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Changing a style

» Same content, different visual appearances

* Convey a unhigue mood
* Make it memorable
* Impress people



Styl e VS . CO nte nt [Tenenbaum and Freeman 2000]

* Decompose an image into the style and content
* Modify the style, while preserving the content




More examples of changing style

* Contrast adjustment, exposure correction,
color restoration ...

Bae et al. [2006] P ——

[2011]
Bychkovsky et al. [2011] Kaufman et al. [2012]



Styl e t ra n Sfe r [Reinhard et al. 2001, Bae et al. 2006, ...]

* Match the colors in the user-supplied example

 Work well on simple scenes




This work: challenging styles

* Changing the time-of-day

'4:00 PM 6:00 PM

Image courtesy of Adrian Dalca



Hard problem

 Water and building become different color

* Depends on material, lighting, physical interaction
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Hard problem

 Water and building become different color
 Depends on material, lighting, physical interaction

'4:00 PM 6:00 PM

building
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Creative
style

Raw i |mage captured by a camera

Stylized by photographers



This work: leverage the power
of data

a2
A 4(

Image database Stylized output
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Input
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Style transfer from a good examples

Input Example Stylized output
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Contribution: local style transfer

* Leverage semantic information by dense
correspondences

Input Example Stylized output



Preview

Input Example Stylized output



Close up
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Input Our output at night



Overview of this talk

* Time-lapse hallucination
(SIGGRAPH Asia 2013)

* Portrait style transfer
(SIGGRAPH 2014)

Input: ordinary portrait Output: tyIized portrait
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Overview of this talk

* Time-lapse hallucination |
(SIGGRAPH Asia 2013) |

* Portrait style transfer
(SIGGRAPH 2014)

Input: ordinary portrait Output: stylized portrait
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Hallucinate scene color variation over time

* Use the photo at time A to predict the photo at time B.

Output: time B

P
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Hallucinate scene color variation over time

* Use the photo at time A to predict the photo at time B.

Input: time A
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@ KenRockwell.com

perfect [kenrockwell.com]
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Hard problem

* The color change is spatially-variant!

'4:00 PM 6:00 PM

Colors are close at day Become very different at sunset
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Hard problem

 Water and building become different color

'4:00 PM 6:00 PM

water building water building



Related work: global color transfer

 Match global color statistics

 Works on simple scenes
[Reinhard et al. 2005, Pouli and Reinhard, 2011, Pitie et al. 2005, ...]

 Complex scenes require spatially-variant transfer




Related work: image relighting

* Use image collection of the scene [Laffont et al., 2012]
* Use 3D scene model [Kopf et al., 2009]

“

Input Relit result

* We want a general machinery, not rely on data for a
specific input image

29
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Related work: analyzing time-lapse video

* Produce good results, but need manually modeling
the scene [Lalonde et al, 2009]

Input at daytime Time A Time B Time C



Problem statement

Input: a single photo + target time of day

Output:
- the same scene as if it was taken at the target time

- automatic

Input: single photo Output at new time




Our idea: using time-lapse videos

32

* Cover color changes at different times of a day
* Labeled with time of day



500 videos taken at various outdoor scenes




Overview

1. Match input to video from database

Matched time-lapse video
SN/ ']

Target time: 9pm

34



Overview

1. Match input to video from database

Matched time-lapse video

" oml

Input F’ PM
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Overview

1. Match input to video from database
2. Transfer color change

Matched time-lapse video

Output
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Overview

1. Match input to video from database

2. Transfer color change

Matched time-lapse video

Output

37



Matching step 1: video level

* Video retrieval with off-the shelf scene
matching technique [Xiao et al. 2010]

Database

Output:
video of similar scene




Matching step 2: frame level

* Select the best match frame by color histogram

Matched frame
Tat
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Matching step 3: pixel level

* Respect scene semantic
- sky to sky, building to building, etc.

