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Problem 1

Consider a simple classification problem (of the kind that you could only encounter in an
exam). The training data consist of only three labeled points

(x1 = −1, y1 = 1), (x2 = 0, y2 = −1), (x3 = +1, y3 = +1)

which we will try to separate with a linear classifier through origin in the feature space. In
other words, our discriminant function is of the form θ · φ(x). The corresponding primal
and dual estimation problems are given by

Primal: Minimize
1

2
‖θ‖2 + C

3∑
i=1

ξi

subject to yi(θ · φ(xi)) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, 3

Dual: Maximize
3∑
i=1

αi −
1

2

3∑
i,j=1

αiαjyiyjK(xi, xj)

subject to 0 ≤ αi ≤ C, i = 1, 2, 3

1.1 (3 points) We decided to solve the problem in the dual using kernel K(x, x′) =
1 + |xx′| where | · | is the absolute value. What is the feature mapping φ(x) corresponding
to this kernel?

φ(x) = (1, |x|)T

1.2 3Using this kernel (feature mapping), are the three training examples
linearly separable through origin in the feature space?

Y

1.3 (4 points) Consider any pair of kernels K1(x, x
′) and K2(x, x

′) such that the training
points are linearly separable with K1(x, x

′) but not with K2(x, x
′). What happens when

we add the two and use K(x, x′) = K1(x, x
′) + K2(x, x

′)? Are the points separable now?
Briefly justify your answer.

The points are separable. By adding kernels we concatenate the corresponding
feature vectors. We can always set the parameters associated with the additional
coordinates (here corresponding to K2) to zero.
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1.4 (2 points) If we decrease the slack penalty C, the solution might not satisfy the
margin constraint for (x2 = 0, y2 = −1) without a positive slack ξ2 > 0. What does this
mean in terms of α2?

α2 = C

1.5 (4 points) Assume K(x, x′) = 1 + |xx′| and the three point training set. Express
the value of the discriminant function in the dual form for x2 = 0. If we set C < 1, do we
necessarily get a positive slack (ξ2 > 0) for this example (x2 = 0, y2 = −1)? Briefly justify
your answer.

ξ2 will be non-zero. The margin constraint for (x2 = 0, y2 = −1) without slack
requires that

y2(α1y1K(0,−1) + α2y2K(0, 0) + α3y3K(0, 1)) = −1(α1 − α2 + α3)

= α2 − α1 − α2

≥ 1

However, this constraint cannot be satisfied with 0 ≤ α2 ≤ C < 1.

Problem 2

The Perceptron algorithm is perhaps the simplest way to solve classification problems. We
also like the radial basis kernel. The kernel Perceptron algorithm with the radial basis
kernel is given by

Algorithm 1

Initialize: α1 = . . . = αn = 0

Cycle through i = 1, . . . , n until no mistakes

if yi(
n∑
j=1

αjyjK(xj, xi)) ≤ 0, then αi ← αi + 1

where K(x, x′) = exp(− 1
2σ2‖x− x′‖2), σ2 > 0.
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2.1 (4 points) Will Algorithm 1 always converge (stop updating)? Do we need any
additional conditions to ensure that it will?

If the points are distinct, the algorithm will always converge. This is because the
radial basis kernel guarantees that the problem is linearly separable with a finite
margin.

2.2 (6 points) Check all that apply

( X ) a) If the algorithm converges, it finds a solution whose margin we can calculate. This
margin depends on the order in which we cycle through the training examples

( X ) b) Suppose all the training inputs {xi}i=1,...,n are distinct. Then, for a small enough
kernel width σ, the algorithm must converge after at most n mistakes.

( X ) c) The number of mistakes that the algorithm makes (if it converges) depends on the
value of σ2

Briefly explain why you did/did not check b).

Answer 1: If σ2 is small enough, then the perceptron algorithm will potentially make
a mistake on each of the training examples. After these updates, all the points are
correctly classified (there’s no interference from other points).

Answer 2: As σ2 → 0, the margin we attain for each point is 1/
√
n. Since K(x, x) =

1, the number of mistakes can be at most 1/γ2
g = n.

Problem 3

A friend of ours claimed that she can reproduce maximum margin linear classifiers with
only access to code developed for anomaly detection. The training and testing routines she
claims are sufficient are given below.

