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Our contribution: separate the re�ection layer using 
the double re�ection imaging model [1] with patch-based  
image prior [2].

Key Idea: Break the Symmetry of T and R using Ghosting

Challenge: in the traditional imaging model 
solving the transmission T and re�ection R from a single 
observation I is ill-posed, since both T and R are natural 
images and appear the same statistical properties. 

- Model ghosting phenomenon using a two-pulse kernel k.
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Limitations:  we assume sparially-invariant ghostings. 
Performance su�ers when the transmission layer contains double features. 
Low frequencies are still challenging.
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Observation: window re�ection often appears multiple times.
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- Parameterize k by the separation of the two re�ections d and an attenuation 
factor α depending on the camera view angle.

Optimization
To recover the transmission T and re�ection R, we minimize the following:

Reconstruction cost Image prior (Gaussian Mixture Model) Non-negativity [3] Top: transmission layers
Bottom: reflection layers
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Comparisons to single image re�ection removal 

I = T + R! k

I = T + R

k(x) = !(x)+!"(x -d)
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We use patch-based Gaussian Mixture 
Model [2] to regularize image decomposition. 
Correct decomposition yields higher likelihood.

Synthetic 
input

PSNR: 7.04 dB
SSIM: 0.4012

GMM-patch 
prior only

14.01 dB
0.5499

Non-negativity
constraints

26.76 dB
0.9083

Ground truth
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The non-negativity constraint regularizes the 
low-frequency components in the output, and 
leads to better colors. The above energy is 
minimized by bounded L-BFGS optimization. 
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When taking a picture through a window pane, re�ections
of objects are often captured.

- Estimate d and α from the input image I using auto-correlation function. 

Occur on double- and single- paned windows. In single-paned windows, each side 
creates a re�ection. The two re�ections are separated by the thickness of the glass.


