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Problem 1

Assume that we have a training set consisting of examples (xi, yi) for i = 1 . . . n. The task
is a binary classification problem so each label yi is either −1 or +1.

In training a hard margin SVM with bias, the final classifer is ŷ = sign(θ̂ ·x+ θ̂0) where
the parameters θ̂ and θ̂0 solve the following primal optimization problem:

Primal: find θ, θ0 that
minimize 1

2
||θ||2

subject to yi (θ · xi + θ0) ≥ 1, i = 1, . . . , n

Dual: find αi that
maximize

∑n
i=1 αi − 1

2

∑n
i,j=1 αiαjyiyjxi · xj

subject to αi ≥ 0,
∑n

i=1 αiyi = 0

We have also included the dual for your reference.

1.1 (5 points) Assume that n = 4, and that x1 = (1, 1)T , x2 = (2, 2)T , x3 = (−1.5,−1.5)T ,
and x4 = (4, 4)T . We now train an SVM with bias, and in addition with slack variables.
Show that for any labelling of the four training examples, the optimal parameter vector
θ̂ = (θ̂1, θ̂2)

T has the property that θ̂1 = θ̂2.

The SVM solution is of the form θ =
∑n

i=1 αiyixi. Since all the points have xi1 = xi2,
this property has to hold for θ has well.

1.2 (5 points) Consider the SMO algorithm applied to training a hard-margin SVM
with slack variables and a bias variable. Initially all dual variables αi for i = 1 . . . n are
set to 0. At each step in the SMO algorithm, two variables αi and αj are chosen such that
yi = yj; these two variables are optimized in the usual way for SMO. What solution will
you find with this constrained SMO procedure? Give a justification for your answer.
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Consider first modifying αi and αj and set all the other αk’s to zero. The dual
constraint

∑n
i=1 αiyi = 0 then requirers that yiαi + yjαj = 0 since the other αk’s are

zero. When the labels agree, this implies that αi + αj = 0. Since α’s are positive,
we can only have αi = αj = 0. As a result, the SMO algorithm won’t change any
α’s from zero.

1.3 (5 points) Consider training an SVM with slack variables, but with no bias variable.
The kernel used is K(x, z); it has the property that for any two points xi and xj in the
training set, −1 < K(xi, xj) < 1. K(xi, xi) < 1 as well. There are n points in the training
set. Show that if the slack-variable constant C is chosen such that C < 1

n−1
, then all dual

variables αi are non-zero (i.e., all points in the training set become support vectors).

In the absence of bias, θ · φ(xi) =
∑n

j=1 αjyjφ(xj) · φ(xi) =
∑n

j=1 αjyjK(xj, xi). A
point has to be a support vector unless

yi(
n∑

j=1

αjyjK(xj, xi)) ≥ 1

holds with the help of the other examples, i.e., with αi = 0. We will show that this
cannot happen. Assuming αi = 0 (not a support vector), then

yi(
n∑

j 6=i

αjyjK(xj, xi)) ≤
n∑

j 6=i

αj|K(xj, xi)| ≤
n∑

j 6=i

αj < (n− 1)C

So, if C < 1/(n− 1), we cannot satisfy the constraint without αi > 0.

1.4 (5 points) Consider the kernel

K(x, z) = x · z + 4 (x · z)2

where the vectors x and z are 2-dimensional. This kernel is equal to an inner product
φ(x) · φ(z) for some definition of φ. What is the function φ?
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(x · z)2 = (x1z1)
2 + 2(x1x2)(z1z2) + (x2z2)

2 so that

K(x, z) = x1z1 + x2z2 + 4(x1z1)
2 + 8(x1x2)(z1z2) + 4(x2z2)

2

= [x1, x2, 2x2
1, 2
√

2x1x2, 2x2
2] · [z1, z2, 2z2

1 , 2
√

2z1z2, 2z2
2 ]

Thus φ(x) = [x1, x2, 2x2
1, 2
√

2x1x2, 2x2
2].

Problem 2

As you may have suspected, the course staff enjoys writing endless varieties of SVM-like
training methods. It is time to sort them out a bit. Figure 1 shows both decision boundaries
and support vectors (circled) from different SVM-like training methods. In all cases, the
boundaries correspond to θ̂ · x+ θ̂0 = 0, where θ̂0 = 0 unless θ0 is included in the training
method. J+ and J− index positive (’x’) and negative (’o’) training examples, respectively.
There are five methods and four figures. Please assign each method to all the figures that
they could potentially produce (there may be multiple choices).

2.1 (2 points) min
1

2
‖θ‖2 + C

n∑
t=1

ξt s.t.

