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Abstract
Lifelike animation of object manipulation requires dynamic interaction between animated characters, objects,
and their environment. These interactions can be animated automatically with physically based simulations but
proper controls are needed to animate characters that move realistically and that accomplish tasks in spite of
unexpected disturbances. This paper describes an efficient control algorithm that generates realistic animations
by incorporating motion data into task execution. The end result is a versatile system for interactive animation of
dynamic manipulation tasks such as lifting, catching, and throwing.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three Dimensional Graph-
ics and RealismAnimation

1. Introduction

Animation of object manipulation involves complex physi-
cal interactions between characters, objects, and their envi-
ronment. For example, a character holding one end of a rope
must counteract forces applied at the other end by steadying
its hands. These animations cannot be generated automati-
cally using kinematic techniques because kinematics ignores
dynamic interaction. However, physical simulation can gen-
erate these animations automatically as long as the character
is controlled properly to accomplish the required manipula-
tion.

Control should be derived from intuitive descriptions of ma-
nipulations tasks, which are often underspecified because
most tasks can be accomplished in several ways. Holding
a rope, for example, characterizes the motion of the hands
but does not prescribe the motion for the rest of the body.
Given an incomplete description, the control algorithm must
accomplish the stated goals as well as complete the missing
details to generate realistic animations.

Our control algorithm incorporates high-quality motion data
to guide complex characters, with many degrees of freedom,
through lifelike portrayals of common manipulation tasks.
The algorithm, illustrated in Figure 1, complements intuitive
descriptions of multiple manipulation tasks with recorded
motion data to compute the joint torques required to ma-
nipulate objects within interactive physical simulation. The
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Figure 1: Our control algorithm incorporates recorded mo-
tion data to accomplish multiple taks such as lifting, reach-
ing, and throwing within interactive physical simulations.

task descriptions are provided by the animator or a high-level
state machine while the recorded motions are selected to in-
clude a few examples of preferred movement postures.

The key to our control algorithm and the primary contribu-
tion of this paper is a new formulation that accurately tracks
lower priority movement postures without interfering with
the higher priority manipulation tasks. This accuracy results
in high-quality animations because the control incorporates
recorded motion postures without compromising manipula-
tion tasks. A unique feature of this approach is that it bene-
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fits from just a few motions even when new animations differ
significantly from the recorded motion data. For example, a
single motion of a person lifting a light object can be used
to animate many lifts regardless of the object weight. In all
cases, realistic timing emerges naturally as a consequence of
task descriptions that limit the forces applied by the hands.
Unlike kinematic control techniques, our control algorithm
operates within a physical simulation allowing for dynamic
interaction between characters and other simulated objects.

2. Background

Animations of dynamic manipulation must account for
both the dynamics and the kinematics of tasks because
static considerations alone will not generate lifelike mo-
tion [LWZB90]. If dynamic considerations are ignored, lift-
ing a heavy object will look identical to lifting a light ob-
ject despite the fact that one task requires increased effort
and a different motion. Motion learning techniques resolve
this problem with data sets that explore variation in task per-
formance [RCB98,MK05,KG04]. Although this is effective
when tasks can be restricted to small, well sampled manipu-
lations, more general tasks require solutions to increasingly
difficult or ill-posed machine-learning problems. To extend
the range of a limited data set, current interactive applica-
tions rely on motion-editing tools that approximate dynam-
ics with temporal smoothness [BW95, WP95, Gle97, CK00]
because dynamically consistent editing tools have not been
designed for interactive use [PW99,LP02,SP05]. In contrast,
our work directly accounts for dynamics by controlling char-
acter motion within a physical simulation.

Preplanned motions can be executed in simulation us-
ing joint-space PD control, which tracks joint trajectories
[ZH02, YCP03]. Joint-space control has also been success-
ful in animation of lifelike locomotion and other activi-
ties [vdPFV90,RH91,HWBO95,GT95,LvdPF96,FvdPT01].
However, joint-space control techniques do not allow for
precise control of the motion or forces applied to manipu-
lated objects.Our control algorithm eases the animation of
dynamic manipulation by explicitly accounting for object
dynamics and supporting intuitive descriptions of motion
and force limits directly in the Cartesian space of the objects
being manipulated. We call this Cartesian-space control.

