
Machine Learning Final Project:
Handwritten Sanskrit Recognition using a Multi-class SVM with

K-NN Guidance

Yichang Shih
yichang@mit.edu

Donglai Wei
donglai@csail.mit.edu

Abstract

We develop an optical character recognition
(OCR) engine for handwritten Sanskrit using a
two-stage classifier. Inside the standard OCR
pipeline, we focus on the classification problem
assuming characters have been preprocessed de-
cently. One challenge we face is that the language
of Sanskrit has about a hundred core characters
where model driven methods, like Support Vec-
tor Machine (SVM), have to search in the expo-
nentially growth of the combinatoric model space
during training, while data driven methods, like k
nearest neighbor (kNN), becomes costly in com-
putation during testing. To address this chal-
lenge, we propose a two-stage multiclassifier, us-
ing non-parametric to reduce the model space to
search, and parametric models to relieve compu-
tation burden with better generalization. In the
first stage, we apply kNN to coarsely assign the
test data into the possible group of k classes, and
a multiclassifier of k classes to label the sample in
the second stage. Our method is fully automatic,
highly accurate, and computational efficiently.

1. Introduction
Sanskrit scholars have been endeavoring to

integrate the gathered Tegabytes of Sanskrit
manuscript images into a digital library [1] for
worldwide reach.

Besides merely displaying the pages, it is desir-
able to translate the image into unicode for further
editing, where current commercial OCR software
for Sanskrit are far from satisfactory, as shown in
Fig.2.

We find Sanskrit OCR an interesting problem
in three folds:

Firstly, OCR problem itself lies in between one
dimensional natural language process (NLP) and
three dimensional real world projected down to
image in computer vision (CV).

Also Sanskrit characters lie in the middle of an
alphabetical language like English and a stroke-
based language like Chinese.

Lastly, these Sanskrit manuscript are written
by well-trained ancient calligrapher and there is a
high consistence in character shape between sam-
ples, as shown in Fig.1.

With the above properties in mind, we design
an optical character recognition system (OCR)
that can automatically map Sanskrit to Unicode.

Our database contains about one hundred dif-
ferent Sanskrit characters, as shown in Fig.3.

In machine learning community, there are 3
typical approaches to solve multi-class problems:
generative-model-based, SVM-based, and non-
parametric-model-base. In OCR, the physic re-
lationship between feature and label is unclear,
and so the generative model is less practical. A
multiclassifier of one hundred classes has only ac-
curacy of 71%, which cannot satisfy our require-

1



ment, and also computational consuming in the
training phase. Non-parametric model, such k
nearest neighbor (kNN), is good at separate visu-
ally very different character, but cannot separate
samples of minor difference, such as the images
in Fig.4.

We take advantage of SVM-based and kNN
method, and propose a two stage multiclassifer
for about one hundred classes. In the first stage,
we use kNN to assign an input query sample to
a group containing k possible labels. Charac-
ter with label in this group are visually similar,
and cannot be distinguished by non-parametric
method, as illustrated in Fig.4. In the second
stage, we use a SVM multiclassifier to classify be-
tween labels in the group. Because our database
is written by well-trained calligrapher, so we can
easily design a set of robust features for SVM. In
our work, we use 26 features, ranging from im-
age statistics to local features, such as corners on
characters, to train 65 multiclassifier of k classes.
Our recognition is 85%, which is better than using
SVMs only.

Our paper makes the following contributions,

1. The first system that works for handwritten
Sanskrit.

2. We applies a two-stage classifier that com-
bines non-parametric method and SVM.
This outperforms only using SVMs

2. Related Work
2.1. OCR Pipeline

Optical character recognition is a combina-
tion of natural language processing (NLP) and
computer vision. In our application, language
modeling is less important since we have more
clues from the image likelihood, and the vision
clues are more robust since it is an intrinsic 2D
image.

Below is the pipeline of a typical OCR sys-
tem [4]:

Figure 3: In our database, nearly 70 different
characters are used.

1. In low-level vision, the system finds char-
acters by layout analysis and converts them



Figure 1: A page of Sanskrit Manucript in our database used for our OCR. The documents are written by
well trained calligrapher, and so there is high consistence between the same characters, nearly as good
as in printing version.

Figure 4: A group of 6 characters that kNN can-
not classify. They have very similar visual shapes.

into grayscale (preprocessing).

2. In mid-level vision, the article is separated to
unconnected characters.

3. In high-level vision, test characters are clas-
sified based on the model from training data.
This is referred to as recognition.

4. In NLP, a n-gram HMM model is fitted to
correct certain ambiguity.

Here, we focus on the classification problem,
assuming all training and testing characters have
already been correctly cropped out, and we leave
out the NLP part to further improve the perfor-
mance.

