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Abstract

In this paper, we target the practical implementation issues of quantum mul-
ticast networks. First, we design a recursive lossless compression that allows
us to control the trade-off between the circuit complexity and the dimension
of the compressed quantum state. A formula that describes the trade-off is
given, and we further analyze how the formula is affected by the controlling
parameter of the recursive procedure. Our recursive lossless compression can
be applied in a quantum multicast network where the source outputs homoge-
neous quantum states (many copies of a quantum state), and intends to send
the quantum state to each destination through a bottleneck. Such recursive
lossless compression is extremely useful in the current situation where the
technology of producing a large scale quantum circuit is limited. Second, we
develop two lossless compression schemes that work for heterogenous quan-
tum states (many copies of a set of quantum states) when the set of quantum
states satisfies a certain structure. The heterogenous compression schemes
provide extra compressing power over the homogenous compression scheme.
Finally, we realize our heterogenous compression schemes in several quan-
tum multicast networks, including the single-source multi-terminal model,
the multi-source multi-terminal model, and the ring networks, and analyze
the bandwidth requirements for these network models.
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1. Introduction

Multicasting a number of information sources to a set of destinations in a
classical network can be efficiently performed if each node is allowed to em-
ploy additional encoding operations [1]. Mixing, compressing, or distributing
data at intermediate network nodes is generally referred to as “network cod-
ing” [2]. Store-and-forward routing technique had been the dominant main-
stream for transmitting information through a network until network coding
was invented. In contrast to the intuitive way to operate a network that tries
to avoid collisions of data, classical network coding provides a plethora of
surprising results and opens up many practical applications in information
and coding theory, networking, switching, wireless communications, cryptog-
raphy, computer science, operations research, and matrix theory [3].

One easily neglected but critical operation in classical networking coding
is the ability to clone or, simply put, to copy classical data. In the simplest
example of the butterfly network [1], network coding enables two senders
to transmit one bit, respectively, to two receivers only if the nodes of the
network can make copies of the classical data [4]. Copying classical data is
so straightforward that we seldom stress its importance in a protocol until we
encounter the no-cloning theorem [5] in the quantum domain. This theorem
prohibits copying an unknown pure quantum state, and is generalized to
include the mixed quantum states that are noncommuting [6].

The no-cloning theorem posts a strict limitation on what can be done in
a quantum network. Hayashi et al. showed that sending two qubits simul-
taneously and perfectly in the butterfly network is impossible [7]. Leung,
Oppenheim and Winter extended this impossibility result to classes of net-
works other than the butterfly network [8]. Faithfully transmitting quantum
states in a quantum network can be achieved when extra resources are avail-
able or specific assumptions are made for the quantum networks. Hayashi
constructed a protocol that transmits two quantum states perfectly in the
butterfly network when prior entanglement shared between two senders is
available [9]. Kobayashi et al. showed that perfect quantum network coding
is achievable whenever classical network coding exists if two-way classical
communication is available [4]. On the other hand, if the quantum data to
be multicast are composed of the same quantum states, Shi and Soljanin
proposed a lossless compression scheme as a mean to implement quantum
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network coding. Their method achieves simultaneous and perfect transmis-
sion, and the bandwidth (edge capacity) in quantum multicast networks can
be significantly reduced [10].

In this paper, we design an efficient and recursive implementation of the
lossless compression proposed in [10] for quantum multicast networks. The
implementation complexity of the network coding scheme in [10] grows ex-
ponentially with the number of receivers, N . Our recursive compression
procedure provides a trade-off between the hardware complexity and the re-
quired bandwidth. We further propose two lossless compression schemes that
improve the compressing power of [10] when the set of quantum states sat-
isfies a certain structure. We apply the two lossless compression schemes in
several quantum multicast networks, and analyze the bandwidth reductions
in quantum multicast networks.

There are many other related works on distributed computation, se-
cret key sharing, and key distribution over quantum networks. Van Meter,
Nemoto, and Munro investigated and analyzed applications of quantum er-
ror correction codes on distributed computation over quantum networks [11].
Cheng, Wang, and Tao designed a quantum communication protocol for wire-
less networks based on quantum routing [12]. Ma and Chen suggested using
the GHZ states for the multiparty secret sharing over quantum networks [13].
Deng et al. considered using EPR pairs for sharing a quantum state among
many parties in a quantum network [14].