ξt ≥ 0, yt(θ
Txt + θ0) ≥ 1− ξt t = 1, . . . , n

where C =∞.

b

This is the hard margin two-class formulation with offset. We have to
have positive and negative support vectors. Only b is possible.

2.2 (2 points) min
1

2
‖θ‖2 + C

n∑
t=1

ξt s.t.

ξt ≥ 0, yt(θ
Txt) ≥ 1− ξt, t = 1, . . . , n

where C =∞.

a

This is the hard margin two-class method without offset. The boundary
has to go through origin and has to classify the examples correctly. Only
a is possible.
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2.3 (2 points) min
1

2
‖θ‖2 + C

n∑
t=1

ξt s.t.

ξt ≥ 0, yt(θ
Txt) ≥ 1− ξt, t = 1, . . . , n

where C = 1.

a,d

Two-class version with slack and without offset. The boundary has
to go through the origin though permits margin violations. However,
any example that violates the margin constraint is necessarily a support
vector. Depending on the value of C relative to the scale in the figures,
only a and d are possible.

2.4 (2 points) min
1

2
‖θ‖2 + C+

∑
t∈J+

ξt + C−
∑
t∈J−

ξt s.t.

ξt ≥ 0, yt(θ
Txt) ≥ 1− ξt, t = 1, . . . , n

where C+ = 1 and C− = 0.

a,c,(d)

This is a soft margin 1-class method. The boundary has to go through
origin. Since C− = 0, the method pays only attention to the positive
examples (the constraints for negative examples can be violated without
cost). Slack is included so margins for positive examples can be violated
depending on the value of C+. a and c are possible. d accepted together
with a and c if one views the constraints for negative examples as “tight”
due to freely setting the corresponding slack variables.

2.5 (2 points) min
1

2
‖θ‖2 + C+

∑
t∈J+

ξt + C−
∑
t∈J−

ξt s.t.

ξt ≥ 0, yt(θ
Txt) ≥ 1− ξt, t = 1, . . . , n

where C+ =∞ and C− = 0.

a

This is hard margin 1-class method. Only a is possible.
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Figure 1, problem 2: plots of θ̂ ·x+ θ̂0 = 0 for different training methods along
with the support vectors. Points labeled +1 are in blue, points labeled −1 are
in red. The line θ̂ · x+ θ̂0 = 0 is shown in bold; in addition we show the lines
θ̂ · x + θ̂0 = −1 and θ̂ · x + θ̂0 = 1 in non-bold. Support vectors have bold
circles surrounding them.
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Problem 3

3.1 (6 points) Consider a three-class classification problem shown in the figure below
(left figure). Design an output code matrix R for linear classifiers such that a) each binary
subtask is linearly separable as far as the training set is concerned, and b) the multi-class
classifier has zero training error in the sense that the predictions

ŷi = argmaxy=1,2,3

{
k∑

j=1

R(y, j)h(xi; θj)

}

are correct for all the training points in the figure. k is your choice of the number of
columns in the matrix. Here h(xi; θj) = sign(θj · xi + θj0) denotes the binary output from
a linear classifier corresponding to task j in the output code. Some of the columns of R
below may be left empty as they may not be needed.

y = 1
y = 2
y = 3

 (+1) (−1) ( ) ( ) ( ) ( )
(−1) (−1) ( ) ( ) ( ) ( )
(−1) (+1) ( ) ( ) ( ) ( )

 = R

The multi-class classifier is correct if the binary classifiers do not make
errors (see figure on the left) and the rows of the output code are dis-
tinct.
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3.2 (points 4) In order for the output code to work well for test examples, we would
like the corresponding binary classifiers to generalize well. Consider 1 versus {2 and 3}
classification task in the figure (right side). We will consider two sets of classifiers to solve
this task:

H1: h1(x; θ) = sign(θ · x+ θ0) with adjustable parameters θ and θ0.

H2: h2(x; θ) = sign(‖x− µ‖ − 2) with adjustable parameters µ.

What are the VC-dimensions of these two sets of classifiers H1 and H2 in two dimensions?

H1 is the set of linear classifiers in 2-dim so its VC-dimension is 3. H2 is the set of
discs in 2-dimensions where the inside of each radius 2 disc is classified as negative
and positive outside. A set of three points in general position, provided that they are
close enough together, can be shattered by this set. VC-dimension of H2 is indeed 3.

3.3 (points 3) We trained both of above classifiers based on the data in the figure. The
resulting decision boundaries are also shown in the figure. Based on the VC dimension of
the two classifiers, which classifier would you expect to generalize better? Briefly justify
your answer.

