resulting classification decisions
(predicted labels) for new exams depend on the value of λ? (Y/N)
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Figure 4: Points y1φ(x1) and y2φ(x2) along with the contours of the regularization term
‖θ‖.
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Additional set of figures
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Figure 1: plots of SVM decision boundaries with different kernels and/or slack penalties
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Figure 3: a) Kernel K(x, 0) for problem 3. b) data for problems 3.2 and 3.3.
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Figure 4: Points y1φ(x1) and y2φ(x2) along with the contours of the regularization term
‖θ‖.
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