This paper is organized as follows. We review the necessary materials in
order for the readers to understand the rest of the paper in section 2. In sec-
tion 3, we introduce our recursive lossless compression procedure, and derive
a formula that describes the trade-off between the circuit complexity and the
dimension of the compressed state. The recursive lossless compression can be
employed to multicast homogeneous quantum states in quantum networks.
In section 4, we propose two lossless compression schemes for heterogeneous
quantum states when the set of the quantum states possesses a certain struc-
ture. We compare and analyze the homogenous and heterogenous encoding
methods in quantum multicast networks, including the single-source multi-
terminal model, the multi-source multi-terminal model, and the ring network
in section 5. We conclude in section 6.
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2. Preliminaries

A pure quantum state |φ〉 can be mathematically represented as a unit
length column vector in a d-dimensional Hilbert space Hd that is spanned by
an orthonormal basis {|i〉}d−1

i=0 . When d = 2, quantum states are called qubits
(qudits for d ≥ 3). A quantum system that contains N identical copies of a
quantum state |φ〉 is denoted as |φ〉⊗N . For example, when N = d = 2, the
state |φ〉⊗2 is

|φ〉⊗2 = α2|00〉+ αβ(|01〉+ |01〉) + β2|11〉,
where we denote |φ〉 ≡ α|0〉 + β|1〉 (|α|2 + |β|2 = 1). A general two-qubit
quantum state |ψ〉 can be described as the following unit vector in a 4-
dimensional Hilbert space H⊗2

2 :

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉. (1)

The state |ψ〉 in (1) is entangled if and only if it cannot be written in terms of
the tensor product of two single-qubit states [15]. One such example is when
we choose α = δ = 1√

2
and β = γ = 0, |ψ〉 corresponds to the maximally

entangled state.
Let the set X = {0, 1, · · · , d − 1}. Denote by XN the set of all possible

sequences xN = (x1, x2, · · · , xN), where each xi ∈ X . Denote by t(a|xN) the
number of occurrences of the symbol a ∈ X in the sequence xN . The type of
a given sequence xN is the empirical distribution given by

PxN (a) =
t(a|xN)

N
, ∀a ∈ X .

Denote by TP the collection of sequences that give the same empirical distri-
bution P = (P0, P1, · · · , Pd−1):

TP = {xN : PxN (a) = Pa, ∀a ∈ X}.
Denote by PN(X ) the set of all possible types in XN . We have [16]:

|PN(X )| = HN
d ≤ (N + 1)d, (2)

where the function HN
d is given by

HN
d = CN+d−1

d =
(N + d− 1)!

d!(N − 1)!
.
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We can construct a set of permutation invariant basis {|eP 〉}P∈PN (X ) for
the Hilbert space H⊗N

d :

|eP 〉 ≡ 1√
|TP |

∑

xN∈TP
|xN〉. (3)

Any quantum state |Φ〉 ≡ |φ〉⊗N , where |φ〉 = ∑d−1
x=0 p(x)|x〉, can be expressed

in terms of {|eP 〉}P∈PN (X ):

|Φ〉 =
∑

xn∈Xn

pn(xn)|xn〉

=
∑

P∈PN (X )

qP |eP 〉

where

qP =
√

|TP |
d−1∏
a=0

p(a)NPa .

Since the size of the types PN(X ) is HN
d , denote by sP the mapping that

maps each P ∈ PN(X ) to a number in {0, 1, · · · ,HN
d − 1}. There exists a

unitary transformation U such that, ∀P ∈ PN(X ),

U |eP 〉 = |0〉⊗(N−logd HN
d ) ⊗ |sP 〉, (4)

where |sP 〉 is an unit vector in H⊗(logd HN
d )

d . Then

U |Φ〉 = |0〉⊗(N−logd HN
d ) ⊗


 ∑

P∈PN (X )

qP |sP 〉

 . (5)

Denote |Φ′〉 ≡ ∑
P∈PN (X ) qP |sP 〉. The dimension of |Φ′〉 is HN

d .

Let A be the operation that adds the ancilla state |0〉 to a quantum state
|Ψ〉:

A : |Ψ〉 → |0〉 ⊗ |Ψ〉.
Let R be the operation that removes the ancilla state |0〉 from a quantum
state:

R : |0〉 ⊗ |Ψ〉 → |Ψ〉.
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We further assume that the operations A and R can add or remove as many
ancilla states |0〉 as we need in the protocol.

The unitary U in (4) followed by the operation R implements a lossless
compression that compresses the original state |Φ〉 of dimension dN to the
state |Φ′〉 of dimension HN

d :

RU |Φ〉 =
∑

P∈PN (X )

qP |sP 〉 = |Φ′〉. (6)

Furthermore, the compression is lossless because we can recover the original
state |Φ〉 from |Φ′〉:

U−1A|Φ′〉 = |Φ〉. (7)

The main reason that (6) and (7) hold is because the first (N − logd H
N
d )

qudits in (5) are in the ancilla states and are not entangled with the last
logd H

N
d qudits.