The two sets of classifiers have the same VC-dimension. From the figure, both of
them also have zero training error. In terms of guarantees, we would expect them to
generalize similarly.
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3.4 (points 8) Next, we’ll consider a variant of the perceptron algorithm, for a 3-class
problem (each label y takes a value of 1, 2, or 3). The training set consists of n examples
(xi, yi) for i = 1 . . . n, where xi ∈ Rd, and yi ∈ {1, 2, 3}. The following figure shows the
algorithm:

Initialization: for y ∈ {1, 2, 3}, set θy = 0.

Algorithm:
Repeat until convergence:

• For i = 1 . . . n:

– Set z = arg maxy∈{1,2,3} θy · xi

– If z 6= yi:

∗ θyi
= θyi

+ xi

∗ θz = θz − xi

Classification function on a test point x:

f(x) = arg max
y∈{1,2,3}

θy · x

Question: We’d like to derive a kernel version of this perceptron algorithm. Assume the
kernel we will use is K(x, z). Complete the algorithm below to give a kernelized form of
the perceptron algorithm shown above.
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Initialization: for y ∈ {1, 2, 3}, for i = 1 . . . n, set αi,y = 0

Algorithm:

Repeat until convergence:

• For i = 1 . . . n:

– Set z = arg maxy∈{1,2,3}
∑n

j=1 αj,yK(xi, xj)

– If z 6= yi:

∗ αi,yi
= αi,yi

+ 1

∗ αi,z = αi,z − 1

Classification function on a test point x:

f(x) = arg max
y∈{1,2,3}

n∑
i=1

αi,yK(x, xi)
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Problem 4

One evening we thought we had come up with a great machine learning approach to pre-
dicting movie ratings. The idea was to base the predictions solely on positive training
examples, movies we already know we like (y = +1), and simply ignore (as far as the
training is concerned) all the negative examples (y = −1). Assume movies are represented
by vectors x1, . . . , xm, where xj ∈ Rd. We created these vectors from movie descriptions
(automatically, of course).

Our primal SVM optimization problem, written only for positive examples without offset,
is given by

min
1

2
‖θ‖2 subject to θ · xj ≥ 1, j ∈ J+ (1)

where J+ ⊂ {1, . . . ,m} indexes our positive training examples (movies we already know
we like).

4.1 (3 points) What would the solution θ̂ be if we included an offset parameter θ0, i.e.,
changed the constraints to be θ · xj + θ0 ≥ 1?

The solution would be θ̂ = 0 since the constraints could always be satisfied by setting
the offset parameter appropriately (θ0 = 1 would suffice).

4.2 (2 points) Assume we can find the solution θ̂ to the problem described
in Eq.(1). What is the value of minj∈J+(θ̂ · xj)?

1

4.3 (3 points) Suppose again that the solution θ̂ to Eq.(1) exists. Based on this θ̂, we
predict labels for movies x (new and training examples) according to

ŷ =

{
1, if (θ̂ · x) ≥ minj∈J+(θ̂ · xj)− ε
−1, otherwise

for some small ε > 0. Would this decision rule ensure that all the training movies, positive
and negative, are classified correctly? Briefly justify your answer.
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The estimation method only pays attention to the positive examples. We do not
know where the negative points lie and therefore could not guarantee which side of
the boundary they would fall.

4.4 (2 points) The problem might sometimes get a little challenging. The figure below
(see left, below question 4.5) shows the movie data, positive (’x’) and negative (’o’) ex-
amples, when movies are represented by real numbers xj. Briefly describe why we cannot
solve Eq.(1) in this case.

We cannot satisfy the constraints for the positive examples. For example, consider
two positive examples in the figure, x = −2 and x = +2. We cannot satisfy θ(−2) ≥
1 and θ(+2) ≥ 1 at the same time.

4.5 (6 points) We will apply the algorithm described in Eq.(1) with a feature mapping,
i.e., we replace one dimensional x with φ(x) = [ 1, |x| ]T . In the figure below (right), we
have plotted the movie data, positive (’x’) and negative (’o’), in the feature coordinates φ1

and φ2. Sketch the solution θ̂ in the feature space by drawing θ̂ · φ = 0 and θ̂ · φ− 1 = 0 in
the figure on the right.
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Movie data for problem 4.4 and 4.5. Original space (left). Feature space (right).

4.6 (2 points) Is θ̂ · φ(x) > 0 at x = −1 (Y/N)? Y

Additional set of figures
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Figure for problem 2: plots of θ̂ · x+ θ̂0 = 0 for different training methods
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New movie data for problem 4.5. Original space (left). Feature space (right).
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