Cartesian-space control of manipulated objects allows for
compact task description because it commands only the
precise details of object manipulation. In animation, com-
pact task descriptions are generally preferred in both man-
ual [LWZB90] and automatic [KKKL94] task planning be-
cause they suppress irrelevant aspects of task execution. For
example, inverse kinematics is often used, to infer full pos-
tures from a compact description of the motion of hands,
making it easier to reuse performances by different (e.g.,
shorter or longer-armed) characters [YKH04]. Achieving
lifelike postures, however, requires that such algorithms ei-
ther incorporate recorded motion data or leverage prior re-

sults from neurophysiology or other studies of natural mo-
tion [KKKL94, RSC01, GMHP04, YKH04]. Our work ad-
dresses a similar problem but, unlike inverse kinematics, it
incorporates motion data and dynamics to control characters
in simulations with significant dynamics.

A popular approach to Cartesian space control is known as
operational space control in the robotics literature [Kha87].
Similar to our approach, the operational space formulation
simplifies control of complex humanoid robots with many
degrees of freedom by decoupling the control needed to ac-
complish a task from the control of task-redundant degrees
of freedom. Recently, the original operational space formu-
lation was improved upon by Khatib and colleagues to en-
able accurate tracking of lower-priority tasks [KSPW04], but
only for branching joint structures without closed-loop joint
constraints [DSK05]. Our work offers an alternative to this
approach that is more suitable to character animation. It en-
ables accurate tracking of recorded motion data even with
closed-loop joint structures. This is particularly important
because closed-loop constraints emerge whenever a charac-
ter places both feet on the ground, allowing our formulation
to track motion data in these common cases.

3. Control Algorithm

Our control algorithm computes the joint torques that cause
animated characters to accomplish desired manipulations.
The algorithm can be used with physical simulation to author
new motions or to execute flexible motion control strategies
interactively. It is particularly suitable for these purposes be-
cause it supports compact task descriptions and the priori-
tization of conflicting tasks, both of which can simplify the
way that motion is commanded. For example, the control
algorithm can favor natural postures at a low priority level
without interfering with the primary manipulation task at a
high priority level.

In this section, we derive the basic control algorithm for un-
constrained, open-loop structures before extending it to the
most practical case: constrained dynamics with unactuated
degrees of freedom. The end result is a procedure that trans-
forms complex nonlinear dynamics into simple second-order
linear systems whose intuitive control is explained in Sec-
tion 4.

3.1. Unconstrained Dynamics

The dynamics of animated characters is modeled as a set of
rigid body limbs constrained by a set of joints that link the
limbs into a core body structure. When this structure forms a
tree graph, also called an open-loop configuration, the pose
of the character can be described by a set of independent
joint variables (see Figure 2). These independent coordinates
q allow for the dynamics of the character to be expressed in
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Figure 2: In the unconstrained, open-loop configuration (a)
the shape is fully described by independent coordinates q,
whereas in the constrained, closed-loop configuration (b) no
set of independent coordinates can describe the shape, so
constraints must be handled in the dynamics.

a standard numerical form:

τ =M(q)q̈+h(q, q̇), (1)

where M is the joint-space inertia matrix and h is a nonlinear
function of all acceleration-independent terms that computes
the gravitational, centrifugal and Coriolis forces [FO00].
Physical simulations can evaluate and integrate these equa-
tions with one of several efficient algorithms, but to animate
active characters a control algorithm is still required to sup-
ply the joint torques τ needed to accomplish desired tasks.

3.1.1. Exact Linearization

Inverse dynamics simplifies design of control algorithms by
compensating for complex nonlinear dynamics. The key idea
is to transform the nonlinear equations of motion into a lin-
ear, second-order system. For example, by choosing joint
torques of the form τ =Mτ∗ +h, the nonlinear Equation (1)
is transformed into a set of linear, uncoupled second-order
equations, q̈ = τ∗. This transformation drastically simpli-
fies systematic computation of command torques τ∗ needed
to accomplish joint-space tasks such as tracking procedu-
rally generated trajectories [KB96] or recorded motion data
[YCP03]. Manipulation tasks, however, are not easily de-
scribed in joint space.