Input Matched frame

* Dense correspondence using Markov random field
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Markov Random Field for dense matching

 Data term: standard L2 norm

* Regularization term: aggregate over the entire
sequence, not just the matched frame

— Consistency over all time of day




42

Warp the matched frame to the input

* Capture the scene semantics ©

Mark £\diadrea201p
Uil e

Matched frame Warped matched frame



Naive transfer: warp the target frame

e Using the same correspondence
* The texture in the warped image is wrong

Target frame Naive transfer

43
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Our approach: locally affine color transfer

* Local to handle complex scenes

* Affine color transfer in each patch
— preserve the structure of the input
— match ground truth data

Input Final output

Locally affine model



Locally affine model explains the color
change of time-lapse data

* |In particular, explain the matched and target frame

Warped match frame Warped target frame
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The transfer needs to be locally affine
everywhere

* The patches are overlapping, so we cannot
estimate the affine model independently on
each patch



Color transfer as an optimization

 We are looking for color remapping function
— Objective #1: explain time-lapse data
— Objective #2: locally affine everywhere

* We design a least-squares energy

— Sparse linear system



 Maek .u'_;_x??._mg;a 2010
e i

1. Matched video
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Input 1. Matched video



1. Matched video

Ao
A

2. Locally affine transfer




Input at sunset




atched frame |
Input at sunset v
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Our result at night

u‘
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Results: four different times of day

After sunset (blue hour)



After sunset (blue hour)
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Our result at night

Ground truth
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Our transfer is spatially-variant

Input at day Output at golden hour
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Our transfer is object-dependent

Input at day Output at night

building sky building sky



59

More results: cloudy input

Cloudy input Output at after sunset
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More results

Output at night

Input at after sunset



Mountain view

Input at day

Output at blue hour




Lake scene
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Input at day

Output at night



Comparisons

[Pitié et al. 2005]

Target frame

[Reinhard et al. 2001]

W Yy

Our method
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Color Transform vs Color Distribution
e Our result is more golden

Input Matched frame Target at golden hour

Photoshop color match:
only use target frame

05



Applications

* Image editing tool

00
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Application: translate the time of day
of a painting

Input at day Output at blue hour

“In the Auvergne”, Jean-Francois Millet
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?

ight at Day

Starry N
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Limitations

* Dynamic scenes are challenging
* Night-to-day case does not work well

Night to Day Match frame

Failed output




Summary on time-lapse hallucination

* Time hallucination: render an image at another time
* Use a time-lapse database + locally affine transfer
* Transfer the color variation

Input
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Recently related work : different seasons

* Use time-lapse videos of a year [Laffont et al. 2014]




Overview of this talk

* Time-lapse hallucination |,
(SIGGRAPH Asia 2013)

* Portrait style transfer
(SIGGRAPH 2014)

Input: ordinary portrait Output: stylized portrait



Professional portraits look better

Ordinary photo Professional photo

74



The goal: make good portraits easy

e Make look like

Ordinary photo Professional photo

* Transfer the style from the example photo
* Automatic

75



We work on headshots

 What we match: retouching, texture, lighting

 What we do not match: pose, expression,
clothing, focal length, aperture



7T

Preview our result

Input




Hard problem

 Global color transfer is not sufficient

Input Example Our method

[HaCohen et al. 2010]
(lighting and details
are missing)
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Related work: global transfer

[Bae et al. 2006, Sunkavalli et al. 2010...]
 Work well on landscapes

: ‘ ‘
~ .
w
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Input Model Output by Bae et al. [2006]

* Do not work as well on portraits
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Related work: global transfer

[Bae et al. 2006, Sunkavalli et al. 2010...]
 Work well on landscapes

Input Model Output by Bae et al. [2006]

* Do not work as well on portraits



Related work: local style transfer

* Time hallucination [Shih et al. 2013, Laffont et al. 2014]

Input: afternoon Example images Output: night

* Requires two images: before and after



Related work: face enhancement

[Joshi et al. 2010, Shih et al. 2013 ...]

* Image restoration: deblurring, denoising ...

Blurred input face Examples Output: deblurred face

 We focus on photographic stylization.

