

Joint Noise Level Estimation from Personal Photo Collections

Vivek Kwatra¹ Troy Chinen¹ Hui Fang¹ YiChang Shih^{1*,2} ²MIT CSAIL ¹Google Research

Goal

Given a set of face images from the same person, taken under different lighting and cameras, estimate the noise levels in each image

• $I_n = I_{orig} + n$, i.i.d, zero mean. σ = noise level $\triangleq std[n]$ • This is difficult because we cannot decouple n from I_n

Pair-wise Relative Noise $\{\rho_{ij}\}$ **Estimation**

- The two faces are not perfectly aligned
- We break down the image into patches, and estimate the patch-wise relative noise levels ζ_{pq} by $\zeta_{pq} \triangleq var[\mathbf{p}_{1p}] - var[\mathbf{p}_{2q}]$
- Compute pair-wise relative noise by aggregating ζ_{pq} :
- $c_{pq} = \exp(-\kappa_{pq} \| \boldsymbol{p}_{1p} \boldsymbol{p}_{2q} \|^2)$, confidence that (p,q) is a true correspondence
- For computational efficiency, we selected the best 5 q s for each p

Absolute Noise Level Estimation with Global Optimization

- We estimate $\{\sigma_i\}$ conditioning on $\{\rho_{ii}^*\}$
- $\{\sigma_i^2\}$ = argmin $\sum_{i\neq j} w_{ij} \|\sigma_i^2 \sigma_j^2 \rho_{ij}^*\|^2$ w_{ii}: similarity between two faces
- Solving a linear system
- The system is under-determined, up to adding a constant number.
 - option 1: assign some images to be zero noise

- option 2: assuming the collection contains clean images, assign the least noisy one to be zero. We use this one for evaluations

Contributions

- Key observation: given two noisy images, the noise levels are correlated if they share the same underlying image content, since $\sigma_1^2 - \sigma_2^2 = var[I_{n,1}] - var[I_{n,2}]$
- We formulate the estimation as maximizing the joint probability distribution between all images' noise levels
- The joint distribution is conditioned on the pair-wise *relative* noise levels $\{\rho_{ij} | \rho_{ij} \triangleq \sigma_i^2 - \sigma_j^2\}$. We use a twostage optimization that first estimates $\{\rho_{ii}\}$, then $\{\sigma_i\}$

1

 $=\frac{\sum_{p,q} c_{pq} \zeta_{pq}}{\Box}$ ho_{12}^*

2

Results

More subjects

User Study

one is preferable Input image

We show one example below with estimated noise levels and denoised result using BM3D + our method for noise parameter BM3D

Based on BM3D denoised result, decide which

Ran on 71 images, each is evaluated by 3 users Our method Metric-Q

Sergey loffe¹

*Internship work at Google

Overview

Starting from a face image collection: Preprocess: geometrically and photometrically align the images with affine transform and color match

- Two-stage optimization: the patch pairs.

Ground Truth Experiment and Comparison

Selected References

C. Liu, R. Szeliski, S. Kang, C. Zitnick, and W. Freeman. Automatic estimation and removal of noise from a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 2008

X. Zhu and P. Milanfar. Automatic parameter selection for denoising algorithms using a noreference measure of image content. IEEE Transactions on Image Processing, 19(12), 2010.

Acknowledgements

We thank MIT Graphics and Vision group for helpful discussion. We would like to thank the volunteers who participated in the user study.

Estimating $\{\rho_{ij}\}$: We take a patch-based method. We first find the patch correspondence between I_i and I_j , then find the best estimated relative noise $\{\rho_{ii}^*\}$ from

 \succ With $\{\rho_{ii}^*\}$, estimate $\{\sigma_i\}$ by constraining $\sigma_i^2 - \sigma_i^2 = \rho_{ii}^*$

Add synthetic Gaussian noise with different parameters