3. Recursive homogeneous encoding in quantum multicast net-
works

The main result of this section is a recursive encoding for the quantum
multicast network depicted in Fig. 1. The network contains a single source
and N terminals. The source S can generate N copies of an identical quan-
tum state |φ〉 in Hd. The multicasting task is for S to distribute the quantum
state |φ〉 to each terminal T simultaneously and perfectly through the link
that connects the source S and the node B. If no encoding is performed at
the source S, the bandwidth (edge capacity) between the source S and the
node B must be at least N qudits per channel use in order for the source
to transmit |φ〉⊗N faithfully. Shi and Soljanin showed that there exists an
encoding that can reduce the bandwidth from N qudits per channel use to
logd H

N
d qudits per channel use [10]. The encoding operation in [10] corre-

sponds to a dN by dN unitary matrix, and is reviewed in (4). In the following,
the encoding unitary U acting on N copies of a d-dimensional quantum state
|φ〉 is denoted by UN

d . The complexity of the encoding circuit that imple-
ments this matrix UN

d increases exponentially with the number of terminals
N , and quickly becomes unfeasible even for small N .

We propose a recursive hardware architecture for the encoding circuit
the provides a trade-off between the hardware complexity and bandwidth
consumption. The idea is, instead of encoding N copies of the quantum
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Figure 1: (Color online) Quantum multicast networks that contain a single source (labeled
as S) and N terminals (labeled as T ). The source S can generate N copies of an identical
quantum state |φ〉. The multicasting task is for the source S to distribute the quantum
state |φ〉 to each terminal T simultaneously and perfectly through the link that connects
the source S and the node B.

state |φ〉 as a whole, to divide the quantum data |φ〉⊗N into N
k
groups where

each group contains k copies of the state |φ〉. We can then encode each of
these groups to a quantum state, say |φ′〉, by a smaller encoding unitary Uk

d

of size dk × dk. The dimension of the compressed state |φ′〉 is Hk
d. Finally,

we encode N
k

copies of the state |φ′〉 by another encoding unitary matrix

U
N/k

Hk
d

. The above 2-step encoding process can be generalized to the following

recursive encoding:

1. If N = 1, abort. Otherwise, divide N copies of the quantum state |φ〉
into smaller groups, where each group contains k copies of the state
|φ〉. Denote |Φ〉 ≡ |φ〉⊗k.

2. Encode the quantum state |Φ〉 in each group by the encoding unitary
Uk
d .

3. Throw away the first (k − logd H
k
d) redundant qudits. Denote by |Φ′〉

the rest (logd H
k
d)-qudit quantum state.

4. Set N ← N
k
, d ← Hk

d, and |φ〉 ← |Φ′〉. Go to step 1.

We refer to this process as recursive homogeneous encoding.
Denote by yn the dimension of the compressed quantum state |Φ′〉 at nth

step of the above recursive procedure. Let y0 = d, which corresponds to the
dimension of the original quantum state |φ〉. We then have the following
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recursive relation:

yn+1 = Hk
yn . (8)

Let Ln denote the number of the remaining qudits after the nth recursion:

Ln = logd yn. (9)

In our recursive protocol, there are n∗ ≡ logk N recursions. Denote by
L = Ln∗ the number of remaining qudits after the last encoding unitary.
The parameter L describes the minimal bandwidth requirement for the link
connecting the source S and the node B in Fig. 1 when the source S employs
our recursive homogeneous encoding.

Denote by D the dimension of the input quantum states to the last en-
coding unitary:

D = ykn∗−1. (10)

The parameter D captures the complexity of the recursive encoding circuit.
Obviously, the values of L and D depend on the controlling parameter k,
which corresponds to the size of each group in our recursive procedure. By
varying k in our recursive procedure, we can provide a trade-off between the
bandwidth requirement L and the encoding complexity D. An example of
the recursive homogeneous encoding circuit with d = 2, k = 4, N = 64 is
illustrated in Fig. 2.

In the following, we will derive a relation between the minimal bandwidth
requirement L and the size k of each group, and a relation between the en-
coding complexity D and the size k of each group in our recursive procedure.
First, following (8), we have k ¿ yn when n ≥ 2. Then we can approximate
the term yn+1 = Hk

yn by:

yn+1 = Hk
yn ' ykn

k!
=

ykn
dc

, (11)

where we choose a constant c such that dc = k!. Followed from (9), we have

Ln = logd yn

= logd

(
ykn−1

dc

)

= k logd(yn−1)− c

= kLn−1 − c. (12)
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EliminateEffective qubits

Figure 2: An example of the recursive homogeneous encoding circuit for the single-source,
N -terminal multicast quantum networks. The source generates N copies of the quantum
state |φ〉 inHd, and runs the recursive homogeneous encoding circuit to output the encoded
quantum state |Ψ〉. Let d = 2, k = 4, N = 64. There are logk N = 3 recursions in
the example. In the nth recursion, the encoding unitary Uk

yn−1
, where yn represents the

dimension of the encoded quantum state after Uk
yn−1

, is applied to encode each group of
group size k. The dimension of the input quantum system to the last encoding unitary
(the encoding complexity) is D = 704 ≈ 2.4× 106, compared to the encoding complexity,
264 ≈ 1.84× 1019, without recursive homogeneous encoding.
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The second equality uses (8) and (11), and the last equality uses (9). Solving
the linear recursive equation (12) gives

Ln = kn−2L2 − kn−2 − 1

k − 1
c, (13)

where L2 can be derived from (8):

L2 = logd
(2k)!

k!k!
.

