
Sign Language Recognition
6.867 Machine Learning Term Paper

Yale Song, Ying Yin
{yalesong, yingyin}@csail.mit.edu

December, 2008

1 Introduction

Our goal here is to recognize a sign language mea-
sured from wearable sensor gloves. A sign lan-
guage is expressed as a sequence of gestural pat-
terns to convey a meaning. Hidden Markov mod-
els (HMMs) have been shown to be successful
in temporal pattern recognition, such as speech,
handwriting, and gesture recognition [4]. In this
project, we investigate how well HMMs can per-
form when applied to sign language recognition.
We also investigate how different initialization
methods and model selections affect the overall
performance on classification.

2 Data Description

We used two different types of datasets for the sign
language recognition; one from a single signer and
another one from five signers, herein called XS

and XM , respectively. We obtained the datasets
from the UCI Machine Learning Repository 1 2.
Although the datasets are for Australian Sign
Language (Auslan), we believe that the underly-
ing classification method should be generalizable
to other sign languages.

The two datasets are multivariate time series
of real-valued data. XS has 27 samples for each
95 signs captured from a native singer using two
high-quality position trackers and two Fifth Di-
mension Technologies (5DT) gloves for both hands
[1]. XM has 70 samples for each 95 signs captured
from five signers using only a single low-quality
position tracker, the Nintendo Power Glove. The
95 signs were selected to cover all the typical hand
shapes and movements [4]. In some cases, signs
that were difficult to distinguish were deliberately
chosen [4].

1http://archive.ics.uci.edu/ml/
2The datasets are donated by M. W.

Kadous who used it for his PhD dissertation
(http://www.cse.unsw.edu.au/ waleed/tml/data/) [4].

Each data sample in XS consists of a sequence
of 22-dimensional feature vectors. The features
include x, y, z, roll, pitch, yaw of the hand ori-
entation and five bend measures of the five fin-
gers. Same features are captured for both hands.
The data sampling rate of the capturing system is
about 100 frames/sec. The average length of each
sign is approximately 57 frames [1].

Each data sample in XM has rather simple data
structure; each sample is consisted of a sequence
of 8-dimensional feature vectors, measured from
right hand, including x, y, z, and roll of the hand
orientation, and thumb, forefinger, middle and
ring finger bend measures. There are 6650 sam-
ples in total (70 samples × 95 signs). The num-
ber of samples measuerd over five signers are not
evenly distributed. Each session was taken at a
different time, after a break, etc. The data was
recorded every 40 ms (25 fps), and the average
number of frames per instance is 58, but varies
from 30 to 102 [2].

All the samples are labeled with corresponding
sign words. Each sample sequence only contains
a single sign word.

3 Recognition Approach

Our task is to recognize a sign based on the input
sequence of gestural data, so this is a multiclass
classification problem (95 classes). We need to
identify the basic characteristics of sign language
gestures in order to choose a good classification
method. Each sign varies in time and space. Also,
the signing speed can differ significantly. Even
if one person performs the same sign, the speed
and position can differ [3]. The ability of HMMs
to compensate time and amplitude variations has
been shown for speech and character recognition
[6]. Due to these characteristics, HMMs appear
to be a good approach for sign language recog-
nition. Many literatures on sign language recog-

1

nition report the successful usage of HMMs for
various settings (continous recognition, user inde-
pendent recognition, camera based data capture
[3][7][8]).

3.1 Hidden Markov Models

The positions and orientations of a signer’s hand
through time can be assumed to follow the first
order Markov process [7]. This means the current
hands’ positions and orientations depend only
on the most recent positions and orientations.
There exist many kinds of HMMs [6]. One that
can model time-series signals whose characteris-
tics change successively over time is called the
Bakis model [3] or the Left-Right model [5]. This
model is often used in speech recognition systems
[3]. The Bakis model allows transitions to the
same state, the next state, and the one after the
next state. Figure 1 shows an example of the
Bakis model with 4 states. With the Bakis model
topology, different signing speed can be compen-
sated [3].

