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Light Field Analysis for Modeling Image Formation
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Abstract—Image formation is traditionally described by a
number of individual models, one for each specific effect in the
image formation process. However, it is difficult to aggregate the
effects by concatenating such individual models. In this paper, we
apply light transport analysis to derive a unified image formation
model that represents the radiance along a light ray as a 4-D
light field signal and physical phenomena such as lens refraction
and blocking as linear transformations or modulations of the
light field. This unified mathematical framework allows the entire
image formation process to be elegantly described by a single
equation. It also allows most geometric and photometric effects of
imaging, including perspective transformation, defocus blur, and
vignetting, to be represented in both 4-D primal and dual domains.
The result matches that of traditional models. Generalizations and
applications of this theoretic framework are discussed.

Index Terms—Defocus blur, image formation, light field, light
transport analysis, perspective transformation, vignetting.

I. INTRODUCTION

M ODELING the appearance of a scene on an image is the
most fundamental step in image processing and com-

puter vision. It entails the use of the properties of scene (geom-
etry, reflectance, etc.) and imaging system (location, lens, etc.)
to control image formation. The scene appearance models char-
acterize the scene properties and map the scene to the image.

Traditional image formation modeling describes each specific
imaging phenomenon by an individual model. For example, the
classic pinhole camera model describes the perspective projec-
tion part of an image formation process. Since the image forma-
tion process usually involves various geometric and photometric
effects, such as defocus blur and vignetting, it is often difficult
to describe the combined effect by concatenating the individual
models, if possible at all.

In this paper, we develop a unified framework for modeling
the image formation process by representing the radiance along
the light ray as a high-dimensional light field. An ordinary image
is a projected signal of the light field. With this framework,
the transportation of the radiance from the object surface to the
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image plane can be simply formulated as linear transformations
or modulations of the light field. Furthermore, these various
light field manipulations can be combined into a single opera-
tion to account for the aggregation of photographic effects. The
light field representation also enables spectral analysis of the
radiance distribution, leading to mathematically more elegant
analysis of the photographic effects in the frequency domain.

A unified framework of image formation is appealing. It
allows all photographic effects to be modeled on the same base
and facilitates a better estimation of the scene and imaging
parameters. It encompasses all elements of the light transport
process of an imaging system and is applicable to different
kinds of imaging systems. Although light transport analysis
has been applied to many image-related problems, a unified
framework for image formation has not been proposed till now.

The rest of the paper is organized as follows. Section II
describes the related work on image formulation and light
transport analysis. Section III presents various light field oper-
ations that serve as the basic building blocks of our framework.
Section IV shows how these operations can be combined into
a single photographic operation and how the transportation of
light from the object surface all the way to the image sensor
can be represented. Section V discusses the relation of the
proposed unified framework to the traditional photographic
models. The generalizations, applications, and limitations of
the framework are discussed in Section VI, followed by a
conclusion in Section VII.

II. RELATED WORK

A. Image Formation

Image formation modeling, which describes the appearance
of objects on an image, has been studied for decades, and the
basic models can be found in computer vision and image pro-
cessing books [1], [2].

Existing image formation models can be roughly classified
into two categories. The first category deals with the geometrical
aspect of image formation. For example, the projection of a 3-D
scene onto a 2-D image is modeled as a perspective transforma-
tion, and the image of an out-of-focus scene is modeled as the
convolution of a sharp image with a spatially variant low-pass
kernel that is a function of object distance and camera parame-
ters [3]. The second category deals with the photometric aspect
of image formation. For example, the vignetting effect is usu-
ally modeled by a 2-D smooth function of view angle, surface
orientation, and camera parameters [1], [4].

While having been widely applied, such models have several
fundamental problems. First, as these models were separately
developed to account for different photographic effects, an in-
tegrated treatment of the effects is rather difficult to do. For ex-
ample, while the defocus blur and the vignetting are functions
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of the camera parameters, they cannot be analyzed together with
existing models. Second, most models are confined to the 2-D
image domain, which is not an ideal domain for analysis of a
number of photographic effects. For instance, an occluded ob-
ject can be partially observed by a lens camera because the fi-
nite-size aperture induces a small parallax, but this effect cannot
be analyzed in the image domain [6]. Third, while physically all
photographic effects occur simultaneously, existing models can
only be sequentially applied to the image. To our knowledge,
there is not yet any study about which order these models can
be applied to best describe the entire image formation process.
Last but not least, many models assume that a perfect image
can be used as the reference. However, this is not always true in
practice.

B. Light Transport Analysis

By representing the radiance of a light ray by a plenoptic
function [7] or light field [8], we can apply standard signal pro-
cessing techniques, such as convolution and spectral analysis
[9], to analyze the light transport. This concept was first used to
analyze the bandwidth of the light field. Chai et al. [11] showed
that the spectral support of the light field depends upon the range
of the scene depth and, thus, knowledge of scene geometry helps
improve the sampling and reconstruction efficient. In [12], a
depth-dependent reconstruction filter is proposed to suppress
the aliasing effect. Note, however, that only the propagation of
light rays in free space is considered in these studies.

Ramamoorthi and Hanrahan modeled the surface reflection as
a convolution [13], [14]. Typically, the surface acts as a low-pass
filter on the incoming light. Therefore, the lighting and the re-
flectance properties (precisely, the bidirectional reflectance dis-
tribution function) of the surface can be recovered from the
image by a simple deconvolution. This also implies that the sur-
face reflection may be efficiently evaluated in the frequency do-
main [15], which is the basic idea of many precomputed radi-
ance transfer algorithms [16].

The occlusion of the object in the path of a light ray may be
modeled as a modulation of the light field [17]–[20]. An ana-
lytical representation of the irradiance field due to diffuse emit-
ters and occluders is derived in [17]. The effect of modulation
is exploited to predict the bandwidth of the local light field for
efficient sampling [18], and the occluder is recovered from the
modulated light field [19]. In this paper, we describe the effect
of an aperture on the light field as modulation and discuss its
relation with the defocus blur.

