

Data-driven Photographic Style using Local Transfer

YiChang Shih MIT CSAIL, Department of Electrical Engineering and Computer Science Feb 11, 2015

Image style

Before

After

Correcting exposure

Before

After

Changing a style

Same content, different visual appearances

- Convey a unique mood
- Make it memorable
- Impress people

Style vs. content

[Tenenbaum and Freeman 2000]

- Decompose an image into the style and content
- Modify the style, while preserving the content

More examples of changing style

 Contrast adjustment, exposure correction, color restoration ...

Style transfer

[Reinhard et al. 2001, Bae et al. 2006, ...]

- Match the colors in the user-supplied example
- Work well on simple scenes

Input Example

Output [Pitié et al. 2007]

This work: challenging styles

Changing the time-of-day

Hard problem

- Water and building become different color
- Depends on material, lighting, physical interaction

Hard problem

- Water and building become different color
- Depends on material, lighting, physical interaction
- 4:00 PM

6:00 PM

Difficult Al-complete problem that requires the understanding of the physical world?

ter buildi

water building

Creative style

Raw image captured by a camera

Stylized by photographers

Raw image captured by a camera

Stylized by photographers

This work: leverage the power of data

Input Image database Stylized output

Style transfer from a good examples

Input

Example

Stylized output

Contribution: local style transfer

Leverage semantic information by dense correspondences

Input

Example

Stylized output

Preview

Input

Example

Stylized output

Close up

Input

Our output at night

Overview of this talk

 Time-lapse hallucination (SIGGRAPH Asia 2013)

Input at afternoon

Output at night

 Portrait style transfer (SIGGRAPH 2014)

Overview of this talk

 Time-lapse hallucination (SIGGRAPH Asia 2013)

Output at night

 Portrait style transfer (SIGGRAPH 2014)

Input: ordinary portrait Output: stylized portrait

Hallucinate scene color variation over time

Use the photo at time A to predict the photo at time B.

Hallucinate scene color variation over time

• Use the photo at time A to predict the photo at time B.

46 minutes too early [kenrockwell.com]

perfect [kenrockwell.com]

39 minutes too late [kenrockwell.com]

Hard problem

• The color change is spatially-variant!

Hard problem

Water and building become different color

Related work: global color transfer

- Match global color statistics
- Works on simple scenes [Reinhard et al. 2005, Pouli and Reinhard, 2011, Pitie et al. 2005, ...]
- Complex scenes require spatially-variant transfer

Input at daytime

Example at sunset

Output at sunset

Related work: image relighting

- Use image collection of the scene [Laffont et al., 2012]
- Use 3D scene model [Kopf et al., 2009]

Input

Relit result

 We want a general machinery, not rely on data for a specific input image

Related work: analyzing time-lapse video

 Produce good results, but need manually modeling the scene [Lalonde et al, 2009]

Input at daytime Time A Time B Time C

Problem statement

- Input: a single photo + target time of day
- Output:
 - the same scene as if it was taken at the target time
 - automatic

Output at new time

Our idea: using time-lapse videos

- Cover color changes at different times of a day
- Labeled with time of day

500 videos taken at various outdoor scenes

Overview

1. Match input to video from database

Target time: 9pm

Matched time-lapse video

Overview

1. Match input to video from database

Target time: 9pm

Overview

- 1. Match input to video from database
- 2. Transfer color change

Target time: 9pm

Output

Overview

- 1. Match input to video from database
- 2. Transfer color change

Output

Matching step 1: video level

 Video retrieval with off-the shelf scene matching technique [Xiao et al. 2010]

Matching step 2: frame level

Select the best match frame by color histogram

Matching step 3: pixel level

- Respect scene semantic
 - sky to sky, building to building, etc.