Cartesian coordinates, relative to the needed body part, can
be used to intuitively describe manipulation tasks. It is pos-
sible to support such descriptions using inverse kinemat-
ics, but this approach ignores the dynamics of the task. In-
stead, our approach applies inverse dynamics in the Carte-
sian space to directly and intuitively control the task-space
dynamics of manipulation tasks. We refer to this as task-
space control. Given a differentiable expression x1(q) for the
position (or orientation) of some body part, we can compute
its velocity ẋ1 = J1q̇ and its acceleration ẍ1 = J1q̈+ J̇1q̇ as
a function of the Jacobian J1 = Dqx1. Combining the ex-
pression for task acceleration with Equation (1) allows us to

express the dynamics in the Cartesian task space:

Ω1τ = ẍ1 +Ω1h− J̇1q̇, (2)

where Ω1 = J1M−1 can be thought of as the pseudoinverse
of a task-space inertia matrix.

As before, we compensate for nonlinearities by using inverse
dynamics to transform task-space dynamics into a set of
linear uncoupled equations. Unlike the joint-space control,
however, the systems of equations in task-space control is
underdetermined requiring that we choose one of many pos-
sible torques. For example, the well known operational space
formulation uses the pseudoinverse that minimizes the in-
stantaneous kinetic energy [Kha87]. In contrast, our formu-
lation will compute the complement joint torque τ̄ to incor-
porate motion data into control of dynamic manipulations:

τ =Ω+1 (f∗1 +Ω1h− J̇1q̇)+P1τ̄, (3)

where Ω+1 is any generalized pseudoinverse of Ω1 and P1 =

(1−Ω+1Ω1) is the projection matrix onto the null space of
Ω1. Applying this joint torque to Equation (2), transforms
the nonlinear task dynamics into a simple, second-order lin-
ear system, ẍ = f∗1 , which eases description and control of
manipulation tasks. The projection matrix ensures that the
complement torque does not interfere with the primary ma-
nipulation task. Multi-task control, as described next, directs
the remaining degrees of freedom to incorporate other tasks
that control the posture of the character, for example.

3.1.2. Multi-Task Control

Multi-task control compensates for the nonlinear dynamics
in both high priority and low priority tasks, allowing for pre-
cise and intuitive control of manipulations and the style with
which they are performed. We again use inverse dynamics to
linearize the dynamics of secondary tasks, but we cannot use
Equations (1–3) because secondary tasks are affected by the
joint torque τ1 =Ω+1 (f∗1 +Ω1h− J̇1q̇) needed to accomplish
the primary manipulation task and, also, by the projection
matrix P1 that prevents secondary-task torque τ̄ from inter-
fering with the higher priority tasks:

τ1 +P1τ̄ =Mq̈+h. (4)

Depending on the type of secondary task, we can compen-
sate for nonlinear dynamics by applying inverse dynamics in
joint space or in task-space. If the task is to track joint values
in the motion data, the joint torques are easiest to compute
from command torque τ∗2 in joint coordinates:

P1τ̄ =Mτ∗2 +h−τ1. (5)

Whereas, if the task is more easily expressed in terms of
Cartesian coordinates x2(q), the joint torques are computed
from the Cartesian command vector f∗2 :

Ω2P1τ̄ = f∗2 +Ω2h−Ω2τ1 − J̇2q̇, (6)
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where J2 =Dqx2 andΩ2 = J2M−1, analogous to expressions
in the primary-task control.

The derivation of both equations is analogous to the exact
linearization of primary-task dynamics. It also clarifies that
the joint-space control is a special case of task-space control,
as seen by using the identity matrix for the task Jacobian in
Equation (6). In both formulations, the singular projection
matrix restricts the computed torque τ̄ to the set that does
not interfere with the control of the primary task. In our im-
plementation, we compute such torques with the singularity-
robust pseudoinverse [NH86, Mac90], which inverts the sin-
gular value decomposition of Ω1 (or Ω2P1) after eliminat-
ing singular vectors with small singular values (e.g. less than
0.001 threshold in our implementation). This prevents large
torques in singular directions that can result in an unstable
simulation.