Figure 1: An example of 4-state Bakis
model with corresponding transi-
tion probabilities

There will be one HMM (θk, k ∈ {1...95})
trained for each sign k. Two problems of HMMs,
namely evaluation and estimation, need to be
solved for the recognition system. The probabil-
ity of an observed sequence P (x1, ...xm; θk) will
be evaluated for all competing models, and the
classification is based on the model that gives the
highest log-likelihood. More formally, the classifi-
cation for an observation sequence x1, ..., xm is:

k̂ = argmax
k

logP (x1, ...xm; θk). (1)

3.2 Model Selection

Emission probabilities For the simpler data
set XS involving one signer, a simple Gaussian
distribution whose parameters depend on its un-
derlying states is used for defining emission prob-
abilities. More specifically,

e(x | s) = N(x;µ
s
,Σs) (2)

For the multi-signer dataset, a Gaussian mix-
ture model is used for each state to account for
the variance among different people. Hence,

e(x | s) =
k∑
z=1

q(z | s)N(x;µ
s,z
,Σs,z). (3)

It is assumed that each of the m states has its own
set of mixtures, and k is equal for all states (so
there are k ×m mixture components). Equation
2 is just a special case of Equation 3 when k=1.

Model size The choice of the size of a model
(the number of states) is an important issue in im-
plementing HMMs. Literature review shows that
people have used different number of states in the
Bakis model for the gesture recognition. Starner
and Pentl [7] used four-state HMMs for all signs,
while von Agris et al. [8] used an average of 41
states. The discrepency may lie in the differences
of the data sampling rates. Starner and Pentl [7]
used a 5 frame/sec rate for data recording, while
von Agris et al. [8] used a 25 frame/sec rate.

Intuitively, an underlying state in HMMs repre-
sents a particular position, orientation and shape
of the hands of the signer in the continuous
movement. Using more states means discretiz-
ing the whole movement further, which should
lead to better accuracy. However, the number of
states should be related to the sampling rate (100
frame/sec for XS dataset and 25 frame/sec for
XM dataset) which affects the number of frames
per each sign. Different signs may have different
number of states because of the difference in their
complexities. Cross validations are used to deter-
mine the choice of model size. Due to the time
limitation, the same number of states are used for
all signs.

Bayesian Information Criterion (BIC) may also
give some information about the trade off between
fitting the dataset and the complexity of model.
The number of independent parameters in the the
model G (simple Gaussian distribution with full
covariance matrix) is evaluated as

dim(G) = 2m+ 1 +m×d+
(1 + d)× d×m

2
(4)

where m is the number of states, and d is the di-
mension of a feature vector. Because of the Bakis
topology, there are no independent parameters for
the initial state parameters, and most of the tran-
sition parameters are 0. The results are shown
in Table 2 in Section 4.1. However, BIC can not
be used as a definite criterion especially when the
training data size is small.

2

3.3 The EM algorithm for HMMs

EM motivation The sign language dataset XS

and XM contain partially observed data, x(i) =

(x
(i)
1 , ..., x

(i)
m) for i = 1, ..., n where n is the number

of samples in each dataset (n = 2565 for XS and
n = 6500 for XM). The log-likelihood function
for the partially observed case is then:

L(θ) =

n∑
i=1

log
∑

s1,...,sm

P (x
(i)
1 , ..., x(i)m , s1, ..., sm; θ)

(5)
If we just take a partial derivatives with respect
to its parameters to be estimated, and set them
to zero, then we have a coupled nonlinear sys-
tem of equation. This is known to be very hard
to estimate. If we knew the underlying state se-

quence, s
(i)
1 , ..., s

(i)
m , then we could simplify the log-

likelihood function as:

L(θ) =
n∑
i=1

logP (x
(i)
1 , ..., x(i)m , s

(i)
1 , ..., s(i)m ; θ) (6)

and we could have directly estimated the
maximum-likelihood transition and emission
probabilities, t̂(s′|s) and ê(x|s) as well as initial
state probabilities t̂(s).

In a partially observed case, we can efficiently
solve the estimation problem using the EM algo-
rithm. The first step in the EM algorithm finds

the expected value of P (x
(i)
1 , ..., x

(i)
m , s

(i)
1 , ..., s

(i)
m ; θ)

given the current parameter values called θt−1 and
the observed data. Then the second step in the
EM algorithm is to maximize the Q(θ, θt−1) func-
tion. We express this as:

θt = argmax
θ
Q(θ, θt−1) (7)

Estimates for simple Gaussian distribution
The updates for the tth iteration in the EM algo-
rithm are the following:

tt(s′ |s)=

n∑
i=1

m−1∑
j=1

p(Sj =s, Sj+1=s′ |x(i); θt−1)

n∑
i=1

m−1∑
j=1

p(Sj = s | x(i); θt−1)

(8)

tt(s) =

n∑
i=1

p(S1 = s | x(i); θt−1)

n (9)

µt
s

=

n∑
i=1

m∑
j=1

p(Sj = s | x(i); θt−1)x
(i)
j

n∑
i=1

m∑
j=1

p(Sj = s | x(i); θt−1)

(10)