Input Matched frame

Dense correspondence using Markov random field

Markov Random Field for dense matching

- Data term: standard L_2 norm
- Regularization term: aggregate over the entire sequence, not just the matched frame
 - Consistency over all time of day

Warp the matched frame to the input

• Capture the scene semantics ©

Input

Matched frame

Warped matched frame

Naïve transfer: warp the target frame

- Using the same correspondence
- The texture in the warped image is wrong

Input

Target frame

Naïve transfer

Our approach: locally affine color transfer

- Local to handle complex scenes
- Affine color transfer in each patch
 - preserve the structure of the input
 - match ground truth data

Locally affine model explains the color change of time-lapse data

• In particular, explain the matched and target frame

The transfer needs to be locally affine everywhere

 The patches are overlapping, so we cannot estimate the affine model independently on each patch

Color transfer as an optimization

- We are looking for color remapping function
 - Objective #1: explain time-lapse data
 - Objective #2: locally affine everywhere

- We design a least-squares energy
 - Sparse linear system

Recap

Input

1. Matched video

Recap

1. Matched video

Recap

Results: four different times of day

Input

Day

Before sunset (golden hour)

Night

Ground truth validation

Our result at night

Our transfer is spatially-variant

Input at day

Output at golden hour

Our transfer is object-dependent

More results: cloudy input

Cloudy input

Output at after sunset

More results

Input at after sunset

Output at night

Mountain view

Input at day

Output at blue hour

Lake scene

Input at day

Output at night

Comparisons

[Pitié et al. 2005]

[Reinhard et al. 2001]

Our method

Color Transform vs Color Distribution

Our result is more golden

Applications

Image editing tool

Application: translate the time of day of a painting

Input at day

Output at blue hour

"In the Auvergne", Jean-Francois Millet

Starry Night at Day?

Limitations

- Dynamic scenes are challenging
- Night-to-day case does not work well

Night to Day

Summary on time-lapse hallucination

- Time hallucination: render an image at another time
- Use a time-lapse database + locally affine transfer
- Transfer the color variation

Recently related work: different seasons

Use time-lapse videos of a year [Laffont et al. 2014]

[Laffont et al. 2014]

Input at spring

Overview of this talk

 Time-lapse hallucination (SIGGRAPH Asia 2013)

Output at night

 Portrait style transfer (SIGGRAPH 2014)

Input: ordinary portrait Output: stylized portrait

Professional portraits look better

Ordinary photo

Professional photo

The goal: make good portraits easy

Make

Ordinary photo

look like

Professional photo

- Transfer the style from the example photo
- Automatic

We work on headshots

What we match: retouching, texture, lighting

 What we do not match: pose, expression, clothing, focal length, aperture

Preview our result

Input Example Output

Hard problem

Global color transfer is not sufficient

Input

Example

Our method

[HaCohen et al. 2010] (lighting and details are missing)

Related work: global transfer

[Bae et al. 2006, Sunkavalli et al. 2010...]

Work well on landscapes

Input

Model

Output by Bae et al. [2006]

Do not work as well on portraits

Related work: global transfer

[Bae et al. 2006, Sunkavalli et al. 2010...]

Work well on landscapes

Input

Model

Output by Bae et al. [2006]

Do not work as well on portraits

Related work: local style transfer

• Time hallucination [Shih et al. 2013, Laffont et al. 2014]

Input: afternoon

ul II

Example images

Output: night

Requires two images: before and after

Related work: face enhancement

[Joshi et al. 2010, Shih et al. 2013 ...]

Image restoration: deblurring, denoising ...

Blurred input face

Output: deblurred face

We focus on photographic stylization.

Problem statement

Input: a casual frontal portrait and an example

• Output:

- The input portrait rendered in the example style
- Automatic
- The style includes texture, tone, and color

Key idea #1: local transfer

Local: eyes, nose, skin, etc. are treated differently

Input

Example

Key idea #1: local transfer

Local: eyes, nose, skin, etc. are treated differently

Key idea #2: multi-scale transfer

Textures at different scales are treated differently

Portrait #1

Portrait #2

Key idea #2: multi-scale transfer

Textures at different scales are treated differently

Portrait #1

Portrait #2

Overview of the algorithm

- 1. Dense matching between the input and example
- 2. Multiscale transfer of local statistics
- 3. Post processing on eyes and background

Step 1: dense matching

Rigid warp + SIFT flow to align semantic features
 [Liu et al. 2008]

