
Bars Removal by Multiview Images

YiChang Shih, Hsin-Jung Yang

May 12, 2011

1 Introduction

Imagine that you are walking around a zoo. You want to take a good picture

of a lion, but the bars in front of the lion are really annoying. What can you

do? You probably don’t want to reach into the cage and take the risk of losing

your hand. In this project we propose an image post-processing technique

by multiview images to remove bars. A user take multiple pictures from dif-

ferent viewpoints, and then get a synthesized picture without bars as output.

Our algorithm is made of 3 main stages: in the first stage, we segment

the bars, and in the second stage, we align the animal images. In the third

stage, we perform patch matching, and find the patch to complete the pixels

hidden by the bars. We also address the issue that the animal might move

or change pose between two viewpoints.

The results show that our algorithm can remove most bars, and generate

visually good composite images.

1



Bar

Segmentation

Image Alignment 

SIFT Feature 

Matching

Feature 

Selection
Warping

Patch 

Matching

Figure 1: Algorithm Flowchart

2 Related Work

Texture Synthesis Our work is to fill the pixels on the bars, so it is similar

to texture synthesis and image completion. This field has been studied for

a long time[1, 2]. In particular, our method is similar to Efros’s work [1].

However, instead of a fixed non-parametric model in their work, our model

for image completion depends on the position of unknown pixels. Besides, in

our work, we need to carefully handle the bars in the images.

Feature-Based Alignment In the first stage of our algorithm, we apply

the feature-based image alignment to match the animal images. Our work

is more sophisticated than the traditional alignment, because we need to

remove the features of bars.

3 Algorithm Overview

In order to remove bars from the reference image, the first step is to segment

the bars. Then, we want to choose the best candidate from other view-

points to patch up the bars. As shown in Figure 1, after segmentation, we

perform the feature-based alignment to label corresponding pixels in other

images. Because the center of projection is not fixed when taking pictures,

it is impossible to perfectly align those images. Therefore, we perform patch

matching to search for the best candidate instead of directly pasting the

corresponding pixels.

2



reference 

image patch

Min SSD Selection

replace 

central point

aligned images

reference image

Figure 2: Patch Matching Algorithm

3.1 Bar Segmentation

Observing that bars are usually monochromatic, we manually select some

bar pixels and train a Gaussian model. Then we use it to segment bars.

3.2 Feature-Based Alignment

To align an image to the reference viewpoint, first, we use the scale-invariant

feature transform (SIFT) [3] to extract features and match them with the

features on the reference image. Then, we perform feature selection to remove

bar features. At the final step, we warp the image to find the corresponding

position of each pixel.

3.3 Patch Matching

Figure 2 shows how the patch matching algorithm works. First, we crop

a template (typically 5x5) from the reference image. Then, we crop larger

patches from other viewpoint images at the corresponding positions. Then

we do template matching on those patches, and find the best candidate.

3



Figure 3: Bar removal from multiviews. (a)-(e) Images from 5 viewpoints.
(f) Our result (g) Ground truth

4 Result

Figure 3 shows our result. All the images are taken by Nikon D80, 50mm

lens. If we take a closer look at Fig. 3, there are some differences between

our result and the ground truth, for instance, the right eye-ball and the right

ear of the fox. But the result in general looks visually good.

Figure 4 shows the non-static scene (the animals move between two view-

points). Note that the occluded parts (the right side of the fox) cannot be

recovered.

4



Figure 4: Non-static scene. (a)-(b) Images from 2 viewpoints. The rabbit
and the tiger switch the positions between (a) and (b). (c) Our result. (d)
Ground truth.

References

[1] A. Efros and T. Leung, “Texture synthesis by non-parametric sampling,”

in iccv. Published by the IEEE Computer Society, 1999, p. 1033.

[2] A. Efros, W. Freeman et al., “Image quilting for texture synthesis and

transfer,” in Proceedings of SIGGRAPH 2001. Citeseer, 2001, pp. 341–

346.

[3] D. Lowe, “Object recognition from local scale-invariant features,” in iccv.

Published by the IEEE Computer Society, 1999, p. 1150.

5