Substituting N for kn∗
in (13), we obtain the first desired relation between

L = Ln∗ and k:

L =
N

k2
L2 −

(
N

k2
− 1

)
c

k − 1
. (14)

We can obtain the other desired relation between D and k as follows:

logdD = k logd yn∗−1

= kLn∗−1

= L+ c

=
N

k2
(L2 − c

k − 1
) +

ck

k − 1
.

The first equality uses (10). The second equality uses (9). The third equality
uses (12). The final equality uses (14).

We plot L versus k in Fig. 3(a), and plot logdD versus k in Fig. 3(b). From
Fig. 3, we can see that the group size k in the recursive procedure provides
a trade-off between minimal bandwidth requirement L and the encoding
complexity D. When k is small, the bandwidth requirement L is large, but
the encoding complexity is low. When k is large, the bandwidth requirement
L is small, but the encoding complexity D is high. Notice that when k = N ,
we recover Shi and Soljanin’s result in [10].

4. Heterogeneous encoding in quantum multicast networks

The main result of this section is the development of two lossless com-
pressing schemes for the quantum multicast network depicted in Fig. 4. The
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(a) (b)

Figure 3: (Color online) Figure (a) depicts the numerical evaluation of the trade-off be-
tween the minimal bandwidth requirement L (the number of qudits per channel use) and
the group size k in each recursive procedure. Figure (b) depicts the numerical evalua-
tion of the trade-off between the encoding complexity D and the group size k in each
recursive procedure. We show logd D in this figure, which corresponds to the number of
input qudits to the final encoding unitary. In both figures, we set N = 80 and d = 2.
When the controlling parameter k is small, the bandwidth requirement L is large, but the
encoding complexity is low. When k is large, the bandwidth requirement L is small, but
the encoding complexity D is high. SS

BB TTTTTTTT ……

Source
≈

Terminals
Figure 4: (Color online) Quantum multicast networks that contain a single source (labeled
as S) and N terminals (labeled as T ). The source S can generate N copies of an heteroge-
nous quantum state |Φ〉 ≡ |φ1〉 ⊗ · · · ⊗ |φm〉. The multicasting task is for S to distribute
the quantum state |Φ〉 to each terminal T simultaneously and perfectly through the link
that connects the source S and the node B.
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network contains a single source and N terminals. The source S can gen-
erate N copies of the quantum state |Φ〉 = |φ1〉 ⊗ · · · ⊗ |φm〉 in H⊗m

d . The
multicasting task is for the source S to distribute the quantum state |Φ〉 to
each terminal T simultaneously and perfectly through the link that connects
the source S and the node B. If no encoding is performed at the source S,
the bandwidth (edge capacity) between the source S and the node B must
be as large as Nm qudits for the source to transmit |Φ〉⊗N faithfully. We can
apply Shi and Soljanin’s homogeneous encoding [10], or the recursive homo-
geneous encoding introduced in the previous section, to encode each |φi〉⊗N ,
i = 1, 2, · · · ,m.

There is a possibility that we can design better lossless compression
schemes than the homogeneous encoding if we know the structure of the
set of quantum states {|φ1〉, · · · , |φm〉} generated by the source S. One
such example is when the coefficients of the quantum state |φi〉 in the set
{|φ1〉⊗· · ·⊗ |φm〉} are equal to the permutation of the coefficients of another
quantum state |φj〉 in the set. We formally define the set of quantum states
whose coefficients are the same after permutation as follows.

Definition 1. Given is the set of coefficients α ≡ {α0, α1, · · · , αd−1}, where∑d−1
i=0 |αi|2 = 1 and let |x0〉 ≡

∑d−1
i=0 αi|i〉. We denote by X(α) the collection

of all the quantum states whose coefficients are the same after all possible
permutations:

X(α) ≡ {|φ〉 : ∀P, |φ〉 = P |x0〉} ,
where P is an arbitrary d×d permutation matrix. For example, X({α, β}) =
{α|0〉+ β|1〉, β|0〉+ α|1〉}, where |α|2 + |β|2 = 1.

We propose two lossless compression schemes with improvement power for
compressing heterogeneous quantum data {|φ1〉, · · · , |φm〉}, if the quantum
data generated by the source S is a subset of X(α) for a given α.