Recursive application of the same idea extends this control
algorithm to multiple tasks. For example, additional tasks
might limit the range of joint variables [Lié77] or main-
tain balance [ZH02]. Given a set of Cartesian coordinates
{x1(q), . . . ,xn(q)} and a set of associated command vectors
{f∗1 , . . . , f

∗
n}, the multi-task control computes the joint torque

τi that executes the i-th task at a lower priority than the pre-
vious (i−1) tasks:

τi = τi−1 + (ΩiPi−1)+(f∗i +Ωih−Ωiτi−1 − J̇iq̇),

τ1 =Ω
+
1 (f∗1 +Ω1h− J̇1q̇),

where Pi = (1− (ΩiPi−1)+(ΩiPi−1)) and P1 = (1−Ω+1Ω1).
This iterative algorithm naturally resolves task conflicts by
executing lower priority tasks with torques that do not inter-
fere with the higher priority tasks.

Our formulation of multi-task control offers an alterna-
tive to the formulation proposed in the robotics literature
[KSPW04, SK05]. The two approaches differ in the for-
mulation of secondary-task dynamics in Eq. (6). Unlike
the robotics formulation, which requires differentiating the
quantity called the task-consistent posture Jacobian J2|1 =
J2P1, our approach differentiates only the regular posture Ja-
cobian J2, as seen in the last term of Eq. (6). This difference
has a profound impact on the ease of implementation and
practical application of multi-task control to animation of
dynamic manipulation. Unlike the expression ˙J2|1q̇ with the
task-consistent posture Jacobian, our expression J̇2q̇ can be
computed simply and efficiently without differentiating the
complex projection matrix P1. Furthermore, it can be shown
that both formulations do not interfere with high-priority
tasks even as they track secondary tasks as accurately as pos-
sible. The difference between the two approaches becomes
more pronounced in control of constrained dynamics be-
cause the analytic expression for the projection matrix, P1,
becomes more complex, making it harder to compute the
time derivative ˙J2|1, while our formulation eliminates this
step entirely.

3.2. Constrained Dynamics

Constrained dynamics emerge whenever a character applies
more than one limb to a fixed object in the environment.
For example, standing with both feet on the ground estab-
lishes contact constraints that relate joint variables of one
limb to those of the other. These dependencies make it im-
possible to describe characters with an independent set of
joint variables, as was assumed throughout the previous sub-
section. Instead, we reformulate our control algorithm to use
a set of dependent joint variables along with a set of con-
straint torques τc that enforce relationships imposed by con-
tact constraints:

τ+τc =Mq̈+h, (7)

where all expressions retain the meaning from the standard
formulation of unconstrained dynamics. The derivation of
our control algorithm proceeds by computing the constraint
torques prior to exact linearization of constrained dynamics.

The constraint torques are determined by a set of algebraic
equations φ(q) = 0, which may, for example, model non-
slipping contact by attaching limbs to objects in the envi-
ronment. The entire set of constraints determines the struc-
ture of the constraint torques by prescribing the valid sub-
space τc = L>λ as a function of the constraint Jacobian ma-
trix L = Dqφ. This expression allows for computation of the
constraint torques by solving for the coefficients λ in the sub-
space [FO00]:

LM−1L>λ = LM−1h− L̇q̇−LM−1τ. (8)

Given the expression for constraint torques, the derivation
of our control algorithm proceeds as before by applying in-
verse dynamics to compensate for nonlinear dynamics in
joint-space or task-space. For example, the control torques
for the primary task x1(q) are computed from the Cartesian
command vector f∗1 using the following relationship:

Ω1Φτ = f∗1 +Ω1h+Ω1Γ(L̇q̇−LM−1h)− J̇1q̇ (9)

where Γ = L>(LM−1L>)−1 and Φ = (1−ΓLM−1). This ex-
pression highlights the practical benefits of our control for-
mulation (cf. Section 3.1.2). Instead of differentiating the
new projection matrix

(

1− (Ω1Φ)+(Ω1Φ)
)

as proposed in
prior work [KSPW04, SK05], our multi-task control is just
as easily applied to both unconstrained and constrained dy-
namics.

3.3. Unactuated Joints

The joint structure of many animated characters includes
passive, unactuated joints. The most common example is the
six degree of freedom root joint that determines the global
translation and orientation of the character. Unlike an active
joint that propels limbs with its torques, the root joint does
not apply torques or forces to propel the character directly:
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instead the global motion arises as a consequence of interac-
tion with the ground and the environment.

