
 We estimate {𝜎𝑖}  conditioning on {𝜌𝑖𝑗
∗ } 

 𝜎𝑖
2 =argmin   𝑤𝑖𝑗 𝜎𝑖

2 − 𝜎𝑗
2 − 𝜌𝑖𝑗

∗ 2
𝑖≠𝑗    

𝑤𝑖𝑗: similarity between two faces 

 
 Solving a linear system 
 The system is under-determined, up to adding 

 a constant number.  
- option 1: assign some images to be zero noise 
- option 2: assuming the collection contains clean  
images, assign the least noisy one to be zero. We use this one for evaluations  
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Goal 

Pair-wise Relative Noise 𝜌𝑖𝑗  Estimation 

Contributions Overview 

Absolute Noise Level Estimation with Global Optimization 

Results Ground Truth Experiment and Comparison 

 Given a set of face images from the same person, taken 
under different lighting and cameras, estimate the noise 
levels in each image 
 
 
 

 
 

 𝑰𝑛 = 𝑰𝑜𝑟𝑖𝑔 + 𝒏, i.i.d, zero mean. 𝜎 = noise level ≜ 𝑠𝑡𝑑[𝒏] 

 This is difficult because we cannot decouple 𝒏 from 𝑰𝑛 

 Key observation: given two noisy images, the noise 
levels are correlated if they share the same underlying 

image content, since 𝜎1
2 − 𝜎2

2 = 𝑣𝑎𝑟[𝑰𝒏,𝟏] − 𝑣𝑎𝑟[𝑰𝒏,𝟐] 

 
 We formulate the estimation as maximizing the joint 

probability distribution between all images’ noise levels 
 

 The joint distribution is conditioned on the pair-wise 

relative noise levels {𝜌𝑖𝑗|𝜌𝑖𝑗 ≜ 𝜎𝑖
2 − 𝜎𝑗

2}. We use a two-

stage optimization that first estimates {𝜌𝑖𝑗}, then {𝜎𝑖} 

Starting from a face image collection:  
 Preprocess: geometrically and photometrically align the 

images with affine transform and color match 
 

 Two-stage optimization: 
 Estimating {𝜌𝑖𝑗}: We take a patch-based method. We 

first find the patch correspondence between 𝑰𝒊 and 𝑰𝒋, 

then find the best estimated relative noise {𝜌𝑖𝑗
∗ } from 

the patch pairs. 

 With {𝜌𝑖𝑗
∗ }, estimate {𝜎𝑖} by constraining 𝜎𝑖

2 − 𝜎𝑗
2 = 𝜌𝑖𝑗

∗  
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User Study 

 The two faces are not perfectly aligned 
 

 We break down the image into patches, and 
 estimate the patch-wise relative noise  
levels 𝜁𝑝𝑞 by 𝜁𝑝𝑞 ≜ 𝑣𝑎𝑟[𝒑1𝑝] − 𝑣𝑎𝑟[𝒑2𝑞] 

 
 

 Compute pair-wise relative noise by aggregating 𝜁𝑝𝑞:  

 
 
 

• 𝑐𝑝𝑞 = exp (−𝜅𝑝𝑞 𝒑1𝑝 − 𝒑2𝑞
2

), confidence that (𝑝, 𝑞) is a true correspondence 

 
• For computational efficiency, we selected the best 5 𝑞 s for each 𝑝 

 

𝜌12
∗ =

 𝑐𝑝𝑞𝜁𝑝𝑞𝑝,𝑞

 𝑐𝑝𝑞𝑝,𝑞
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Selected References 

 We show one example below with estimated 
noise levels and denoised result using BM3D + 
our method for noise parameter 

 More subjects 

 Based on BM3D denoised result, decide which 
one is preferable 

 Ran on 71 images, each is evaluated by 3 users 

 Add synthetic Gaussian noise with different parameters 
 Compare estimated noise levels and denoised result by BM3D 

σ 19.25 20.31 27 23 

PSNR 22.33 34.65 34.53 34.65 

Clean image Synthetic noise Our method Metric-Q Best BM3D 
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