Input

Example

Warped example

Input

Example

1. Construct Laplacian stacks for the input and the example

Example

1. Construct Laplacian stacks for the input and the example

2. Local match at each scale

Step 2: multiscale transfer of local statistics

1. Construct Laplacian stacks for the input and the example,

2. Local match at each scale

3. Collapse the matched stacks to create the output of this step

1. Construct Laplacian stacks for the input and the example

2. Local match at each scale

3. Collapse the matched stacks to create the output of this step

Local energy S

*L*Example Laplacian

S Local energy

$$S = L^2 \otimes G_{\ell}$$

 G_{ℓ}

Gaussian kernel at this scale

At each scale: match local energy

Input energy

Example energy

At each scale: match local energy

Compute the gain map

At each scale: match local energy

Compute the gain map

Modulate the input Laplacian

Robust transfer

 Clamp the gain map to avoid artifacts caused by moles or glasses on the example

Input Example

Without robust transfer

Our robust transfer

Laplacian using a face mask

Preserve the hair boundary using normalized convolution and a face mask

Input

Example

Without using the mask (the edges disappear)

Our method (the edges are preserved)

Step 3: post-processing

- Adding eye highlights
- Replacing the background

Input

Example

Without eye highlights

Adding eye highlights (Our final result)

Algorithm recap

Input Example Step 1.

Dense alignment

Algorithm recap

Algorithm recap

Input

Example

Step 1.

Dense alignment

Step 2. Local transfer

Step 3.
Eyes and background

Automatic example selection

 Retrieve the best examples based on the face similarity between the input

Input

The top three retrieved results

Automatic example selection

The results are robust to the example choices

Input Style transferred results using the top three examples

Results

Examples are shown in the insets

Close-up

Input Example Output

More results

Outdoor input

Extra results

Comparisons

Input

Example

Global transfer [Bae et al. 2006]

Our result

Histogram transfer [Reinhard et al. 2001] [Pitié et al. 2007] Photoshop Match Color

Different success levels: good results

The inputs are well lit

Input

Output

Hard case

Matting (face mask) failure

Input Output

Limitations

- Require the input and the example to have similar facial attributes, e.g., skin color
- Cannot handle hard shadows on the input

Input

Example

Failure output

Evaluation

 94 headshot inputs from Flickr

Available on our website

Extension to videos

Input sequence with extreme facial expressions Our style transfer result using the example in the gray box

Summary

- We introduce a style transfer algorithm tailored for headshot portraits.
- Based on multiscale transfer of local image statistics

Input

Example

Output

Recap of this talk

Time-lapse hallucination

Output at night

Portrait style transfer

Input: ordinary portrait Output: stylized portrait

Conclusions

- Dramatic style changes from the example
 - time-of-day, portrait

Approximate complex physical interactions or creative processes

Key #1: data

Search for good examples from a database

- "Small data" seems to be already sufficient
 - time-lapse database: 500 videos
 - portrait database: ~50 pics / style

Key#2: local transfer

A dense correspondence to capture the semantics

- Time-of-day: locally affine transfer
 - exploit color variations

Portraits: local and multi-scale transfer

Potentials of cloud computing

Use a shared database

- The transformation is easier than the output image [ongoing work]
 - low-dimensionality of scene appearance variation through different time-of-day
 - low-passed gain maps on portraits

Open questions: beyond graphics?

We have achieved the visual realism

Can we extract physical information?

Portrait: predicting the aging?

[Kemelmacher-Shlizerman et al. 2014]

Acknowledgements

My advisors and the authors of the two papers in the talk

Fredo Durand

Bill Freeman

Sylvain Paris

Connelly Barnes

Thanks for feedback

Adrian Dalca Ce Liu Michael Rubinstein Pierre-yves Laffont Jianxiong Xiao Michael Gharbi **Krzysztof Templin Kelly Castro** Manohar Srikanth

Acknowledgements

Dilip Krishnan

Sam Hasinoff

Abe Davis

Andrew Adams

Donglai Wei

Neel Joshi

Brian Guenter

Vivek Kwatra

Troy Chinen

Hui Fang

Sergey Ioffe

Jon Barron

MIT Graphics Group
MIT Vision Group

Other projects not in this talk

Noise estimation

Lens calibration

Speckle photography

Reflection removal

Efficient stereo

Acknowledgements

Prof. Fredo Durand Prof. Bill Freeman Prof. Wojciech Matusik

Dr. Sylvain Paris

Thank you

Time-lapse hallucination

Output at night

Portrait style transfer

Input: ordinary portrait Output: stylized portrait

Face noise estimation using personal photos [ICCV2013]