Light transport analysis is a technique often employed in the
design of light field cameras and displays [21]–[26]. Ng showed
that a photo is equivalent to an integral projection of the light
field, or a slice of the light field spectrum [26]. Therefore, by
properly modulating or transforming the light field such that all
the information falls on the slice, a light field can be captured
with a 2-D sensor array [24].

The framework presented here is significantly different from
previous work in several ways. First, we present a full derivation
of the light transport from the object surface all the way to the
image plane, including the blocking effect of the aperture. On
the contrary, previous works usually present or utilize a small
part of this framework. For example, the effect of the aperture

is discussed in [21]. In [22], the light transport equation without
aperture is presented, but no derivation is provided. Second, un-
like previous work that only considers geometric transforma-
tion, we include photometric transformation in the light trans-
port process as well to account for effects such as vignetting.
Third, we show that the photographic effects such as perspective
transformation and defocus blur can be modeled in the unified
framework.

During the submission of the paper, Levin et al. concurrently
developed a related analysis to design a lattice-focal lens for
extending the depth-of-field [27]. There are a few notable dif-
ferences between their work and ours. First, we model the lens
refraction and aperture separately for better flexibility, while
they model them together as a single 4-D convolution for a sim-
pler representation. Second, while they focus on the analysis of
defocus blur in many different imaging systems, we develop a
framework to describe various photographic effects in the stan-
dard thin-lens camera.

III. LIGHT TRANSPORT OPERATIONS

In this section, we describe the representation of light field
and basic light transport operations. Like the traditional models,
we consider the effects of geometric optics [1], for which the
object and the space of concern are much larger than the wave-
length of the light, and neglect the wave effects such as diffrac-
tion and interference. We first describe how to represent the
radiances of light rays as a light field. Then, we describe the
light field operations corresponding to the propagation, refrac-
tion, and blocking of light rays. We also use Fourier analysis
to interpret these operations in the frequency domain. Finally,
we show that these operations can be combined into a single
one and that the backward light transport can be easily derived.
For conciseness, we only present the light transport operations
needed to model the image formation process. Other light trans-
port operations and analyses can be founded in [14] and [18].

A. Light Field Representation

In geometric optics, if a light ray can be uniquely parameter-
ized, the representation of its radiance value can be easily deter-
mined. Generally, a light ray in 3-D space can be represented by
a point (3-D) the light ray passes through and the direction (2-D)
of the light ray. Hence, the radiance of a light ray is a sample of
a 5-D signal, which is the plenoptic function [7].

However, the radiance measured along a light ray is constant
if the light ray is not blocked by any occluding object. Therefore,
when a light ray leaves the convex hull of a scene, the dimen-
sionality of the plenoptic function is decreased by one. In this
case, it has been shown that each light ray can be specified by
its intersections with two 2-D manifolds and that the radiance
of the light ray is a sample of a 4-D signal called light field [8]
or lumigraph [10]. We adopt the former name throughout the
paper.

An example of the light field representation is shown in Fig. 1.
Two infinite planes with independent coordinate systems are de-
fined on the right-hand side of the scene (a toy house). Each
rightward light ray emitted from the scene intersects these two
planes at two points: one at the coordinates on Plane 1
and the other at on Plane 2. Therefore, the radiance of
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Fig. 1. 4-D representation of a light ray in 3-D space.

TABLE I
NOTATION

a light ray, which is a sample of the light field , can be de-
scribed by

(1)

For simplicity, we derive our framework in 2-D space, where
2-D manifolds become 1-D and, thus, the light field becomes
2-D. The derivation is readily extendable to 3-D space as de-
scribed in Section VI. The notation used in this paper is defined
in Table I.

We use three different parameterizations to represent the light
field: plane–sphere, two-plane, and in-camera. In the plane–
sphere parameterization shown in Fig. 2(a), the light ray is repre-
sented by the intersection of the light ray with a reference plane

,1 denoted by , and the angle between the light ray and
the normal of the reference plane. In the two-plane parameteri-
zation, the light ray is represented by its intersections with two
parallel reference planes and as shown in Fig. 2(b), where

is at a unit distance from . The coordinates of the inter-
section point on are defined with respect to the intersec-
tion point on . That is, is defined in the local frame fixed
at . These two parameterizations are related to each other by

. For convenience, we call the -axis spatial axis and
the -axis angular axis since it is related to the direction of the
light ray.

1In 2-D space, a 2-D plane is degenerated into a 1-D line, but we still call it
plane for convenience.

Fig. 2. Light field representations. (a) Plane–sphere parameterization. (b) Two-
plane parameterization. (c) In-camera parameterization.

The third method, in-camera parameterization, is used to rep-
resent the light rays entering the camera, as shown in Fig. 2(c).
It is similar to the two-plane parameterization but one refer-
ence plane is aligned with the aperture plane and another with
the image plane. The distance between these two planes is .
The coordinate systems of these two planes are independent,
but their origins are on the optical axis of the camera.

The radiances of the light rays in different parameterizations
are measured in different ways. Traditionally, the radiance
along a light ray is measured by its power per unit
projected area and per unit solid angle. That is

(2)

In the plane–sphere parameterization, we remove the cosine
term and define the radiance as

(3)

In the two-plane parameterizations the radiance is defined as

(4)

We pack and into a vector to facilitate the derivation. The
conversion between these radiance representations is given in
Appendix A.

Because the light field under the two-plane parameteriza-
tion is a regular 2-D signal, it can be transformed to the Fourier
spectrum

(5)

where is the vector representation of the fre-
quency components. We use the calligraphic symbols to denote
the signal spectrums. Note that Fourier analysis used here is not
related to Fourier optics.

When the reference plane is aligned with the surface of
an object, the resulting light field, denoted by and illustrated
in Fig. 3, is called surface light field [28]. If the reflectance of
the object is Lambertian, the radiances of the light rays emitted
from the object are independent of the view angle. Therefore,
the light field can be described by a 1-D texture function

(6)
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Fig. 3. (a) Construction of the surface light field of a Lambertian object.
(b) Resulting light field. (c) Fourier spectrum of (b).