Before introducing these two lossless compression schemes, we first show
that there exists a heterogeneous encoding for compressing the set of quantum
states {|φ1〉, · · · , |φm〉} ⊂ X(α). Let |Φ〉 ≡ |φ1〉⊗· · ·⊗|φm〉. It is not difficult
to see that there are Hm

d = Cm+d−1
d different coefficients {γt} in the vector

|Φ〉, where we can associate each coefficient γt with an orthonormal vector
|et〉:

|Φ〉 =
Hm

d −1∑
t=0

γt|et〉, (15)
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and the set {|et〉} forms an orthonormal basis in H⊗m
d . Then there exists a

unitary S such that

S|et〉 = |0〉⊗(m−logd Hm
d ) ⊗ |st〉, (16)

where |st〉 is an unit vector in H⊗ logd Hm
d

d . Applying this unitary S to the
heterogeneous quantum state |Φ〉 gives

S|Φ〉 = |0〉⊗(m−logd Hm
d ) ⊗




Hm
d −1∑
t=0

γt|st〉

 . (17)

Denote |Φ′〉 =
∑Hm

d −1
t=0 γt|st〉. The unitary S in (16) implements a lossless

compression that compresses the heterogeneous quantum state |Φ〉 of dimen-
sion dm to the state |Φ′〉 of dimension Hm

d :

RS|Φ〉 =
Hm

d −1∑
t=0

γt|st〉 = |Φ′〉, (18)

where R is the operation that removes the ancilla state |0〉⊗(m−logd Hm
d ) in

(17). Furthermore, the compression is lossless because we can recover the
original state |Φ〉 from |Φ′〉 as follows:

S−1A|Φ′〉 = |Φ〉, (19)

where A is the operation that adds the ancilla state |0〉⊗(m−logd Hm
d ) to |Φ′〉.

In the following, we will propose two new encoding structures that are
better (in terms of bandwidth requirement) than simply encoding each state
|φi〉⊗N separately with a homogeneous encoding when the set of quantum
states {|φ1〉, · · · , |φm〉} generated by the source is a subset of X(α) for a
given coefficient set α.

4.1. Homo-hetero encoding

The first method for multicasting {|φ1〉, · · · , |φm〉} ⊂ X(α) is to first
use the homogeneous encoding reviewed in (4) separately on each |Φi〉 ≡
|φi〉⊗N to output an encoded state |Φ′

i〉, ∀i. It is not difficult to see that
the number of different coefficients in each |Φi〉 is equal to HN

d . Denote by
βi the collection of all possible coefficients in |Φi〉. Each set βi is the same
because {|φ1〉, · · · , |φm〉} ⊂ X(α). Therefore we can remove the subscript
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Figure 5: (Color online) Quantum circuit for the homo-hetero encoding. The homo-
hetero encoding first uses the homogeneous encoding unitary U to encode each |φi〉⊗N of
dimension dN into an encoded state |Φ′

i〉. The dimension of each encoded state |Φ′
i〉 is

HN
d . Then the heterogeneous encoding unitary S is applied to encode |Φ′

1〉⊗ · · · |Φ′
m〉 into

the final state |Ω〉 of dimension Hm
HN

d
. The circuit implements a lossless compression that

compresses the state |φ1〉⊗N ⊗ · · · ⊗ |φm〉⊗N of dimension mdN to the encoded state |Ω〉
of dimension Hm

HN
d
.

and denote by β. The set of quantum states {|Φ′
1〉, · · · , |Φ′

m〉} is a subset of
X(β), since each state |Φ′

i〉 shares the same set of coefficients as the state |Φi〉.
This allows us to encode |Φ′

1〉 ⊗ · · · ⊗ |Φ′
m〉 by the heterogeneous encoding

introduced in (16) to a encoded output state |Ω〉 of dimension Hm
HN

d
. We

illustrate the above home-hetero encoding in Fig. 5.
The encoding process can be represented by the following expression:

|Ω〉 = RS ((RU |Φ1〉)⊗ · · · ⊗ (RU |Φm〉)) , (20)

where |Φi〉 ≡ |φi〉⊗N , U and S are the homogeneous encoding (4) and the het-
erogeneous encoding (16), respectively, and R is the operation that removes
the redundant ancilla states.

The homo-hetero encoding implements a lossless compression that com-
presses the state |Φ1〉 ⊗ · · · ⊗ |Φm〉 of dimension mdN to the encoded state
|Ω〉 of dimension Hm

HN
d
. This homo-hetero encoding is lossless because we can
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recover the original state |Φ1〉 ⊗ · · · ⊗ |Φm〉 as follows :

|Φ′
1〉 ⊗ · · · ⊗ |Φ′

m〉 = S−1A|Ω〉
|Φ1〉 ⊗ · · · ⊗ |Φm〉 = (U−1A|Φ′

1〉)⊗ · · · ⊗ (U−1A|Φ′
m〉),

where A is the operator that adds the necessary ancilla states. The node
B in Fig. 4 first adds enough amount of the ancilla states to the state |Ω〉.
Next he can recover the states |Φ′

1〉 ⊗ · · · ⊗ |Φ′
m〉 by performing the inverse

heterogeneous encoding S−1. Then he adds enough number of the ancilla
states to each state |Φ′

i〉, and performs the inverse homogeneous encoding
U−1 to generate N copies of the original data |φi〉, ∀i. Finally he distributes
the quantum states to the terminals.