We adjust our control algorithm by defining a selection ma-
trix S that extracts actuated joints qa from the full set of
joint variables qa = Sq. For example, the (n− 6)× n matrix
S = [0 | 1n−6] extracts all but the first six joint variables. Its
transpose maps the joint torques into a vector that agrees
with the dimension of joint variables, allowing us to rewrite
constrained dynamics for characters with unactuated joints:

S>τ+τc =Mq+h. (10)

The remaining steps in the derivation of our control algo-
rithm are analogous to Section 3.2.

4. Task Description

Compact descriptions, which command only essential de-
tails such as hand position or applied force, accelerate an-
imation of manipulation tasks and allow for easy, automated
motion specification in interactive applications. Instead of
setting and readjusting many keyframes, animators can de-
scribe just the required task, adjust a few intuitive parame-
ters, and run a simulation to generate a new motion. Lifelike
animations emerge automatically, much like in passive phys-
ical simulations, and adapt immediately to changes in the en-
vironment (e.g., different object motion or weight) or limita-
tions of the character (e.g., locked joints or muscle strength).

Our control algorithm supports compact task descriptions by
decoupling complex non-linear dynamics to allow for sim-
plified motion commands in both joint-space and Cartesian
task-space. As in keyframe animation systems, joint-space
coordinates ease the description of tasks that require spe-
cific joint configurations such as poses from recorded mo-
tion data and Cartesian task-space coordinates allow for di-
rect control of body parts needed to manipulate objects. The
exact linearization of dynamics explained in the last section
transforms the nonlinear problem into a simple second-order
linear system. In this section we rely on this reduction to sys-
tematize descriptions of common manipulation tasks.

4.1. Manipulation

Our descriptions of manipulation tasks rely on two funda-
mental control primitives: stabilization, which directs char-
acters towards prescribed values such as desired object lo-
cations; and tracking, which follows prescribed trajectories,
such as those that describe the desired motion of manipu-
lated objects. Both stabilization and tracking provide a way
of choosing the command vector f∗ (c.f. Section 3) that will
accomplish various manipulation goals. Many other choices
of the f∗ are possible, but we have deliberately used simple
choices to highlight the functionality of our control formu-
lation, rather than confuse the details with complex motion
planning strategies.

Since spatial configurations of manipulated objects are de-
scribed relative to the global Cartesian coordinate frame,
their manipulation is easiest to describe in Cartesian coordi-
nates. We express manipulation tasks in Cartesian (or task-
space) coordinates by using forward kinematics to compute
the position (or orientation), x(q), of relevant body parts. If a
character needs to reach for an object or to carry it to another
location, we use stabilization to direct its hands to their de-
sired location xd . Stabilization creates a motion that progres-
sively eliminates the error between the current and desired
configurations, x(q)−xd , by utilizing the command vector

f∗ = k
(

xd −x(q)
)

−2
√

kẋ(q). (11)

Substituting this command vector into the second-order lin-
ear system, described in the last section, reveals a critically
damped system whose speed of convergence is controlled
by the gain coefficient k. Animators can increase the gain to
create stiffer motions that accomplish tasks quickly or de-
crease it to create more relaxed motions. In our animations,
we selected gains manually to showcase relaxed, more re-
active animations, but in the future gains could also be set
automatically according to measured human responses.

Tracking is used when more precise execution is required.
For example, a character tossing an object must release the
object at a prescribed location with a precise velocity. In
such a case, we use tracking to direct the character’s hands
along the trajectory xd(t) required to generate the required
toss velocity. As in stabilization, tracking eliminates the er-
ror between the current and desired trajectories by comput-
ing the command force f∗ needed for a critically damped
system:

f∗ = k
(

xd(t)−x(q)
)

+2
√

k
(

ẋd(t)− ẋ(q)
)

+ ẍd . (12)

4.2. Force Limits

Force limits restrict the magnitude of applied manipulation
forces. This ensures that commands are not accomplished
with unrealistic joint torques. For example, a heavy object
is lifted slower than a light object because of the limits im-
posed on the application of the upward force. In nature, force
limits are a function of muscle strength, but, in animation,
force limits are more intuitively specified in the Cartesian
task space. Our control algorithm can be extended to impose
such limits by thresholding the task-space forces needed to
perform each command.