The derivation is described in Appendix B. Therefore, the sur-
face light field is constant in the direction. Moreover, because
it is invariant along the -axis, we have

(7)

where is the Dirac delta function. That is, all energies of the
spectrum fall on the plane in the Fourier domain, as
shown in Fig. 3(c).

If we move the location of the reference plane as the light rays
traverse in space, the light field representation is changed even
though the radiances of the light rays are not. In the following,
we discuss the operations of light field.

B. Light Ray Propagation

When a light ray traverses in free space, the radiance along the
light ray is unchanged. Consider the example shown in Fig. 4.
If we displace the reference planes by units in the center ray
direction, the representation of the light ray becomes

, and . We can relate the
original light field defined by planes and to the new
light field defined by planes and by

(8)

That is, when the light rays traverse by units, the new light
field is a linear transformation of the original light field, where
the transformation matrix is a function of .

Moreover, according to the Fourier linear transformation the-
orem [29], the spectrum of the light field is also the result of
a linear transformation of the original spectrum

(9)

Consider again the example in Fig. 4, assuming the surface
light field shown in Fig. 3(a) is the initial light field . As the

Fig. 4. Light ray propagation. (a) One light ray can be represented using two
different sets of reference planes. The initial light field is the surface light field
shown in Fig. 3, we can use (8) and (9) to obtain (b) the light field at � �

��� away from the surface, and (c) the spectrum of the transformed light field.
(d) and (e) Are the light field and its spectrum at � � ���, respectively.

light rays travel along the central ray by, for example, 100 units,
according to (8) the light field is sheared [Fig. 4(b)], so is the
corresponding spectrum of the light field [Fig. 4(c)]. As we in-
crease the distance between the surface and the reference plane,
the degree of shearing increases. Although the initial light field
contains only spatial variations, they become angular variations
due to the linear transformation.

C. Lens Refraction

According to the Snell’s law, a light ray changes its direction
when passing from one medium to another that has a different
refractive index. Unfortunately, this direction change cannot be
described as a linear transformation in the light field represen-
tation. However, for the purpose of image formation modeling,
we only have to consider lens refraction, not general refraction.
Specifically, we consider the thick lens or thin lens models in
Gaussian optics [5]. These models are commonly used in image
processing and computer vision.

For a thin lens model, if we align the reference plane X with
the thin lens, then the light fields before refraction is related
to the light field after the refraction by

(10)
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where is the focal length of the lens. We can see that the refrac-
tion of the lens can also be modeled as a linear transformation
of the light field. Similar to the case described by (9), the spec-
trum of the refracted light field is related to that of the original
light field by a linear transformation.

Note that matrices similar to and are used in matrix
optics to describe the behavior of individual light rays [30]. Here
we use them to transform the light field that represents the radi-
ances of all light rays. An advantage of analysis in the light field
space is that we can simultaneously describe both geometric and
photometric changes of the light rays. On the contrary, tradi-
tional matrix optics can only describe the geometric transfor-
mations of the light rays. Another advantage of light filed anal-
ysis is that the techniques well developed in signal processing
become immediately applicable.

D. Occlusion

When an occluder is present in the path of a light ray, the
radiance along the light ray cannot be propagated through the
occluder. This blocking effect can be described as a modulation
of the light field

(11)

where is the blocking function, or the shield field [19], of
the occluder. The value of controls how the light ray
is blocked or attenuated by the occluder. Unlike the previous two
operations that describe the geometric changes of the light rays,
the blocking operation describes the photometric changes of the
light rays in the light transport process.

According to the convolution theorem and the duality prop-
erty, when a signal is a modulation of inputs and , its
spectrum is the convolution of the two input signals

(12)

Determining the blocking function of an arbitrary occluder is
generally difficult. However, several occluders needed for our
analysis can be derived. For example, when an occluder is in-
finitesimally thin and is aligned with the reference plane ,
whether a light ray is blocked would solely depend upon the
intersection point with the occluder. In this case, the blocking
function and its spectrum are similar to the surface light field
of a Lambertian object

(13)

(14)

where is a 1-D signal describing the transmittance of the oc-
cluder. Clearly, the energy of the blocking function concentrates
on the plane and, thus, (12) is effectively a convolution
of a 2-D signal with a 1-D signal.

An example occlusion is illustrated in Fig. 5, where the initial
light field is the one shown in Fig. 4(d) and the occluder is a thin
periodic grating. Fig. 5(b) shows that the effect of occlusion is a
modulation of the light field by a periodic function. Because the
spectrum of the blocking function is a 1-D signal, convolving it
with the initial light field results in several small replicas along

Fig. 5. Effect of occlusion on the light field. (a) Thin periodic occluder is placed
at the reference plane. Assume the initial light field is the propagated surface
light field in Fig. 4(d), we can use (11) to obtain (b) the modulated light field
and (12) to obtain the convolved spectrum.

the -axis. The power of each replica depends upon the power
spectrum of the blocking function.

E. Reparameterization

For the light rays entering the camera body, we use the
in-camera parameterization shown in Fig. 2(c) to represent the
light field. By aligning the reference plane in the original
two-plane parameterization with the image plane, the light field

in the in-camera parameterization is represented as a linear
transformation of the original light field

(15)

where the scaling factor is the Jacobian of the transforma-
tion. Also, according to the Fourier linear transform theorem,
the spectrum of is a linear transformation of . In the fol-
lowing, we use the symbol to denote signals represented by the
in-camera parameterization.