2.2. Sanskrit Recognition

Some commercial software, such as has imple-
mented Sanskrit OCR. [2], but their performance,
as shown in Fig.2 is not satisfactory in our data
set.

2.3. Classification

We review the state-of-art classification algo-
rithm in machine learning, and state the reason we
propose a two-stage jointly non-parametric and
discriminative classifier.



Figure 2: Recognition result of Indsez, a commercial Sanskrit OCR software. The upper black-and-
white image is the input article, and the recognition result are marked in yellow. The question mark
means the character cannot be recognized. We cannot test the recognition rate because the source code
is not open.

2.3.1 Definition

We first review the general goal of Machine
Learning Algorithms: A computer program is
said to learn from experience E with respect to
some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by
P, improves with experience E.

For classification problem, the task to is to
tell things different apart and the experience
E is to learn the suitable representation of the
true data distribution based on the performance
measured by P on training data. It can be viewed
as an optimization over hypthesis spaceH. In the

parametric setting, the objective function is given
by f̂(w; θ) where w is the model parameter, θ a
given sample. An empirical objective: F̂ (w) can
be written as:
F̂ (w) = E[f(w; θ)] = 1

m

m∑
i=1

f(w; θi)

here θ1, θ2, ..., θm are a sequence of observed
samples. It is normally assumed that these
samples are i.i.d. drawn from some unknown dis-
tribution D, and therefore the stochastic objective
F(w) is often more desirable:
F̂ (w) = Eθ≈D[f(w; θ)]
For example, if we take f(w; θ) =
max{0, 1y(w, x) + λ

2
‖w‖2

2, we will arrive at



the famous SVM, with a weighted L2 norm
regularizer.

2.3.2 H: Parametric vs Nonparametric

In terms of modeling the hypothesis space, clas-
sification algorithms can be divided into paramet-
ric ones and nonparametric ones. In the paramet-
ric setting where the hypothesis space is a family
of parametrized function, no matter Frequentist,
Bayesianist or Learning Theorist, no matter Dis-
crimitive, Generative or Algorimitic, we end up
with an object function composed of the bonus of
the likelihood of the data under the model and the
penalty of the complexity of the model to opti-
mize. For example, SVM is trying to

In the nonparametric setting however, we are
trying to make use of the empirical probability
distribution of the data itself.

2.3.3 H: Single vs Structured

Instead of searching one best function f in
one subspace of H with model selection, re-
searchers have been seeking efficient ways to
combine different functions instead of . We
can consider the single function approach as the
0th order approximation in H, where the vot-
ing/bagging/boosting scheme that linearly com-
bining each weighted function as the 1st or-
der approach. Second order methods, like De-
cision Tree/Random Forest/Feed-forward Neural
Nets(Mulitple Layer Perceptron), are trying to
come up with a 2D decomposition ofH.

2.3.4 H: Binary-class vs Multi-class

In the practice of binary classification problem,
boosting and SVM generally works well enough
with carefully chosen kernel/feature. However, so
far, there is no satisfactory methodology on Multi-
class problems. One natrual approach is to reduce
the multi-class problem to binary ones, but neither
one-vs-one or one-vs-all scheme gives strong dis-
criminative power. Even if we try more tasks to

fill out a coding matrix, introducing redundancy
to reduce errors, the problem becomes how to ef-
ficiently choose powerful set of tasks, which is
proved to be NP hard. Another approach is to
jointly model all classes Instead, we of Hierachi-
cal SVM [5], Boosting SVM [6]

2.3.5 BesidesH: Feature Space

So far, we are focusing on different construction
in the Hypothesis Space H, which takes in the
data generically.

In different application however feature de-
sign: Meta Knowledge of the task selec-
tion/combination:

3. Algorithm
In our work, most characters are well-

structured and well-separated, which is different
from general vision recognition tasks where ob-
jects have much variation. On MNIST hand-
written digit recognition task, people find sur-
prisingly that some easy kNN matching algo-
rithm perform much better than most crafted
SVN/Boosting/Neural Nets. Thus quick explicit
nonparametric methods work better than paramet-
ric ones doing optimization costly while implic-
itly trading-off among joint object function. But
in order to further improve the performance by
resolving the deformation problem, we need to
add some ingredients of SVM to learn from am-
biguous cases. Thus, We here plan to use kNN
as an initial guess and build ensembles of SVMs
around set of classes that are close to each other.
We not only try to combine the robustness of non-
parametric modeling and the expressiveness of
parametric modeling, but also the computation ef-
ficiency during training and testing respectively.