Given a command vector f∗, we can compute the required
task-space force f using the expression for task-space dy-
namics in Equation (2):

f = (JMJ>)−1(f∗ +Ωh− J̇q̇). (13)

The task-space force f should be thought of as the external
force that must act, in the absence of internal joint torques,
to create the motion commanded by the vector f∗ (Figure 3).
The task-space force is measured in the usual units of force
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Figure 3: Task-space forces guide the hand toward desired
position pd using stabilization control (a), or move the hand
along a specified trajectory td , optionally grasping an object
(b). For every force f in task-space, there is an equivalent
force τ in joint-space that will cause the same motion of the
hand and visa-versa.

and its maximum magnitude can be adjusted intuitively to
control the strength of manipulations. When the task-space
force exceeds a preset value, its thresholded value f̂ can be
used in place of the original command vector. If threshold-
ing occurs, the Equation (13) is inverted to solve for the
command vector f̂∗ that corresponds to the thresholded task-
space force f̂.

The method we have proposed so far only accounts for force
limits in the Cartesian space of the primary task. But in na-
ture force limits are a byproduct of limited muscle strength.
Thus, more accurate models should limit forces in the joint-
space of characters. Despite this fact, the method we pro-
pose has two advantages. First, the animation process is
greatly simplified by allowing Cartesian space force lim-
its; It is more intuitive to describe a character’s strength by
how much the character can lift than by the maximum torque
each joint can exhert. Second, it is unclear how the motion of
the primary task should gracefully degrade when force lim-
its in joint space are reached. Simply clamping the torques
will produce unstable motion. Our method always provides
modified command vectors that produce manipulation com-
promise similar to those observed in nature.

4.3. Posture

Most manipulation tasks can be accomplished in a number
of ways, particularly by complex characters with many de-
grees of freedom. Although task descriptions command the
motion of hands and other body parts, redundancies in body
construction allow for variations that are evident in natural
motion. The multi-level control formulation allows for sys-
tematic description of such variation with posture tasks. As a
lower priority task, posture control parameterizes variations
without interfering with higher priority manipulation tasks.

Variations depend on many factors including strength, per-
sonal preferences, and style. We model these variations by
incorporating motion data into a posture task that favors
recorded poses. This is implemented as a stabilization task in
joint-space, where momentary goal configurations are com-
puted with a nearest-neighbor search through a few sec-

onds of similar motion capture data. The similarity between
poses is computed using the horizontal translation- and ver-
tical rotation-invariant distance between synthetic markers
affixed to each body part, as first proposed by Kovar and
colleagues [KGP02].

Other descriptions of the posture task are also possible. They
could be derived from physiological measurements of mus-
cular effort [KWDSS04, DSWKD05] or learned automat-
ically from recorded motion data [GMHP04, MK05]. Our
posture task is a simple variant of the latter choice, aiming
to ease evaluation of our control technique rather than to im-
prove upon existing posture models.

It should be noted that for realistic motions, posture activ-
ity cannot be treated completely independent of the primary
task. For example, when lifting a heavy box, a person might
choose to do so “with the knees” rather than “with the back”
to reduce strain on the muscles. Despite this fact, decoupled
motion control has proven a useful abstraction in anima-
tion, as demonstrated by the prevailance of inverse kinematic
techniques for motion synthesis. As with inverse kinematics,
our method depends upon intelligent choices for the posture
that compliment the primary task. We leave to future work
the development of more sophisticated posture tasks that ac-
tively adapt to the goals of the primary task.

5. Results

The performance of our control algorithm was evaluated
within the Open Dynamics Engine (www.ode.org), an open
source, high performance library for simulating rigid multi-
body dynamics. In each experiment, a compact description
commands the task for a complex character with 44 de-
grees of freedom. The control algorithm incorporates pos-
tures from supplied motion data to complete the missing de-
tails and directs the character in accomplishing each tasks.
Collisions and contacts are detected and resolved in the sim-
ulation. In particular, grasping and ground contacts are ap-
proximated with clamping constraints that affix points on
one body to the other. All simulations, including the control
computation, run at interactive rates on a 2.8 GHz Pentium
4, with 60 or more updates per second, depending on the task
complexity. All animations are included in the accompany-
ing live video.