F. Integration of Radiances Into an Irradiance

For a sensor with a uniform angular sensitivity, the sensed ir-
radiance value is the integration of the incoming radiances times
the sensor sensitivity,

(16)

where the second equality is due to different light field repre-
sentations. We can see that the 1-D irradiance is obtained by
integrating the light field along the -axis. Note that this formu-
lation is similar to the reflected reflectance from the Lambertian
object [18].
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For an -dimensional signal, integrating along – di-
mensions reduces the signal to -dimensional. This process is
called canonical projection operation. According to the Fourier
slice theorem [26], projecting the signal in the primal domain
is equivalent to extracting a spectrum of a -dimensional
hyperplane in the Fourier domain, and this process is called a
slicing operation.

For the completeness, we derive the theorem for
, which is the case for (16). The spectrum is the

Fourier transformation of the image

(17)

In other words, is equivalent to the subset along the slice
. The slicing operation plays an important role in the

image formation as we show in Section IV.

G. Combined and Backward Operations

We have shown that several processes in light transport can be
described as transformations or modulations of the light field.
Because these operations are linear, they can be combined to-
gether. For example, given the initial light field , if the light
rays propagate for units, we can obtain the new light field
using (8). If the light rays propagate for more units, the light
field can be obtained in a similar way. Because matrix mul-
tiplication is associative, we have

(18)

The combined matrix describes the transformation of the
light field when the light rays are propagated by units
from the original reference plane. We can also obtain from

directly by

(19)

and with simple calculation we have . That is,
the combined operation is equivalent to the direct operation.

Therefore, as the light rays are refracted or blocked during
traversal, we can simply concatenate all individual operations
to represent the overall light transport process without deriving
it—a major benefit of the light transport analysis.

While the operations of the light transport process are dis-
cussed in a forward fashion, many of them can be described in
a backward manner. For example, if a light field is linearly
transformed to by A due to either propagation or refraction;

Fig. 6. Camera configuration. Traditionally, each light ray is traced indepen-
dently to construct the image formation models.

we have . Then it is straightforward to show
that

(20)

(21)

Therefore, given the forward operation and a specific coordinate
system in the transformed light field, we can easily obtain its co-
ordinates in the original light field using the backward operation.
Similarly, the modulation operation can be reversed by multi-
plying the light field by the inverse of the modulation function.

However, the projection operation, or the equivalent slicing
operation in the Fourier domain, irreversibly reduces the dimen-
sionality of the signal. Therefore, we cannot recover the light
field from an irradiance signal without relying on proper prior
information of the light field [36]. A special case of layered
scenes is discussed in Section VI-C.

IV. PHOTOGRAPHIC OPERATION FOR IMAGE FORMATION

We have described the basic operations of light field. In the
following, we use these operations to model the image forma-
tion process. Specifically, we show how the light field emitting
from the object surface propagates in space before it enters the
camera, and how the image is generated from the light field in
the camera.

Without loss of generality, we assume the reference plane
of the initial light field is units away from the thin lens of
the camera, the focal length of the lens is , and the distance
between the image plane and the aperture plane is . The ref-
erence plane can be aligned with the object surface as shown in
Fig. 6, but it is not necessary.

In traditional image formation models, one has to apply a
ray-tracing to determine the end points of all light rays emitting
from the object. Only those light rays that hit the image plane
contribute to the final image. However, ray-tracing is difficult to
express elegantly. On the contrary, we use the light transport op-
erations to describe the transformation of all radiances together.
The light rays first propagate units to the lens and, thus, the
light field is transformed by according to (8). Then the light
rays not blocked by the aperture are refracted by the lens. The
blocking process causes a modulation of the light field, and then
the light field is transformed by according to (10). The re-
fracted light rays then propagate units to the image plane; the
light field is transformed by . Finally, we change the param-
eterization of the light field to the in-camera parameterization
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Fig. 7. Transformation of the light field and its spectrum in image formation. The first row shows the light fields at different steps in image formation, and the
second row shows the corresponding spectrums. The scene and camera parameters in this case is � � ����� � � ���� � ��, and � � ������ �������
(i.e., the object at � � ���� is in-focus). (a) The surface light field. (b) The light field observed at the lens plane that is � units away from the surface. (c) The light
field modulated by the blocking function of the aperture. The dotted lines define the width of the aperture. (d) The light field observed at the image plane. (e) The
light field represented by the in-camera parameterization.

Fig. 8. (a) Texture function of the surface in the Fig. 7. (b) Resulting defocused
image using the scene and camera parameters given in Fig. 7.

using (15) and have the final light field . One example of this
process is shown in Figs. 7 and 8, which are used to assist the
derivations shown in the following and discussed in the end of
the section.

A. Derivation Without Aperture

We can see that is related to by a series of linear trans-
formations and modulation. For now, we neglect the modulation
due to the aperture and let denote the perfectly transformed
light field at the image plane before changing the parameteriza-
tion. Because we can combine several operations together, we
have

(22)

This transformation is called photographic operation and
is dubbed photographic matrix. We let denote

for convenience. According to the Fourier linear transform
theorem, the spectrum of is

(23)

The sensors at the image plane integrate the radiances into the
irradiances. According to (17) and remove for simplicity, the
spectrum of the captured image is

(24)

Therefore, if the size of the aperture is infinite, the spectrum
of the image is equivalent to a slice of along .

B. Derivation With Aperture

When the size of the aperture is finite, a number of light
rays are blocked from entering the camera. As described in
Section III-D, this causes a modulation of the light field. If the
aperture is infinitesimally thin and its size is , when we align
the reference plane with the aperture, the blocking function
is a 1-D rectangular function

otherwise
(25)

and according to (14) its spectrum is

(26)

After the light field is modulated with the blocking function,
the light rays propagate units to the image plane. Due to the
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linearity of the operations and the distributive rule, we can trans-
form both the input light field and the blocking function and then
multiply them together. Therefore, when the aperture is present,
the light field at the image plane and its spectrum are

(27)

(28)

We can see that the blocking function is transformed due
to the propagation operation. This causes a skew to the
axis-aligned rectangular function and complicates our analysis
[see Fig. 7(d)]. To address this issue, we change the parameter-
ization to the in-camera parameterization shown in Fig. 2(c).
Then the blocking function due to the aperture becomes

(29)

and its energies fall on the plane . Using (15), (27), and
(29), we have the final light field

(30)

and its spectrum

(31)

Here we remove the constant Jacobian in (15), which has
no effect on our analysis. Note that because the spectrum of the
blocking function falls on the plane , the transformed
light field is only convolved along the -axis.