4.2. Hetero-homo encoding

The second method for multicasting {|φ1〉, · · · , |φm〉} ⊂ X(α) is to first
apply the heterogeneous encoding S (16) to the state |Φ〉 ≡ |φ1〉⊗· · ·⊗ |φm〉,
and outputs the encoded state |Φ′〉 of dimensionHm

d . Next, the homogeneous
encoding U (4) is applied to encode |Φ′〉⊗N of dimension (Hm

d )
N to an encoded

state |Ω〉 of dimension HN
Hm

d
. We illustrate the above home-hetero encoding

in Fig. 6.
The hetero-homo encoding process can be expressed as:

|Ω〉 = RU (RS(|φi〉 ⊗ · · · ⊗ |φm〉))⊗N , (21)

where U and S are the homogeneous encoding (4) and the heterogeneous en-
coding (16), respectively, and R is the operation that removes the redundant
ancilla states.

The hetero-homo encoding implements a lossless compression that com-
presses the state |Φ〉⊗N of dimension mdN to the encoded state |Ω〉 of dimen-
sion HN

Hm
d
. This hetero-homo encoding is lossless because we can recover the

original state |Φ〉⊗N as follows:

|Φ′〉⊗N = U−1A|Ω〉
|Φ〉⊗N = (S−1A|Φ′〉)⊗N ,

where A is the operation that adds the necessary ancilla states. The node
B in Fig. 4 first adds enough amount of the ancilla states to the state |Ω〉.
Next he can recover the states |Φ′〉 by performing the inverse homogeneous
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…..…..…..
Figure 6: (Color online) Quantum circuit for the hetero-homo encoding. The hetero-
homo encoding first uses the heterogeneous encoding unitary S to encode each |Φ〉 ≡
|φ1〉 ⊗ · · · ⊗ |φm〉 into an encoded state |Φ′〉. The dimension of the encoded state |Φ′〉
is Hm

d . Then the homogeneous encoding unitary U is applied to encode |Φ′〉⊗N into the
final state |Ω〉 of dimension HN

Hm
d
. The circuit implements a lossless compression that

compresses the state |φ1〉⊗N ⊗ · · · ⊗ |φm〉⊗N of dimension mdN to the encoded state |Ω〉
of dimension HN

Hm
d
.
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Types of Multicasting Bandwidth Requirement

Multicasting directly Nm

Homogeneous encoding m logdH
N
d

Homo-hetero encoding logd H
m
HN

d

Hetero-homo encoding logd H
N
Hm

d

Table 1: Comparison of minimal bandwidth requirement (the number of qudits per channel
use) between the source S and the node B in quantum multicast networks in Fig. 4.
The set of quantum states to be multicast to each terminal is heterogenous, of size m,
and is a subset of X(α) for a given set of coefficients α = {αi}d−1

i=0 . The source can
perform either one of the following four encoding techniques: multicasting simultaneously
without encoding, the homogeneous encoding (4), the homo-hetero encoding introduced
in section 4.1, and the hetero-homo encoding introduced in section 4.2.

encoding U−1. Then he adds enough number of the ancilla states to the
state |Φ′〉, and performs the inverse heterogeneous encoding S−1 to generate
N copies of the original data |Φ〉. Finally he distributes the quantum states
to the terminals.

4.3. Comparison and analysis

Table 1 lists the minimal bandwidth requirement of different encoding
methods employed by the source in quantum multicast networks in Fig. 4.
The quantum multicast networks contain a single source and N terminals.
The set of quantum states {|φ1〉, · · · , |φm〉}, ∀i |φi〉 in Hd, to be multicast
to each terminal is heterogeneous and is a subset of X(α) for a given α.
The source can perform either one of the following four encoding techniques:
multicasting simultaneously without encoding, homogeneous encoding (4),
homo-hetero encoding introduced in section 4.1, and hetero-homo encoding
introduced in section 4.2.

We numerically evaluate the minimal bandwidth requirement of the three
non-trivial encoding schemes in Fig. 7. We investigate how the size m of the
set of heterogenous quantum states and the number N of terminals affect
the minimal bandwidth requirement of different encoding schemes. We have
the following observations. First, our homo-hetero encoding is always better
than the homogenous encoding because we perform an extra heterogenous
encoding (16) to take advantage of the structure of the encoded quantum
states of the homogenous encoding. Second, the heterogeneous encoding
schemes show obvious gain over the homogeneous encoding when the size m
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Figure 7: (Color online) Numerical evaluation of the minimal bandwidth requirement of
the three non-trivial encoding schemes: the homogeneous encoding (4), the homo-hetero
encoding introduced in section 4.1, and the hetero-homo encoding introduced in section 4.2.
The vertical axis represents the minimal bandwidth requirement (the number of qudits
per channel use, d = 8). The horizontal axis represents the number N of terminals in
quantum multicast networks. We investigate how the size m of the set of heterogenous
quantum states and the number N of terminals affect the minimal bandwidth requirement
of different encoding schemes. Figure (a) corresponds tom = 3, and Figure (b) corresponds
to m = 20.