Chain Interaction. The chain interaction simulation is a
simple demonstration of the immediate benefits gained by
incorporating physical effects into animation of manipula-
tion tasks. In this simulation the character attempts to steady
its hands while holding onto a serial linkage approximating
a chain. Task-space stabilization (c.f. Section 4.1) is used to
maintain a fixed hand motion as the other end of the chain
is tugged and pulled by forces controlled interactively by a
mouse-based interface. The secondary posture task keeps the
character close to the initial posture. The strength with which
the character resists the motion of the chain can be adjusted
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easily with control of the single gain parameter of the task-
space stabilization. Unlike with kinematic techniques, the
character reacts to the motion of the chain. In particular, the
motion of the legs, while subtle, contributes to a convincing
portrayal of this manipulation task.

Lift. The box lifting simulation demonstrates our algorithm
automatically adapting to the weight of objects and incor-
porating motion data (see Figure 4). Stabilization control
is used to direct the motion of the hands by specifying
keyframes that the hands should pass through. The hands
are clamped to the box using simulation constraints between
the rigid bodies. Although the control is aware of the box
mass (and takes it into account), force limits prevent the
character from lifting heavy boxes quickly or even at all. A
secondary posture task favors postures from recorded mo-
tion data of a similar lifting motion. When we use differ-
ent recorded data, the performance of the same task descrip-
tion adapts automatically. Instead of lifting “with the back”,
the character lifts the object “with the knees”. This confirms
that our multi-task control decouples primary and secondary
tasks and accomplishes each to the greatest extent possible.

Box Interaction. The box interaction simulation demon-
strates the necessity of dynamic interaction between the
character and manipulated objects. The right hand of the
character is replaced with a heavy pendulum mass and the
desired position of the hand is controlled interactively with a
mouse-based interface. The dynamics of the pendulum mass
are modeled as that of a body part connected to the arm
with an unactuated joint. Stabilization control in task-space
is used to bring the arm to the desired position. A secondary
posture control references motion capture of a similar mo-
tion. This causes the character’s posture to vary naturally
with the action of the primary control task; the character
crouches when the hand is low, stands when the hand is
high, and appears balanced even though no explicit balance
control is utilized. When the momentum of the pendulum is
large, a force limit prevents the character from achieving the
desired arm position. However, when the pendulum slows,
the force required to achieve the desired position falls below
the specified limit and the character can achieve the desired
position flawlessly. Note that such precise control is not pos-
sible without accounting for the dynamics of the object in
the manipulation control. But if, in addition, realistic force
limits are not imposed, the character will always achieve the
desired hand position perfectly without realistically reacting
to the momentum of the pendulum mass. Both force limits
and correct dynamics are required to produce believable ma-
nipulation.

Catch. In the ball catching simulation, the character catches
balls of different weights, sizes and velocities. Stabiliza-
tion control is used to position the character’s hand approx-
imately where the ball should be caught. When the ball is
close to the hand, tracking control is used to match the hand
velocity to that of the ball. If contact is detected, the ball is

clamped to the hand with a simulation constraint. Finally,
stabilization is used to bring the ball back to where the catch
was made. The arm configuration varies naturally with the
hand position because the posture task incorporates a short
10-second sequence of arm placement in various catch loca-
tions. As the weight of the ball increases, the character re-
acts naturally. Again, force limits prevent the use of extreme
joint torques that might be capable of too quickly stabilizing
the position of the hand, regardless of the object weight. In-
stead, the arm motion slows down the ball before returning
to its commanded location.