According to (16), the captured image , is

(32)

and according to (24) and (26), the spectrum of the image is

(33)

In summary, given the initial light field representing the
radiance distribution of the scene, we can obtain the light field in
the camera by linearly transforming the initial light field using
the photographic matrix, and modulating it with the blocking
function. The modulation causes a convolution of the light field
spectrum. The spectrum of the image is the result of the slicing
operation on the transformed light field.

One example of the full light transport process of image for-
mation is shown in Fig. 7. Starting from the object surface, the

light rays first propagate units to reach the lens plane, and the
light field is transformed according to (8), as shown in Fig. 7(b).
The light field is then modulated by the aperture function, and
the spectrum is spread out due to the convolution operation, as
shown in Fig. 7 (c). Finally, the light rays propagate to the image
plane, and by changing the parameterization, the final light field
is obtained [Fig. 7(e)]. The texture function of the surface in this
example is a windowed Gaussian function as shown in Fig. 8(a).
Because the surface is not in-focus, the steep boundaries of the
surface are blurred [Fig. 8(b)].

We can see that in the light transport process, the light field
is never filtered. This should be clear because the light rays do
not interact with other, and neither do the radiances along the
light rays. This is different from the traditional methods that per-
form analysis on the image domain, where filtering is a common
operation.

Equations (30)–(33) describe the exact physical process in
image formation. They present both the changes of the geo-
metric and photometric properties of the light rays during light
transport. Moreover, we can map those equations to several tra-
ditional models of photographic effects.

V. RELATION TO TRADITIONAL MODELS

In this section, we show that the equations presented in the
previous section can be used to describe geometric and photo-
metric effects in image formation. We also show that those ef-
fects can be analyzed in the frequency domain using spectral
analysis.

A. Perspective Transformation

It is well known that in the pinhole model, a scene point
is projected to on the image plane. The projection is de-
scribed as a perspective transformation of 3-D primitives using
the homogenous coordinate system. Here we show that the per-
spective projection is essentially a light field transformation due
to light transport.

We first discuss the case of pinhole camera, of which the aper-
ture size is infinitesimally small. That is, in (29) and the
blocking function becomes a delta function of . Substituting it
into (30) and (32), we have

(34)

That is, the irradiance of x on the image plane is a radiance
of the initial light field . When the reference plane of is
aligned with the Lambertian surface, can be described by a
1-D texture function as in (6)

(35)
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That is, when the object is at units away from the lens, the ra-
diance at on the surface is mapped to the irradiance at
on the image plane. This is exactly the equation of the perspec-
tive transformation. In other words, the pinhole camera captures
a specific subset of light rays, or a slice of the light field. This
slice is stretched on the image plane, and the stretch factor is a
function of and .

Now consider the case of a lens camera with a finite aperture.
Before we explain the defocus effect in the next subsection, we
assume the object is in-focus. According to the lens formula,
when the object at distance is in-focus,

, and the photographic matrix becomes

(36)

then substituting it into (30) we have

(37)

Again, when is emitted from the Lambertian surface at ,
all light rays reaching on the image plane are from the scene
point , and only differ in the emitting angles. As a
result, for a lens camera, the perspective transformation is still
valid when the object is in-focus.

Because the light field is a signal, we also conduct our anal-
ysis in the frequency domain. Combining , (31), and (33)
we have

(38)

where (ignoring the effect of
the aperture for now). Applying variable substitution to (7) and
(38), we have

(39)

We can see that the image spectrum is a stretched version of the
texture spectrum. Again the stretch factor only depends upon
and . As the object moves away from the camera ( increases),
the frequencies of its texture appear higher in the image. This
result exactly matches that of the perspective transformation.

B. Defocus Blur

Defocused images are often modeled as the result of applying
a pillbox or Gaussian filter to the in-focus images, for which
the point spread function of the filter depends upon the object
distance and the camera parameters. Here we show that such
image filtering actually corresponds to the combination of the
photographic operation and the projection/slicing operation in
the light transport framework. We also show that even when
the object is out of focus, the perspective transformation is still
valid.

We use the backward transport operation to facilitate the anal-
ysis and neglect the effect of the aperture for now. According to
(21) and (31), when we have

(40)

Fig. 9. Effect of the aperture size on the defocus blur. The first row shows the
final light field, the second row shows the corresponding spectrums, and the third
row shows the final images. (a) Object is in focus, that is, � � �. (b) Object
is out of focus and aperture size is infinite. (c) Object is out of focus and the
aperture size is finite.

Assuming that there is only one object at distance and that the
reference plane of is aligned with the Lambertian surface,
we immediately have that the energies concentrate on the plane

. Then (40) becomes

(41)

We can see that before the convolution with the blocking func-
tion, the energies fall on the plane . Because all
other frequency components are null and the blocking function
only spreads the energies along the -axis, according to (33)
we have

(42)

The second and third equalities are obtained by simple vari-
able substitution. This equation indicates that the spectrum of
the image is a modulated and stretched texture function, where
the modulation is dependent upon the camera parameters. Ac-
cording to the convolution theorem, the image is a filtered ver-
sion of the stretched texture function.

An example of the defocus blur with and without aperture
is shown in Fig. 9. When the object is in focus, . Ac-
cording to (42), all frequency components in this case are cap-
tured without decay. Therefore, all details of the object are pre-
served in the image. When the object is out of focus and the
aperture size is infinite, unless .
Therefore, the image is a flat signal. Finally, when the aperture
size is finite, a blurred image is captured.
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It should be noted that the mapping between the texture func-
tion and the image is independent of . When , (42)
is equivalent to (39) up to a scale factor. This means when the
object is out of focus, the image spectrum is not shifted but
only attenuated (and the attenuation is characterized by a sinc
function). Therefore, the perspective transformation is still valid
even when the object is out of focus. This claim is difficult to
obtain from the traditional ray-based or image-based analysis.