Σt
s =

n∑
i=1

m∑
j=1

p(Sj =s |x(i); θt−1)(x
(i)
j −µts)(x

(i)
j −µts)

T

n∑
i=1

m∑
j=1

p(Sj = s | x(i); θt−1)

(11)
The posterior probabilities p(Sj = s | x(i); θ)

and p(Sj = s, Sj+1 = s′ | x(i); θ) can be computed
using the forward-backward algorithm. Since
α[j, s] and β[j, s] can quickly get too small, a scal-
ing procedure suggested by Rabiner [5] is used.
The procedure is to multiply α[j, s] by a scaling
coefficient that is independent of s (i.e. it depends
only on j). A similar scaling is done to the β[j, s].
At the end of the computation, the scaling coef-
ficients are canceled out exactly [5]. The scaled
α̂[j, s] is computed as

α̂[j, s] =

∑
s′

α̂[j − 1, s′]× t(s | s′)× e(xj | s)∑
s′

∑
s′′

α̂[j − 1, s′]× t(s′′ | s′)× e(xj | s′′)
.

(12)
The scaling factor for α is then

c[j] = 1∑
s′

∑
s′′

α̂[j − 1, s′]× t(s′′ | s′)× e(xj | s′′)
.

(13)
Each α̂[j, s] can then be written as

α̂[j, s] =

[
j∏
l=1

c[l]

]
α[j, s] = C[j]α[j, s]. (14)

Effectively, α[j, s] is normalized at each stage j
so that the sum of α̂[j, s] over all s for a partic-
ular j is always 1. The same procedure is done
for β. The posterior probabilities can be calcu-
lated in the same way as before using the scaled α̂
and β̂ because the scaling factors cancel out. For
instance,

p(Sj = s | x1...xm; θ) =
α̂[j, s]β̂[j, s]∑
s′ α̂[j, s′]β̂[j, s′]

. (15)

The log-likelihood of the observed data can then
be computed as

logP (x1, ...xm; θ) = −
m∑
j=1

logc[j]. (16)

3

Parameter updates for the Gaussian mixture
model are not presented here (they are derived
in Problem Set 5). A MATLAB HMM toolbox3

which provides implementations for the above al-
gorithms is used for the training and the recogni-
tion tasks.

Pre-scaling of data The values for different
features in the data have different ranges. In or-
der for the covariance matrices to be meaningful,
the data are standardized across each feature to
have a mean value of 0 and a standard deviation
of 1. This ensures that the components of each
feature vector have comparable magnitute.

Initialization Even though the EM algorithm
is guaranteed to converge, it can stuck at the lo-
cal maxima. Therefore, an appropriate way of
initializing parameter values is crucial in the EM
algorithm.

Additional contstraints on the initial state and
transition parameters are applied during the ini-
tializaiton so that the model follows the Bakis
topology shown in Figure1. The initialization for
t(s) is

t0(s) =

{
1, s = 1
0, s 6= 1.

(17)

The initialization for t(s′ | s) (m is number of
states) is

t0(s′ |s)=

0, s′ < s ∨ s′ > s+ 2
1/2, s=m− 1∧(s′=m− 1∨s′=m)
1, s = m ∧ s′ = m
1/3, otherwise.

(18)
The initialization means that each state can tran-
sit to itself, the next state, and the one after the
next state with equal probability (the last two
states are a little bit different). The parameters
that are initialized to be 0 will stay at 0 during
the EM algorithm.

One of the easiest way to initialize Gaussian
mixture models would be randomly assigning all
the parameter values. However, this can easily
lead to poor performance. Another way would
be using k-means clustering algorithm. The k-
means clustering is an unsupervised classification
method where each point gets assigned to the clus-
ter with the closest center value.

We use k-means clustering to initialize parame-
ters µ0 and Σ0. For training a particular sign, we

3http://www.cs.ubc.ca/̃murphyk/Software/HMM/
hmm.html

first divide each sample sequence equally among
the number of states of the model, and group the
data from the same state together. Then the k-
means algorithm is used to get the µ0 and Σ0

values for each state. For the covariance ma-
trix, we initialize it mainly with diagonal matri-
ces, but also test with full matrices. The mixture
paramters q(z | s) are initialized to random values
with the constraint that

k∑
z=1

q(z | s) = 1. (19)

4 Experiments and Analysis

4.1 Single Signer Dataset

The dataset XS was collected over a period of 9
weeks. The data are divided into 9 subfolders ac-
cording to different weeks. Each folder contains
3 samples for each of the 95 signs. One subfolder
(285 samples) is set aside for testing, and the re-
maining 8 subfolders (2280 samples) are used for
training. All experiments use 10 iterations in the
EM algorithm with full covariance matrix.