82



Problem statement

* Input: a casual frontal portrait and an example

* Output:
- The input portrait rendered in the example style
- Automatic
- The style includes texture, tone, and color



Key idea #1: local transfer

* Local: eyes, nose, skin, etc. are treated differently

Input



Key idea #1: local transfer

* Local: eyes, nose, skin, etc. are treated differently

Input
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Key idea #2: multi-scale transfer

* Textures at different scales are treated differently

Portrait #1 Portrait #2



Key idea #2: multi-scale transfer

* Textures at different scales are treated differently

Portrait #1 Portrait #2

g7



Overview of the algorithm

1. Dense matching between the input and example
2. Multiscale transfer of local statistics
3. Post processing on eyes and background

Input l Example Step 1: matching Step 2: transfer Step 3: post processing



Step 1: dense matching

* Rigid warp + SIFT flow to aligh semantic features
[Liu et al. 2008]

A E o
G e gz
R
i e S
PR RS
A‘,

Input ‘xmple - Warped example

O
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Step 2: multi-scale local transfer

Example



Step 2: multi-scale local transfer

1. Construct Laplacian stacks for the input and the example>

Example

91



Step 2: multi-scale local transfer

1. Construct Laplacian stacks for the input and the example>

' 2. Llocal match

at each scale

Example

92



Step 2: multiscale transfer of local statistics

1. Construct Laplacian stacks for the input and the example

>

2. Local match
at each scale




Step 2: multi-scale local transfer

1. Construct Laplacian stacks for the input and the example

) N

3. Collapse the matched stacks to create the out

put of this step

>

2. Local match
at each scale

04



Local energy .$

Example Laplacian Local energy

Gaussian kernel at this scale
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At each scale: match local energy

Input energy Example energy

96



At each scale: match local energy

Compute
the gain map

Input Laplacian

d

Local energy S[I]

97

arp(S[E])

JW

S[]



Compute
the gain map

arp(S[E])
S[I]

Modulate
the input Laplacian

Input Laplacian Gain map Output Laplacian
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Robust transfer

* Clamp the gain map to avoid artifacts
caused by moles or glasses on the example

Example Without robust transfer ~ Qur robust transfer
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Laplacian using a face mask

* Preserve the hair boundary using normalized
convolution and a face mask

Without using the mask Our method
(the edges disappear) (the edges are preserved)

Input Example
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Step 3: post-processing

* Adding eye highlights
* Replacing the background

NS

hlights Adding eye highlights
(Our final result)

A . i ) ii Y G oM | : ‘i \
Input Example Without eye hig
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Algorithm recap

Input Example Step 1.
Dense alignment
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Algorithm recap

Input Example Step 1. Step 2.
Dense alignment Local transfer
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Algorithm recap

Input Example Step 1. Step 2. Step 3.
Dense alignment Local transfer Eyes and
background
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Automatic example selection

* Retrieve the best examples based on the face
similarity between the input

Input The top three retrieved results
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Automatic example selection

 The results are robust to the example choices

Input Style transferred results using the top three examples
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ReS u Its Examples are shown in the insets

Input
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Close-up

Input Example



Example
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More results

Input




Outdoor input




Extra results

Input
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Comparisons

Input Example Global transfer Our result
[Bae et al. 2006]



114

Our method [Sunkavalli et al. 2010]

Histogram transfer [Reinhard et al. 2001] [Pitié et al. 2007] Photoshop Match Color
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Different success levels: good results

* The inputs are well lit




Hard case
 Matting (face mask) failure




Limitations

* Require the input and the example to have similar facial
attributes, e.g., skin color

* Cannot handle hard shadows on the input

Example Failure output



Evaluation

* 94 headshot inputs
from Flickr

 Available on our
website
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xtension to videos

Input sequence with extreme facial expressions ~ Our style transfer result using the example in the gray box
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Summary

 We introduce a style transfer algorithm tailored for
headshot portraits.