To relate (42) to the traditional defocus model, we think of
it as a linear system, where the input is the stretched texture
function and the output is the image. If the texture function
is a delta function (e.g., a white point on a black surface), is
uniform and the image is the response function of the system

(43)

(44)

which is identical to the pillbox filter in the traditional model
[3]. The appearance of an out-of-focus scene point is a box of
width with uniform irradiance distribution.

When the aperture is a pinhole , the spectrum of the
blocking function is uniform along . Therefore, the energy at
any frequency is mapped to the slice without any decay. In
this case, all objects are in focus. This means that the pinhole
camera is only a special case of the lens model. On the other
hand, when the aperture size is infinite, the out-of-focus objects
are absent from the image [see Fig. 9(b)]. Therefore, when the
aperture is very large, one may see the in-focus object behind
the out-of-focus one which only contributes a constant offset to
the image signal, as demonstrated in [12].

Finally, one can also use our framework to derive the point
spread function of defocus blur in the primal domain. Let the
scene contain a single Lambertian point at and
the initial light field be . Then we obtain the
transformed light field from (30) and the image from (32). It
is straightforward to verify that the image of the scene point is a
flat box of width , identical to the result described by (44).

C. Vignetting

The perspective transformation and the defocus blur are due
to the geometric transformation of the light field. Here we turn
our attention to a different kind effect on the image caused by
photometric changes of the light field.

The reduction of brightness at the periphery of the image,
which is a typical phenomenon encountered in practice, is in
fact a combination of several effects collectively called the vi-
gnetting effect. The falloff due to the natural vignetting can be
modeled by a cosine fourth law [1]. When the object is Lam-
bertian with a uniform texture function , the image

is proportional to , where is the angle between the
optical axis and the light ray pointing from the pinhole center to
the image point . In 2-D space, we have a slightly different law:
The image is proportional to , as derived in Appendix C.
In the following, we show that our light transport framework can
also account for this effect.

First, note that we neglect the effect of the parameterization
function in the previously shown analyses. If we use (55) as
the initial light field and assume that is a constant and
that the object is in focus, (30) becomes

(45)

Then, according to (16), the image of the uniform Lam-
bertian surface, which is called vignetting field, becomes

(46)

Let and , we have

(47)

This is the vignetting field obtained from our framework. Un-
like the traditional model in which the vignetting field is only a
function of , we show that the aperture size also influences the
degree of vignetting. In fact, when the aperture size is small, we
obtain the traditional model

(48)

It is clear by now that the traditional cosine falloff model is only
valid when the aperture is small.

Comparing (47) with (48), we can see the main difference
between the traditional model and ours is that, while the size
of the aperture only causes a uniform scaling to the image in
the traditional model, it causes a spatially variant effect in our
model. This means, when the size of the aperture changes, the
degree of the vignetting changes as well. When the aperture is
very small, the vignetting field follows the simple cosine-falloff
model. However, as the aperture size increases, because the an-
gular ranges of the incident light rays are different for different
sensors on the image plane, the vignetting field diverges from
the cosine-falloff model.

We can also model the vignetting effect in the frequency do-
main. When , the initial light field spectrum is a delta
function. That is, all the energies fall on the origin

. According to (33), the image spectrum only has a DC com-
ponent and, hence, the image should have a constant brightness.
However, if we consider the parameterization function , the
spectrum of the light field would be convoluted with a 1-D filter
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in the direction .2 Therefore, the energy of the DC
component is spread out. Combining this effect and (33), the
image has a few low-frequency components and matches (47).

D. Summary

We have discussed several photographic effects and shown
that these effects are the result of transformation, modulation,
and projection of the light field. These effects can be modeled
all together by our framework.

It is straightforward to model other effects with our frame-
work. For example, in the telecentric lens system, the aperture
is placed in front of the lens so that the perspective transfor-
mation becomes invariant to the focus setting [32]. Tradition-
ally, modeling this effect requires tedious ray-tracing. But in our
framework, the new aperture is nothing but a blocking function
undergoing a propagation operation. Therefore, we can easily
obtain the model for the telecentric lens by slightly modifying
(29). The derivation is detailed in Appendix D.

VI. DISCUSSION

In this section, we discuss how to generalize the framework
to handle complex scenes, how to extend it to 3-D space, and
what the possible applications and limitations are.

A. Generalization

Traditional image formation models are usually based upon
the assumption that the scene is Lambertian or even just a single
plane parallel to the image plane. We adopt the same assumption
when we show that our framework is quantitatively equivalent
to those models.

However, this assumption is not essential for our framework.
We derive the relationship between the initial light field and
the final light field , but the structure or the content of is
not specified. When the scene is a planar Lambertian surface
aligned with the image plane, is defined by a 1-D texture
function (6).

When there are multiple planes, we can obtain by simple
composition. Starting from the surface light field of the plane
farthest to the camera, we propagate the light field to the next
surface, modulate it with the blocking function caused by this
surface, combine the modulated light field with the new surface
light field, and continue to the next surface. This regular proce-
dure does not require complex visibility testing for tracing the
propagation of each individual light ray.

When the surface is not Lambertian, the surface light field
has angular variation. Therefore its spectrum no longer falls on
a 1-D plane in the frequency domain. However, our framework
can still accurately model its propagation to the image plane.
The appearance of the non-Lambertian objects in the image with
defocus blur or vignetting effect can, thus, be obtained.

Finally, we can combine other light transport processes into
our framework. Starting from the light source, the light field
would be transformed due to propagations, convolved due to
surface reflections, and modulated due to occlusions. We can

2The parameterization function is ���� in the two-plane parameterization.
When changed to the in-camera parameterization, it becomes ���� � ���� �,
which is constant along the direction ��� � �. Therefore, the energies fall on
the plane � � � � �.

combine all operations into a single one which describes the
complete light transport process, from the light emitter to the
image sensor.