A 4-fold cross-validation on the training data
is performed to evaluate the effect of the num-
ber of states on performance (Table 1). The per-
formance is inversely related to the classification
error rate (number of errors / number of test ex-
ampls).

Number of States Error Rate

4 0.2026

30 0.1632

40 0.1610

50 0.1570

Table 1: Cross-validation with different number of
states

The error rate decreases with increasing num-
ber of states as we expected. However, a complex
model may not generalize well for unseen data,
and it also significantly slows down the computa-
tional speed.

Training is done with all 8 subfolders, and the
resutlted models are tested on the 9th subfolder.
Table 2 shows the results with different numbers
of states.

The result shows that there is a great improve-
ment in the performance when we increase the
number of training examples (1 error out of 285
examples for 40 states). Although the test error
rate is the lowest for 40 states, the difference is

4

States Test Error Training Error BIC

4 0.0105 0.0061 -7336

10 0.0281 0.0026 -4361

20 0.0105 0.0004 -6302

30 0.0105 0 -10078

40 0.0035 0 -14107

50 0.0070 0 -18359

Table 2: Test error rates, training error rates, and BIC
scores

not very significant due to the limited size of the
the testing data. The BIC scores show preference
for smaller number of states. However, with the
small number of training examples (24 examples
per sign), it is hard to make a definite conclusion.

To have a better sense of how the underlying
states relate to the observed data, the Viterbi al-
gorithm was run for an observed sequence using
the trained HMMs to find the underlying state se-
quence. Figure 2 in Appendix shows an example
for the sign “God”. Two features - X and Y co-
ordinates of the right hand - are plotted together
with state sequences. The purple line shows the
state sequence obtained with 4-state HMMs, and
the blue line shows the state sequence obtained
with 40-state HMMs which follows the changes in
X and Y values more closely.

4.2 Five Signer Dataset

For the second part of our experiment, using XM ,
we tried different settings and checked their per-
formances. We tested how different initialization
methods and different number of states/mixture-
components affect the classification performance.
For the initialization methods, we first varied the
type of covariance matrix, and then we tested
both random (choose centers randomly from data)
and k-means clustering for initializing parameter
estimates for a mixture of Gaussians. We also var-
ied the numner of states/mixture-components in
the test.

4.2.1 Covariance Matrix

We tried with full, and diagonal covariance ma-
trices. µ0 and Σ0 are chosen randomly from
data. Single Gaussian model is used. The re-
sult is shown in the Table 3. The result shows
that the error rates for a full covariance matrix
with HMMs is higher than a diagonal covariance
matrix with HMMs. In general, a diagonal covari-
ance matrix is used when we make an assumption

Full Diagonal

S=5 0.8256 0.8000

S=8 0.8391 0.8361

S=15 0.7774 0.7774

S=20 0.8286 0.6842

Average 0.8177 0.7744

Table 3: Test error rates on different covariance ma-
trices (M=1, random initialization).

that each element of the feature vector is inde-
pendent, whereas a full covariance matrix is used
where all of the correlations are explictly mod-
elled. A full covariance matrix requires more num-
ber of parameters per Gaussian model to be esti-
mated. This increases the complexity of a model
and usually result in poorer classification perfor-
mance when compared to a diagonal covariance
matrix. Our result in Table 3 is exactly explained
by the same reasoning.

4.2.2 Random vs. K-means Clustering
Initialization

Different methods for initializating µ0 and Σ0

were tested. Table 4 shows error rates for random
initialization, and Table 5 shows error rates for k-
means initialization. We also varied the number of
states (S) and mixture components (M) for both
tests. Graphical representations are provided in
Appendix (Figure 3 and Figure 4).

M=1 M=3 M=5 M=10

S=5 0.8000 0.6797 0.7188 0.7565

S=8 0.8361 0.6241 0.6466 0.5887

S=15 0.7774 0.6481 0.5489 0.5451

S=20 0.6842 0.7398 0.8105 0.7526

Table 4: Test error rates on random initialization
method. µ0 and Σ0 are chosen randomly
from the data. Diagonal covariance matrices
are used.

M=1 M=3 M=5 M=10

S=5 0.6707 0.6902 0.6316 0.5263

S=8 0.5865 0.5564 0.5526 0.4857

S=15 0.5850 0.4842 0.4977 0.4451

S=20 0.6060 0.5873 0.5489 0.5534

Table 5: Test error rates on k-means initialization.
Diagonal covariance matrices are used.