3.1. kNN

Though conceptually easy, designing an effec-
tive distance metric for kNN can be hard. One
natural approach is to use explicit distance func-
tions (like L1, L2, correlation) in the feature



space. The baseline kNN tested here uses the
pixel value as the feature and transforms the two
dimensional image into one dimensitional vector.
Apparently such metric does not capture the two
dimensional structure of the image and is con-
sequently not robust to the deformation of the
characters, which may cause huge distance with
simple affine transformation. One way to work
around, as tangent distance [8] does, is to incor-
porate invariance into the metric on the feature
space. But the increase of the complexity of the
metric function still does not help to capture non-
affine deformation of the image, which is com-
mon in practice.

Recently, instead of searching an explicit an-
alytic form in the hypothesis space, people are
looking into metric based on matching score.
[3] samples points on the image boundary and
combine the bipatrite matching score with other
penalties into the final distance. However, the
weight parameters in the distance has to be iden-
tified with cross-validation with huge computa-
tional cost. Surprisingly, [7] reports that sim-
ply matching local windows of two image con-
texts works extremely well on digit recognition
task. Below is a simple description of the algo-
rithm. For each point x in the test image context,
we search over a window with fixed size s1, say 5
by 5,around the corresponding point y (matched
up in position) in the reference image. Then the
local matching cost for this point is defined as
the minimum distance computed above with an
explicit function f(x,y). To make it more robust
to outliers, we replace the distance of two points
with the sum of the distance of matched up points
within a small window around them. Now, we
get a local matching cost for each point in the test
image context and the distance between two im-
age contexts is defined as the sum over all local
matching cost. On MNIST dataset, [7] uses the
gradient field of the image, which captures local
two dimensional structure of the image as the im-
age context. And the simple choice of f(x,y) as
L2 norm produces the third best testing result so

far.
In the experiment, we implement the algorithm

in [7] in a slightly more efficient way by avoiding
repetitive computation in the for loops. Instead of
costly cross-validation, we set the parameters to
be the same as that mentioned above.

Though kNN can achieve amazing perfor-
mance with little knowledge representation of the
task, it has the bottleneck of generalibility, which
requires huge amount of data to gain further im-
provement. This is where we need SVM to in-
fer the hidden discrimitive rules to generalize be-
yond limited training data after narrowing down
the search range.

3.2. Multiclass SVM

Feature design We design 26 features for clas-
sification in this phase. The 26 features can be
roughly divided into 2 categories, global statis-
tics features and local shape features. We have
9 global features, as described in the below,

1. Number of horizontal lines.

2. Number of vertical lines.

3. Euler number of the image.

4. Center of mass along x direction.

5. Center of mass along y direction.

6. Standard deviation along x direction.

7. Standard deviation along y direction.

8. The height to width ratio of the bounding box
of the image.

9. Area of the written part in the image

To compute the number of horizontal lines, we
project the input character image to y-axis to gen-
erate a one-dimensional array P . Then we binary
threshold P . For each element i in P , if P (i) is
smaller than 0.6*(image width), then P (i) = 0,
else P (i) = 1. 0.6*(image width) here represents



Figure 5: Euler number of this 3 images, from left
to right, are 0,1,-1.

the minimal length of a horizontal line. Then we
count the number of nonzero element in P , and
divide a parameterw that represents the width of a
stroke, to calculate the number of horizontal line.
The same of vertical lines. In our work, w is cho-
sen to be 15.

The definition of Euler number, e, is as below,

e = # of objects− # of holes in the objects (1)

Fig.5 shows some examples of euler number us-
ing our data set. Euler number is a measure of
topology, which is invariant to handwriting.

Our system uses 16 Local, shape-aware fea-
tures. For each input character image, we seg-
ment the image into 4 non-overlap sub-images:
top-right, top-left, bottom-left, and bottom right.
For each sub-images, we compute the normalized
cross correlation (NCC) between the sub-image
and the 4 templates in Fig.6, which detects cor-
ners toward the 4 directions, respectively. NCC is
defined as,

NCC(u, v)s,t =
Σ[s(x,y)−s̄][t(x−u,y−v)−t̄]

{Σ[s(x,y)−s̄]2Σ[t(x−u,y−v)−t̄]2}0.5

where s is the sub-image and t is the template. If
the maximal NCC is greater than the threshold,
then the corresponding feature is 1, otherwise is
0. For example, if the maximal NCC between the
sth sub-image and the tth template is greater than
the threshold, the (4s + t)th feature is 1, which
physically means that sth sub-image contains the
tth pattern. In our work, we set the threshold to be
0.9 and works very well.

Figure 6: Four templates used for corner detection
in our system.