(θ̂, ρ̂) = train(φ1, . . . , φn) : Minimize
1

2
‖θ‖2 − ρ

subject to θ · φi ≥ ρ, i = 1, . . . , n

Return θ̂, ρ̂

y = test(θ, ρ, φ) : Return +1 if θ · φ ≥ ρ else return −1
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We were a bit uncertain about her claim but decided to try anyway. Let’s start with
maximum margin linear classifiers of the form

ŷ = sign
(
θ · φ(x)

)
We have n labeled training examples: φ(x1), . . . , φ(xn) with ±1 labels y1, . . . , yn. You can
assume that the training examples can be correctly classified with some θ.

3.1 (4 points) What are the feature vectors that we should pass onto the training routine
train?

y1φ(x1), ..., ynφ(xn), i.e., we pass on the product of label and the feature vector as
positive examples.

3.2 (4 points) Let θ̂ and ρ̂ be the parameters returned by train with your choice of
training feature vectors. What are the three arguments that we should give to test such
that it would classify the test point φ(x) in the same way as the maximum margin classifier?

θ̂, 0, φ(x)

3.3 (4 points) What is the geometric margin that the maximum margin classifier achieves
on the training set? Express your answer in terms of θ̂ and ρ̂.

The margin is ρ̂/‖θ̂‖, i.e., the separating margin from origin to the “positive points”
in the anomaly detection method.

3.4 (4 points) Encouraged by this we thought that perhaps it is also possible to train a
maximum margin linear classifier with an offset parameter, ŷ = sign

(
θ · φ(x) + θ0

)
, using

just the two routines. Is this possible? Please justify your answer briefly.

No, but close. We can append the feature vectors with 1 such that φ′(x) = [φ(x); 1]
and θ′ = [θ; θd+1]. As a result, θ′ · φ′(x) = θ · φ(x) + θd+1 and we could proceed as
before with the appended feature vectors. However, the anomaly detection method
would minimize ‖θ′‖2/2 = ‖θ‖2/2 + θ2

d+1/2 and thus penalize larger values of the
offset parameter θd+1. The answer would not be the same as maximum margin
classifier with offset.
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Problem 4

We asked a few students to rate their midterm exam according to whether they thought it
was difficult (y = 1), all right (y = 2), or easy (y = 3). Each student also provided us with
a few pieces of information about themselves such as other courses they had taken, the
program they were in, and so on. We could use this additional information to construct a
feature vector φi for each student i = 1, . . . , n. On the basis of the rating labels, y1, . . . , yn
and the feature vectors, φ1, . . . , φn, we could learn to predict how a particular type of
student would react to the exam.

We decided to divide the prediction task into two binary classification tasks

Task 1: whether y = 1 (binary label -1) or y > 1 (binary label +1)

Task 2: whether y ≤ 2 (binary label -1) or y = 3 (binary label +1)

So, we needed two binary classifiers. Since the ratings fall on an ordinal scale, it seemed
wise to couple these tasks together. We opted to use common parameters θ for the two
tasks but different thresholds b1 and b2 for Task 1 and 2, respectively. The corresponding
estimation problem is given by

Minimize
1

2
‖θ‖2 with respect to θ, b1, and b2, subject to

Task 1: − 1(θ · φi − b1) ≥ 1 if yi = 1, +1(θ · φi − b1) ≥ 1 if yi > 1

Task 2: − 1(θ · φi − b2) ≥ 1 if yi ≤ 2, +1(θ · φi − b2) ≥ 1 if yi = 3

for all i = 1, . . . , n

4.1 (3 points) Briefly explain why we would like to make sure that b1 ≤ b2?

b1 ≤ b2 ensures that the labels from the two binary classifiers are always consistent.

4.2 3If the problem is separable in the sense that the quadratic program
has a solution, and all the rating labels occur at least once, are we
guaranteed that the solution θ̂, b̂1, b̂2 satisfies b̂1 ≤ b̂2?

Y
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Figure 4.1. Student exam ratings in the feature space.

4.3 (4 points) Suppose we omit Task 2 constraints altogether and only focus on Task
1 in order to solve for θ̂ and b̂1. Draw approximately the resulting decision boundary and
margin constraints in Figure 4.1 based on the data in the figure.

4.4 (6 points) How could you check if the solution θ̂ based on Task 1 constraints alone
also works as a solution to the combined task?

If we can find b2 such that θ̂ together with this b2 satisfies Task 2 constraints, then
it is the optimal solution to the combined task (‖θ̂‖2 cannot be smaller because of
Task 1 constraints and Task 2 constraints are also satisfied).
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