of the set of heterogeneous quantum states is large (see Fig. 7(b)). This is
because the compressing power of the heterogenous encoding becomes evi-
dent when there exists abundant redundancy in the heterogenous quantum
states. Fig. 7(b) shows that the hetero-homo encoding outperforms the other
two encodings when N is smaller than m, while the homo-hetero encoding
takes the lead when N is larger than m. The reason is the following. When
N is large, the redundancy arises mainly from each quantum state |φi〉⊗N ,
∀i. Therefore, the first homogenous compression of the homo-hetero encod-
ing can remove more redundancy than the first heterogenous compression of
the hetero-homo encoding. On the other hand, when N is small, the redun-
dancy mainly comes from the set of heterogenous quantum states. Hence, the
first heterogenous compression of the hetero-homo encoding can remove the
redundancy more efficiently than the first homogenous compression of the
homo-hetero encoding. It also justifies that the cross point of the minimal
bandwidth requirement of these two heterogenous encodings occurs when
m = N .
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5. Other quantum multicast networks

In this section, we will consider the quantum multicast networks other
than the single-source, N -terminal model depicted in Fig. 4. Two examples
are discussed. The first one is the m-source, N -terminal quantum multi-
cast networks, and the second one is the quantum multicast networks with
ring topology. We then analyze the minimal bandwidth requirement of the
bottleneck point in these two quantum multicast networks, when different
encoding technique is employed.

5.1. Multi-source Multi-terminal networks

One generalization of the single-source, N -terminal multicast model is
the m-source, N -terminal multicast model depicted in Fig. 8. The ith source
S can generate N copies of a quantum state |φi〉 in Hd, i = 1, 2, · · · ,m,
such that the set of quantum states {|φ1〉, · · · , |φm〉} is a subset of X(α)
for a given α. The multicasting task is for each source to distribute N
copies of the quantum state |φi〉 to N terminals simultaneously and perfectly
through the link that connects the node X and the node B. If no encoding is
performed at the node X, the bandwidth required between the node X and
the node B must be as large as Nm qudits per channel use. A better idea is
to use the heterogenous encoding at the node X to efficiently compress the
quantum states. The minimal bandwidth requirement of the link connecting
the node X and the node B is same as that of the link connecting the source
S and the node B in Fig. 4, and is depicted in Table 1, depending on the
encoding technique employed by the node X.

5.2. Ring networks

We consider the quantum ring networks depicted in Fig. 9. The networks
contain a single-source S and N number of nodes on a ring. Each node B
connects tom number of terminals, and forms a cluster. Them terminals in a
cluster can communicate to each other only through the node B that connects
them. We consider the following multitasking task with the assumption that
N À m: the source S would like to simultaneously and perfectly distribute
the ith state in {φ1, · · · , φm} to the ith terminal in the N clusters, ∀i. The
source S can use the clockwise and counterclockwise paths to distribute the
quantum states to destinations. We will evaluate the overall bandwidth
required on the ring in order for S to accomplish the desired multicasting
task.
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Figure 8: (Color online) Quantum multicast networks that contain m sources (labeled as
S) and N terminals (labeled as T ). The ith source S can generate N copies of a quantum
state |φi〉, i = 1, 2, · · · ,m. The multicasting task is for each source S to distribute the
quantum state |φi〉⊗N to each terminal T simultaneously and perfectly through the link
that connects the node X and the node B. If the set of quantum states {|φ1〉, · · · , |φm〉}
generated by the sources is a subset of X(α) for a given α, the heterogenous encoding can
be applied at the node X to efficiently compress the quantum states.
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Figure 9: (Color online) The quantum multicast networks with ring topology contains a
single-source (labeled by S), and N nodes (labeled by B) on a ring. Each node B connects
to m terminals (labeled by T ), and forms a cluster. The source S can generate N copies
of the quantum state |Φ〉 ≡ |φ1〉 ⊗ · · · ⊗ |φm〉. The multitasking task is for the source S
to perfectly distribute the ith state in {φ1, · · · , φm} to the ith terminal in each of the N
clusters, ∀i.
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If no encoding is applied, the source simply sends N
2
copies of the quantum

state |Φ〉, where |Φ〉 ≡ |φ1〉 ⊗ · · · ⊗ |φm〉, down to both the clockwise and
counterclockwise paths. The first node on both sides distributes one copy of
the state |Φ〉 to the m terminals in his cluster, and forwards the rest N

2
− 1

copies of the state |Φ〉 to the next node. The process continues until all the
terminals receive a desired quantum state. We can then evaluate the overall
bandwidth required on the ring as follows:

2m

N
2∑

k=1

k = m
N

2
(
N

2
+ 1). (22)

If the source and the N number of nodes on the ring employ the ho-
mogenous encoding, the multicasting task proceeds as follows. The source S
applies two instances of the homogenous encoding on N

2
copies of the state

|φi〉, ∀i, and then sends the two encoded states down to both paths. The di-

mension of each of the two encoded quantum states is mH
N
2
d . After receiving

the encoded quantum state, the first node on both sides performs the inverse
of the homogenous encoding to recover the original state |Φ〉⊗N

2 , distributes
one copy of the state |Φ〉 to the terminals in his cluster, and then applies
the homogenous encoding again to encode the rest N

2
− 1 copies of the state

|Φ〉. The dimension of the encoded state now becomes mH
N
2
−1

d . The process
continues until all the terminals receive a desired quantum state. We can
then evaluate the overall bandwidth required on the ring when each node
applies the homogenous encoding as follows:

2m

N
2∑

k=1

logd H
k
d ' 2m


d

N
2∑

k=1

logN − log (d)


 ' mN log

(
N

2

)
. (23)

The first approximation holds because

N/2∑

k=1

logd k '
∫ N/2

1

logd kdk =
1

ln d
(k ln k − k) |

N
2
1 .

The second approximation holds because we assume that N À d. Could
you please check if the first approximation in (23) is applicable?
We are summing the function Hk

d instead of k.
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If the source and the N number of nodes on the ring employ the heteroge-
nous encoding, the multicasting task proceeds as follows. Specifically, we will
use homo-hetero encoding because it outperforms the hetero-homo encoding
when N À m in the ring networks. The source S applies two instances of
the homo-hetero encoding on N

2
copies of the state |φi〉, ∀i, and then sends

the two encoded states down to both paths. The dimension of each of the
two encoded quantum states is Hm

H
N
2
d

. After receiving the encoded quantum

state, the first node on both sides performs the inverse of the homo-hetero
encoding to recover the original state |Φ〉⊗N

2 , distributes one copy of the state
|Φ〉 to the terminals in his cluster, and then applies the homogenous encod-
ing again to encode the rest N

2
− 1 copies of the state |Φ〉. The dimension of

the encoded state now becomes Hm

H
N
2 −1

d

. The process continues until all the

terminals receive a desired quantum state. We can then evaluate the over-
all bandwidth required on the ring when each node applies the homo-hetero
encoding as follows:

2

N
2∑

k=1

Hm
Hk

d
' m logHN

2r − logm!. (24)

I am not sure I understand how the approximation is obtained.
Could you please add your reasoning below. Hence, in the ring net-
work, the bandwidth consumption, denoted as B3, is as follows:

B3 = B2 −N logm! (25)

The overall bandwidth consumed by the homogeneous and heterogeneous
encoding is less than direct multicasting, and is on the order of O(log(N)/N).
Not clear to me yet!!

6. Discussion and conclusion

The achievement of this paper is two-fold. First, we proposed a novel
recursive homogeneous encoding to realize quantum multicasting with low
encoder complexity in section 3. Our recursive homogeneous encoding circuit
can provide a reasonable trade-off between the encoder complexity and the
dimension of the encoded state (corresponds to the bandwidth requirement
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of the quantum networks). Though the encoding proposed by Shi and Sol-
janin [10] reduced the minimal bandwidth requirement from N to logd H

N
d ,

the complexity of their encoding circuit is daunting. Hence, it is difficult
to practically implement their encoder in quantum multicast networks due
to the hardware complexity. Our recursive encoding idea proves to be ex-
tremely useful in the situation where the technology of producing a large
scale quantum circuit is limited. We detailed the relation between the min-
imal bandwidth requirement and the encoding complexity. One can easily
decide the dimension of the compressed state and the encoder complexity by
our formula. We also analyzed how the relation is affected by the size k of
the divided group in each recursion.

The second achievement of this paper is the proposal of the heterogeneous
encodings that further improve the compressing power of Shi and Soljanin’s
encoding when the set of quantum states satisfies the condition in definition 1.
When the size m of the heterogenous quantum states is larger than the
number N of destinations, the hetero-homo encoding is the most efficient.
On the other hand, when N > m, the homo-hetero encoding outperforms
the other encoding schemes. The heterogenous encoding can be applied in
several quantum multicast networks, including the single-source, N terminal
model, the multi-source multi-terminal model, and the ring networks. The
bandwidth requirements for these network models are analyzed.

We can implement a recursive heterogenous encoding if we wish to reduce
the complexity of the heterogenous encoding. The implementation is similar
to the recursive homogenous encoding proposed in section 3. Since both of
the homogenous encoding and the heterogenous encoding are lossless com-
pression, we believe the recursive version of these compression schemes will
find its applications in many other areas.
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