Style Transfer for Headshot Portraits
We transfer the styles from the example portraits in the insets in (b) to the input in (a). Our transfer technique is local and multi-scale,
and tailored for headshot portraits. First, we establish a dense correspondence between the input and the example. Then, we match the local
statistics in all different scales to create the output. Examples from left to right: image courtesy of Kelly Castro, Martin Schoeller, and Platon.
Publication
Abstract
Headshot portraits are a popular subject in photography but to
achieve a compelling visual style requires advanced skills that a
casual photographer will not have. Further, algorithms that automate
or assist the stylization of generic photographs do not perform well
on headshots due to the feature-specific, local retouching that a professional
photographer typically applies to generate such portraits.
We introduce a technique to transfer the style of an example headshot
photo onto a new one. This can allow one to easily reproduce
the look of renowned artists. At the core of our approach is a new
multiscale technique to robustly transfer the local statistics of an
example portrait onto a new one. This technique matches properties
such as the local contrast and the overall lighting direction while
being tolerant to the unavoidable differences between the faces of
two different people. Additionally, because artists sometimes produce
entire headshot collections in a common style, we show how
to automatically find a good example to use as a reference for a
given portrait, enabling style transfer without the user having to
search for a suitable example for each input. We demonstrate our
approach on data taken in a controlled environment as well as on a
large set of photos downloaded from the Internet. We show that we
can successfully handle styles by a variety of different artists.
Video (no audio, best viewed at 1920x1080)
Additional results
See our method on 94 images in Flickr dataset at here.
Supplemental materials
Press
Acknowledgement
We thank photographers Kelly Castro, Martin Schoeller, and Platon
for allowing us to use their photographs in the paper. We also
thank Kelly Castro for discussing with us how he works and for
his feedback, Michael Gharbi and Krzysztof Templin for being
our portrait models. We acknowledge the funding from Quanta
Computer and Adobe.