Catch and Toss. The catch and toss simulation demonstrate
a performance of a more complex manipulation task. The
character catches an object before tossing it along the pre-
scribed trajectory. The simulation requires three inputs: the
plane in which the character attempts to catch the object, the
position and velocity at the point of release, and a motion
capture sequence of a similar catch-and-throw motion. The
commands in this animation are similar to those in the lift-
ing and catching animations except for the trajectory track-
ing used to toss the object. The trajectory is a Hermite curve
that is fully specified by the initial and final positions and
velocities. This parameterization of the curve was choosen
for simplicity and looks reasonable for this motion, but it
should be noted that the realism of the resulting motion does
depend upon the tracking trajectory and, thus, other choice
would generate less believable motion. The controller is ro-
bust to changes in the velocity and angle of the caught ob-
ject, the weight, size and shape of the object, and the speci-
fied direction and velocity that the object should be thrown.
All reasonable settings of these parameters create a plausi-
ble motion with different, nonlinear dynamic effects. For in-
stance, if the weight of the object is large, the character will
not be able to control the object as accurately, causing colli-
sions between the object and the character, but still tracking
the trajectory as closely as possible.

6. Conclusion

Our control algorithm directs complex characters in realistic
performances of dynamic manipulation tasks within a phys-
ical simulation. The control adapts easily to dynamic dis-
turbances and different environments that require significant
deviation from motion data. The multi-task formulation sup-
ports intuitive task descriptions in joint space or task space.
The tasks are executed at multiple priority levels to ensure
that lower-priority tasks do not interfere with higher priority
manipulation goals. Finally, the accurate tracking of lower-
priority tasks capitalizes on recorded motion postures to gen-
erate lifelike motions from compact task descriptions with
many missing details.

The control algorithm cannot guarantee successful perfor-
mance of all manipulation tasks. Temporary underactua-
tion (loss of control over some degrees of freedom) will
impede manipulation even when it could be accomplished
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with the remaining degrees of freedom. For example, al-
though a character could jump to reach an object, our con-
trol algorithm cannot look ahead to pre-plan the torques
needed for such a jump. Although a general solution to un-
deractuated control problems for complex characters is still
an open problem, offline optimization has enjoyed some
success particularly after simplifying the space of motions
[LP02, SHP04]. Underactuated control is less critical in au-
thoring applications where animators could be relied upon
to provide feasible task descriptions.

The choice of Cartesian-space control eases the description
of many manipulation tasks but it also introduces the pos-
sibility of artificial algorithmic underactuation. Whenever
a jointed structure approaches a singular configuration, the
task-space control temporarily loses actuation over some de-
grees of freedom. This underactuation is artificial because it
is strictly a function of the chosen joint-angle parameteriza-
tion; it never appears in the joint space. In authoring applica-
tions, these situations could be avoided with intelligent task
descriptions, but a more general solution would impose joint
limits in the highest priority task to avoid kinematic singu-
larities [Lié77]. In our work, the posture task serves as a par-
tial substitute to joint limits by keeping the character out of
unnatural configurations, but this approach would ultimately
fail for extreme postures.

The control algorithm assumes that all contacts are main-
tained regardless of the applied joint torques. This control
strategy is successful for the simulation of some tasks but
the control algorithm will need to maintain these contacts
explicitly before it can generate animations with realistic lo-
comotion or balance. This extension will fit into our control
formulation naturally because additional task commands can
maintain contact constraints by ensuring that contact forces
remain within the required friction cones [MLS94].

The control of contact forces brings out the more general
need to systematize task descriptions beyond the use of sta-
bilization and tracking, the two command primitives we re-
lied upon in all of our experiments. For example, in our
throwing experiments, the hand motions were directed to
follow prescribed trajectories even though natural throwing
motions are rarely so precise. Stabilization and tracking con-
trol in Cartesian space simplifies motion specification, but it
does not guarantee realism. New commands should also sup-
port alternative, less-detailed task descriptions that incorpo-
rate motion data to fill in missing details automatically. Our
use of recorded motion postures has only enticed a more sys-
tematic inclusion of general motion invariants. For example,
low-priority posture tasks could incorporate recorded veloc-
ities, accelerations, and forces to generate even better perfor-
mances of dynamic manipulation tasks.
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Figure 4: Our control algorithm directs a real-time simulation of a character to accomplish manipulations, such as displacing
a box (top row). Manipulations are compactly described. In the above example, only four Cartesian goal positions are used to
describe the motion of the hands and the box. The missing details are filled in with a secondary posture task that incorporates
recorded motion postures from a similar performance. The control adapts naturally to changes in the environment. As expected,
increasing the weight of the box (second row) produces a slower lift. The performance of the task can also be changed by using
a different recorded motion in the posture task (third row).
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