B. Extensions to 3-D Space

While the derivation of the framework is performed in 2-D
space, it is straightforward to extend it to 3-D space. In 3-D
space, the reference planes become 2-D and, thus, each inter-
section point requires two coordinates. For example, for the
two-plane parameterization [Fig. 2(b)], we can use
to represent a light ray, where denotes the intersection
point on the plane and denotes the intersection point
on the plane . Although the dimensionality of the light field
increases, the structures of the light transport operations remain
unchanged. We can easily combine 4-D propagation operation,
lens refraction operation, and reparameterization to obtain the
4-D photographic operation.

However, there are two noticeable changes in the derivations.
The first one happens to the parameterization function . In 3-D
space, it becomes

(49)

Similar to the 2-D case, the parameterization function is a
smooth function with a small bandwidth. Multiplying with
the surface light field causes a small blur to the spectrum. This
is negligible when the vignetting effect is not considered.

The second change happens to the blocking function. The
aperture is a plane with a circular hole, and therefore the
blocking function is

otherwise
(50)

and its spectrum is a first-order Bessel function [3], [5]. Besides
these two changes, the derivation of the framework and the map-
ping to the traditional models can be obtained by simply fol-
lowing the procedure we have developed for the 2-D cases.

Due to the increase of dimensionality, the number of param-
eters in the light transport operations becomes larger, and new
photographic effects may occur. For example, the lens refrac-
tion still results in a linear transformation of the light field

(51)

where and are defined in (10), and
and are the lens focal length measured in the and direc-
tions, respectively. When , there are two in-focus planes in
different directions, resulting in the so-called astigmatic effect
[5]. We can easily model this effect by just adding one param-
eter to the light transport operation.

C. Applications

In this paper we focus on interpreting various effects in image
formation, but the main result, the relationship between the light
field and the image, can be used in many applications. One ob-
vious application is light field acquisition, specifically, recov-
ering the modulated light field from . Because the slicing
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operation performed by the sensors always extracts a 1-D slice
of the 2-D spectrum as we have shown in Section IV, one must
find a way to put all 2-D frequency components on the slice.
This is the motivation of several light field cameras [19], [21],
[22], [24].

Another important result of our framework is that, for Lam-
bertian objects at different ’s, their energies would fall on slices
with different slopes in the spectrum of . Therefore, when
we have a complete light field, we can synthetically refocus the
image by changing the slope of the slicing operation. This is the
basic concept of the Fourier slice photography [26], [34]. More-
over, by analyzing the power spectrum of the light field, we can
detect the slices that possibly contain in-focus objects without
estimating the per-pixel depth information [33].

The light field in the camera is modulated by the blocking
function, and the spectrum is convolved. It may be interesting
to remove this effect by deconvolution of the light field spectrum

(52)

However, because is a low-pass filter, the deconvolution is
an ill-posed problem. In [33] and [34], it is shown that when
the number of the objects with different depths is much smaller
than the spectrum resolution and the depths are known, the
un-modulated spectrum is sparse and, thus, perfect deconvolu-
tion is possible. Therefore an all-focused image (i.e., an image
without defocus blur) can be generated from the blurred light
field spectrum.

In the images captured with different camera parameters, the
change of object appearance provides a cue for estimating the
scene structure. However, while all photographic effects are
changed with the camera parameters, only a few of them are
used in traditional algorithms. For example, in depth-from-de-
focus algorithms, the scene structure is estimated from images
with different ’s or ’s by using the differences in the degree
of defocus blur. The difference in perspective transformation is
usually neglected or intentionally compensated [3], [35]. This is
mainly because those two effects were modeled independently.
Since our framework can model them together, it is possible to
develop novel algorithms using both the perspective cue and
the defocus cue to obtain more accurate results.

We have shown that the image is a filtered and stretched ver-
sion of the surface light field. Therefore, the bandwidth of the
image can be calculated from the bandwidth of light field. In
the rendering applications, we can use this information to per-
form adaptive sampling. Specifically, when rendering a region
with a small bandwidth, which may be due to out-of-focus or
low-frequency texture functions, we can use a coarser sampling
rate to reduce the computational cost. Note that the estimation of
the bandwidth can be calculated analytically using (31) and (42)
without performing Fourier transform. This application was first
proposed in [18] where the bandwidth of the light field after
propagation, reflection, and occlusion is estimated, but the ef-
fect of defocus blur was not considered.

Finally, although we derive the photographic operation ac-
cording to the physic entities, we may do it in a reverse way
to design new imaging systems. One can change and the

blocking functions until a specific effect appears in the image,
and then search for a physically feasible decomposition of
into a number of basic propagation and reflection operations
and apertures of different shapes. Some possible transforma-
tions and the corresponding effects such as pushroom projec-
tion and afocal effect are given in [31] without considering the
physical feasibility.

D. Limitations

Our framework is built upon geometric optics, and therefore
the effects, including diffraction and polarization, of wave op-
tics cannot be modeled. When the size of the element, such as
sensor, in the imaging system is comparable to the wavelength,
the diffraction effect must be considered. In [36], it is shown
that the light field is closely related to the Wigner distributions
in wave optics, but unifying these two representations for mod-
eling the wavelength-dependent effects requires more study.

Because we use first-order approximation to model the lens
refraction, several third-order effects (aberrations, coma, etc.)
are not discussed. However, these effects, which are within the
scope of geometric optics, result in nonlinear but invertible
transformations of the light field. Finding proper methods to
describe these transformations and their influences on the light
field spectrum is worth pursuing in the future.

VII. CONCLUSION

In this paper, we have presented a unified framework for mod-
eling image formation using light transport analysis. We have
shown that the image formation process can be characterized as
a series of transformations, modulations, and projection of the
light field signal. We have shown that these operations can be
combined into a single equation to describe the full process and
discussed several extensions and applications of this theoretical
framework.