Use face correspondences to estimate noise levels

Image enhancement using calibrated lens [ECCV2012]

 Lens has spherical and chromatic artifacts

(b) Lens prescription and simulations

6mm #58202

Image enhancement using calibrated lens [ECCV2012]

 Lens has spherical and chromatic artifacts

(b) Lens prescription and simulations

6mm #58202

Remove chromatic aberration

Laser speckle photography [CVPR 2012]

Surface tampering detection

Camera + laser projector

Speckle image

Laser speckle photography [CVPR 2012]

Surface tampering detection

Camera + laser projector

Speckle image

Invisible tampering detected by us

Reflection Removal [under review for CVPR 2015]

Key idea: ghosting cues in reflections

Input spoiled by reflections of text

Recovered Transmission

Recovered Reflection

Efficient Stereo for Refocusing [under review for CVPR 2015]

Key idea: regularize on bilateral grid

Input stereo pair (left view)

Reconstructed depth map

Shallow depth-of-field effect

Application: lighting transfer

Code and data are available

- Matlab code
- Flickr evaluation dataset

```
people.csail.mit.edu/yichangshih/portrait_web/
```

Reference

- [1] YiChang Shih, Sylvain Paris, Connelly Barnes, William T. Freeman, Fredo Durand, "Style Transfer for Headshot Portraits", SIGGRAPH 2014
- [2] YiChang Shih, Sylvain Paris, Fredo Durand, William T. Freeman, "Data-driven Hallucination of Different Times of Day from a Single Outdoor Photo", SIGGRAPH Asia2013
- [3] YiChang Shih, Vivek Kwatra, Troy Chinen, Hui Fang, Sergey Ioffe, "Joint Noise Level Estimation from Personal Photo Collections", ICCV 2013
- [4] YiChang Shih, Brian Guenter, Neel Joshi, "Image Enhancement using Calibrated Lens Simulations", ECCV 2012
- [5] YiChang Shih, Abe Davis, Samuel W. Hasinoff, Fredo Durand, William T. Freeman, "Laser Speckle Photography for Surface Tampering Detection", CVPR 2012
- [6] YiChang Shih, Dilip Krishnan, Fredo Durand, William T. Freeman, "Reflection Removal using Ghosting Cues", in submission to CVPR 2015
- [7] Jonathan T. Barron, Andrew Adams, YiChang Shih, Carlos Hernandez, "Fast Bilateral-Space Stereo for Synthetic Refocus", in submission to CVPR 2015
- [8] L. Pickup, Z. Pan, D. Wei, Y. Shih, C. Zhang, A. Zisserman and B. Schölkopf, W. Freeman, "Seeing the Arrow of Time", CVPR 2014

Previous work: style transfer

Make the input look like the provided example

Input

Example

Output by Bae et al. [2006]

Global transfer

[Reinhard et al. 2001, Bae et al. 2006, ...]

Work well on simple scenes

Input

Example

Output [Pitié et al. 2007]

Conclusion on local transfer

Achieve dramatic style changes

Require examples of similar semantics

- Benefit from a large image database
 - eg., the Internet

Changing time-of-day

- Entail advanced operations
 - brushes, layers, curves...

Original

Retouched

Hard problem

Physical simulation would need complex modeling

Input image at day time

Ground truth image at night

Hard to retouch

Still non-trivial

Input

Example

Color matching (failed) [Reinhard et al. 2001]

The semantic information is overlooked!

Why care about retouching?

- Conveying a unique mood
- Make a picture more memorable
- Impress people

Original

Retouched

Photograph retouching

Before After

Photograph retouching

- Convey the mood
- Make it memorable
- Impress people

Before After

Photograph retouching

Instagram

Photoshop

(Facebook)

Tedious works

Time consuming

- 10-20 minutes with tutorials

[Berthouzoz et al. 2009]

Let's automate them