* Based on multiscale transfer of local image statistics

Input }7 Example
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Recap of this talk

* Time-lapse hallucination

' ’ l"_ ¥‘v

Input at afternoon Output at night

* Portrait style transfer

Input: ordinary portrait Output: tyIized portrait



Conclusions

* Dramatic style changes from the example
- time-of-day, portrait

* Approximate complex physical interactions or
creative processes



Key #1: data

* Search for good examples from a database

* “Small data” seems to be already sufficient
- time-lapse database: 500 videos
- portrait database: ~50 pics / style




Key#2: local transfer

* A dense correspondence to capture the semantics

* Time-of-day: locally affine transfer
- exploit color variations

 Portraits: local and multi-scale transfer



Potentials of cloud computing

 Use a shared database XL

 The transformation is easier than the output
image [ongoing work]

- low-dimensionality of scene appearance
variation through different time-of-day

- low-passed gain maps on portraits



Open questions: beyond graphics?

e We have achieved the visual realism
* Can we extract physical information?

* Portrait: predicting
the aging?

- :
-3 ' .“ . A ,; ; ” o
e - » -
’ e e- e
m m ‘ ‘
y .

[Kemelmacher-Shlizerman et al. 2014]
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Other projects not in this talk

‘ BM3D

o=14.5 I
e -. e |
-

Noise estimation Lens calibration Speckle photography

Pinholes array Camera

Reflection removal Efficient stereo
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Thank you

* Time-lapse hallucination

o :f_"

* Portrait style transfer

Input: ordinary portrait Output: tyIized portrait
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Face noise estimation using
personal photos jiccv2013)

e Use face correspondences to estimate noise levels

Input BM3D Input




Image enhancement using calibrated lens (eccvao12,

* Lens has spherical and
chromatic artifacts

(b) Lens prescription and simulations

6mm #58202
18mm #54857 12mm #548547
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Image enhancement using calibrated lens (eccvao12,

Input

* Lens has spherical and
chromatic artifacts

(b) Lens prescription and simulations

6mm #58202 Remove chromatic aberration

18mm #54857 12mm #54854

. ,,,I’ ‘

. /7,,,7?» /] ?E/
I =

. -

-
.
X\—

|
L

u Remove spherical aberration




Laser speckle photography icvrzo

e Surface tampering detection

Consumer camera
Object surface

- =N
> 4 \ Micro-tase
el projector
!

Camera + laser projector Speckle image



Laser speckle photography icvrzo

e Surface tampering detection

Consumer camera
Object surface

(c)

ctor

Camera + laser projector Speckle image Invisible tampering
detected by us
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Reﬂ eCU on Re Maovada | [under review for CVPR 2015]

* Key idea: ghosting cues in reflections

= T TR
. B

Input spoiled by Recovered Transmission Recovered Reflection
reflections of text
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Efficient Stereo for Refocusing (under review for cver 2015]

* Key idea: regularize on bilateral grid

Input stereo pair Reconstructed depth map Shallow depth-of-field effect
(left view)



Application: lighting transfer

Match frame

Input (cloudy)




Code and data are available

e Matlab code
* Flickr evaluation dataset

people.csail .mit.edu/yichangshih/portrait web/
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Previous work: style transfer

 Make the input look like the provided example

Input Example Output by Bae et al. [2006]
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G | O ba I t ra n Sfe r [Reinhard et al. 2001, Bae et al. 20086, ...]

 Work well on simple scenes

Example



Conclusion on local transfer

* Achieve dramatic style changes
* Require examples of similar semantics

* Benefit from a large image database
- eg., the Internet



Changing time-of-day

* Entail advanced operations
- brushes, layers, curves...

A

i EDITED
Original Retouched

INALZY:




Hard problem

* Physical simulation would need complex modeling

b i) ras

Input image at day time Ground truth image at night



Hard to retouch
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Still non-trivial

Example Color matching (failed)
[Reinhard et al. 2001]

The semantic information is overlooked!
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Why care about retouching?

* Conveying a unigue mood
* Make a picture more memorable
* I[mpress people

Retouched
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Photograph retouching

After
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Photograph retouching

= = - ‘-‘
P"  Convey the mood

* Make it memorable

* Impress people

Before After
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Photograph retouching | R

Light room
Photoshop Auto enhance

# (Facebook)
Auto awesome q

(Google) Gimp
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Tedious works

* Time consuming
- 10-20 minutes with tutorials
[Berthouzoz et al. 2009]

e Let’s automate them