The unified framework can be used to describe all the geo-
metric and photometric phenomena encountered in the image
formation process, including perspective transform, defocus
blur, and vignetting. The results obtained by this framework
quantitatively match those of the traditional models.

APPENDIX

A. Mapping Between the Radiance Representations

For a specific light ray represented by and according to
(2), (3), and (4), we have

(53)

(54)

Combine the previous equations and with , we have

(55)
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Fig. 10. (a) Parameterization function ���� and (b) its spectrum �� �. The
second row shows the effective pa-rameterization function of different scene
points when the aperture size is 50 units, and the third row shows the cor-re-
sponding spectrums. The scene point is at (c) ��� �� � ��� ������������ �� �
�����������, and (e) ��� �� � �����������.

In our example shown in Fig. 2 where the object is Lamber-
tian, the emitted radiance is constant regardless of the view
angle. Let denote the parameterization function .
Given in (6), we have

(56)

which can be approximated as when the range of is
small, as shown in the next section.

B. Effect of the Parameterization Function

We repeat the parameterization function here for convenience

(57)

which is plotted in Fig. 10(a) and its spectrum is shown in
Fig. 10(b). Because it is a smooth function, modulating the
light field with it causes a very small blur to the light field
spectrum.

In this paper, our main interest is modeling the light transport
in image formation of regular cameras. For normal scene con-
figuration and camera parameters, the effective range of of
each scene point is very small. Several examples are shown in
Fig. 10(c)–(e), where we can see that the effect of the parameter-
ization function can be approximated by uniform scaling. That
is, if we only consider the light rays around the direction , we
have

(58)

Given a specific , we can embed into the texture
function and obtain the approximate equality in (6).

Fig. 11. Typical scene and camera configuration for the derivation of the vi-
gnetting effect in 2-D space.

C. Cosine-Falloff in 2-D Space

For completeness we give the derivation of the vignetting ef-
fect in 2-D space using the traditional method. The derivation in
3-D space can be found in [1]. Consider the scene and camera
configuration shown in Fig. 11. The lens is of diameter at

away from the image plane. Let a patch on the Lambertian
surface at distance from the lens have area and the radi-
ance value . The image of the patch has area . The angle
between the optical axis and the light ray from the object to the
lens center is , and the angle between the surface normal and
that light ray is .

Because the light ray passing through the lens center is not
deflected, the solid angles formed at the lens center subtended
by and are the same. That is

(59)

If we assume the is much larger than , the solid angle
formed at the surface patch subtended by the lens is

(60)

Thus, the power emitting from and passing through the
lens is

(61)

and because no light ray from other patch reaches the patch ,
its irradiance is

(62)

which is identical to our result in (48) following the same
approximation.

D. Modeling of the Telecentric Effect

We have shown that the perspective transformation and the
defocus blur are both dependent upon the object depth and
the distance between the lens and the image plane . There-
fore, when adjust the focus setting, the magnification factor of
the object changes simultaneously. By placing an aperture/stop
at the focus plane of the lens on the object side, the telecentric
lens makes the magnification factor constant, no matter how
is changed.

Previously, the functionality of the telecentric lens is ex-
plained by ray tracing [32]. The systematic configuration of a
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Fig. 12. Configuration of the telecentric lens. When the point � is out-of-focus,
its image is always a pillbox centered at � regardless of the value of � .

telecentric lens is shown in Fig. 12. The aperture of the telecen-
tric lens is placed in front of the lens by units. Consider the
light ray emitting from point on the surface toward the point

at the center of the aperture. After lens refraction, this light
ray is parallel to the optical axis and always hits the same point

on the image plane regardless of the changes in . It is shown
that all the light rays from hit the image plane within a box
centered at [31]. Therefore, while the magnification factor
becomes constant, the defocus effect still varies with and .

However, the ray tracing method is difficult to analyze. Here
we show that the telecentric effect can be easily modeled using
light transport analysis. According to Section III-D, the aperture
of size at distance is mathematically a blocking function

.3 Physically, the initial light field is first
modulated with this blocking function before reaching the lens.
However, mathematically, we can transform both the light field
and the blocking function and then modulate them together. As
a result, the final light field is

(63)

We can see the transformed light field is modulated by a bi-
nary function, which is 1 if and 0 other-
wise. For a regular camera, the blocking function is also a binary
function, but whether a light ray is blocked only depends upon
its entry point on the lens.

Assume the scene is a Lambertian point at , we have
, a line in 2-D space. By putting this into (63),

the final light field is a line segment along ,
and the coordinates of its two endpoints are

(64)

Using the projection operation, the image of this segment is a
pillbox centered at

(65)

with width

(66)

We can see that the center is invariant to the focus , but
the width is not. This result is quantitatively identical to that by

3We use the notation � to distinguish it from the blocking function � of
the aperture in normal lens camera.

ray tracing [32]. However, the analysis in the light field domain
is still somewhat tedious. In the following, we show that the
same result can be obtained more easily by spectral analysis.
The Fourier transform of is

(67)

of which all the energies fall on the plane .
Therefore, the convolution effectively spreads the energies of
the transformed light field along . Let the scene
be the Lambertian surface with texture function at units
from the lens, according to (41), (42), (63) and the convolution
theorem, the relationship between the image spectrum and the
texture spectrum is

(68)

Therefore, the image spectrum is the stretched and attenuated
texture spectrum. The stretch/magnification factor is indepen-
dent of , but the attenuation factor is not. This result is quan-
titatively equivalent to the ones by ray tracing.

The light transport analysis makes the interpretation of the
telecentric lens much easier than previous approaches. Further-
more, it is straightforward to combine the previously shown
image formation with the photometric transformation. There-
fore, one can derive the change of the vignetting effect in the
telecentric lens system. When multiple apertures are present in
the imaging system, we can modulate their blocking functions
together to model their joint effect on the light field and the
image.
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