SVM classifier We use a multiclassifer of k
classes to finely classify the input character im-
age. We tried both one-against-all and one-
against-one methods for classification, and ob-
tain the same performance, about 85% recogni-
tion rate. The first stage generates 65 groups, and
so we train 65 multiclassifier in the second stage.

4. Experiment
4.1. Training Set

Starting from the raw Sanskrit manuscript im-
age, we first do standard page layout analysis to
find the position and statistics of potential charac-
ters. Then we binarized the image making char-
acters stand out from background by contrived
thresholding method based on the information
from the analysis above. Taking advantage of the
property of the manuscript that characters tend
to disjoint, we crop out the characters by find-
ing connected components. We also threshold the
size the image patch for fewer false alarms and
segment the image patch when several characters
accidentally connected to each other. So far, we
have the image bank of the Sanskrit characters.

Unlike OCR for printing or for handwritten En-
glish which are much studied, there is no pub-
lic datasets for Sanskrit characters with ground
truth labels. As can be imagined, there is no
single trick to build up the whole dataset around
human knowledge about discriminative patterns
of shapes and structure from scratch. We here
managed to do so by using the combination of a
Top-Down approach to decompose problems into
smaller ones and a Bottom-Up method to group
characters conservatively. On the first stage, we
manually pick discriminative features, like struc-



tural pattern to roughly seperate different groups
of characters apart. Since none of the features
are robust enough to help us recursively build the
noiseless training data, we develop an interactive
GUI for quick relabeling/merging same groups
of characters with binary choices on the second
stage. After the traininig data first built, we run
unsuperised algorithms like K-means and hierar-
chical clustering for anormaly detection. Within a
few steps of refinement, the training dataset gen-
erally has the acceptable quality for conducting
experiment.

In the end, we have around 6,000 image pathes
of characters which can be grouped into around
200 groups. We then manually choose 64 of the
character classes with around 2,500 instances as
the training data and create the test data with
around 600 instances.

4.2. kNN training

Firstly, for each character class, we tried to fig-
ure out its k confusion neighbours (closest charac-
ter classes) in order to train SVM in advance. One
way is to do the leave one out cross-validation on
the training data and see which wrong labels may
be returned by the rest of the training data. In
practice however, we find that character classes
are well grouped in nature and we may simply
use the mean of a character class to figure out its
k confusion neighbours.

Also, during testing, in order to have a coarse
initial guess, we may not need to search over all
the training data for each test image. Thus we
need to select representative images inside each
character class which cover most of the variation
of the class. One way to do is to greedily stage-
forward fitting, adding the image that minimize
the mutal information among the selected set of
images.

4.3. SVM training

We tried both one-against-all and one-against-
one methods for classification, and obtain the
same performance. In the training phase, we use

both polynomial and gaussian as kernel function,
and also obtain the same performance. We set the
soft margin parameter to be 1000. The training
takes about 1 minutes for each classifier, using
MATLAB in a 8-cores machine, and so about 1
hour for the whole 70 classifiers.

5. Result
Our training data contains 65 characters, and

totally about 2500 training samples. Testing data
contains 300 different characters. The correct
recognition rate is 85.6% using one-against-all
and 84.57% using one-against-one multiclassifier,
respectively. Compared with only using SVM,
which results accuracy of 72%, our method has
significantly improvement. But for practical use,
this is still not enough.

6. Discussion
The proposed method outperform simply us-

ing SVM about 10%. However, our method is
still not good enough for practical use. Constraint
to the difficulty of obtaining ground truth data,
we here only conduct experiment on a relatively
small dataset. In future work, we wish we can
train this methods with more data and have fur-
ther testing.

References
[1] http://sanskritlibrary.org/. 1

[2] http://www.indsenz.com/int/. 3

[3] S. Belongie, J. Malik, and J. Puzicha. Shape
context: A new descriptor for shape matching
and object recognition. Advances in neural
information processing systems, pages 831–
837, 2001. 6

[4] R. Casey and E. Lecolinet. A survey of meth-
ods and strategies in character segmentation.
Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 18(7):690–706, 1996.
2



[5] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni.
Hierarchical classification: combining bayes
with svm. In Proceedings of the 23rd interna-
tional conference on Machine learning, pages
177–184. ACM, 2006. 5

[6] T. Gao and D. Koller. Multiclass boosting
with hinge loss based on output coding. 2011.
5

[7] D. Keysers, T. Deselaers, C. Gollan, and
H. Ney. Deformation models for image
recognition. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on,
29(8):1422–1435, 2007. 6

[8] P. Simard, Y. LeCun, J. Denker, and B. Vic-
torri. Transformation invariance in pat-
tern recognitionxtangent distance and tangent
propagation. Neural networks: tricks of the
trade, pages 549–550, 1998. 6