The result shown in Table 4 and Table 5 sug-
gests that using k-means to initialize µ0 and Σ0 is
favorable over randomly choosing values from the

5

dataset. If µ0 and Σ0 are randomly chosen, it will
take longer for the EM algorithm to converge com-
pared to using k-means. The k-means algorithm
chooses the cluster centers (µ0 and Σ0) by mini-
mizing the clustering error at each step, so it will
more likely to set the initial values that better rep-
resent the dataset. In our experiment, we limited
the number of EM iterations to be 10. The result
suggests that 10 steps of EM iterations with XM

might not be enough to converge with randomly
chosen µ0 and Σ0, whereas k-means shortens the
amount of time for the convergence.

5 Discussion

The performance gap between XS and XM is very
large. The biggest reason for this would be the
quality of data. Compared to the single signer
dataset XS , the five-signer dataset XM has very
low quality data.

First of all, XM has 8 features for one hand
(right-hand), whereas XS has 22 features for both
hands. In general, most of the sign languages re-
quire two hands to convey their meanings. There
could be similar signs that are hard to differen-
tiate only using right-hand data. In fact, for the
smaller number of signs (5 signs) from XM , the
error rate is less than 0.2. Secondly, the sam-
pling period for XM is 40ms whereas for XS is
10ms. This can increase the ambiguity among the
dataset XM because it might have missed some
key gestures that characterize the meaning of a
sign. Thirdly, XS was captured from a native
signer whereas XM was captured from five sign-
ers (including one novice signer, one sign linguist,
two Auslan interpreters, and one native signer).
In XM , the native signer has only recorded 8 sam-
ples for each sign while the novice signer recorded
20 samples. This potentially decreases the accu-
racy of the signs.

Lastly, but most importantly, XS was mea-
sured using high-quality postion trackers and sen-
sor gloves, while XM was measured using one low-
quality sensor glove only. Specifically, XM has
8-bit accuracy for teh position information which
was calculated based on the ultrasound emissions
from the glove. This information is particulary
susceptible to occasional “spike” caused by ran-
dom ultrasound noise [2]. For XS , however, the
data of the position and the orientation informa-
tion have 14-bit accuracy. This means positional
error is less than 1cm and angle error is less than
0.5 degree. These are the reasons for the huge gap

in the error rates between XS and XM .

Although the error rate for XM is relatively
high, we should still recognize the merit in the
method. For a multiclass classification problem
with 95 classes, a “random guess” algorithm - a
generic baseline - would get an error rate of 99 per
cent [4].

6 Conclusion and Future Work

The experiments on the high quality single singer
dataset show promising result on using HMMs for
sign language recognition. Further work can be
done to improve the method for recognition. Dif-
ferent number of states can be used for for dif-
ferent signs to accommodate different sign com-
plexities. With a newly acquired Cyberglove in
our lab (Multimodal Understanding Group, MIT
CSAIL), more training data can be collected and
tested to provide more statistically significant re-
sult. We only presented isolated sign recognition
here, however continuous sign language recogni-
tion will be the next step to make the system more
useful. Sign langauge recognition also provides a
good starting point towards natural gesture recog-
nition.

Appendix

Figure 2: State and observation se-
quences for the sign “God” show-
ing changes in X and Y coordi-
nates. The blue and purple lines
show the state sequences resulted
from 40-state and 4-state HMMs
respectively. All values are scaled
between 0 and 1.

6

Figure 3: Error rates with random initializa-
tion for different number of mix-
ture components (M=1,3,5,10)

Figure 4: Error rates with K-means
initialization for different num-
ber of mixture components
(M=1,3,5,10)

References

[1] . URL http://archive.ics.uci.edu/ml/

datasets/Australian+Sign+Language+

signs+(High+Quality).

[2] . URL http://archive.ics.uci.edu/ml/

datasets/Australian+Sign+Language+

signs.

[3] B. Bauer and H. Hienz. Relevant features for
video-based continuous sign language recogni-
tion. In FG ’00: Proceedings of the Fourth
IEEE International Conference on Automatic
Face and Gesture Recognition 2000, page 440,
Washington, DC, USA, 2000. IEEE Computer
Society.

[4] M. W. Kadous. Temporal Classification: Ex-
tending the Classification Paradigm to Multi-
variate Time Series. PhD thesis, School of
Computer Science and Engineering, Univer-
sity of New South Wales, 2002.

[5] L. R. Rabiner. A tutorial on hidden markov
models and selected applications in speech
recognition. pages 267–296, 1990.

[6] L. R. Rabiner and B. H. Juang. An introduc-
tion to hidden Markov models. IEEE ASSP
Magazine, pages 4–15, January 1986.

[7] T. Starner and A. Pentl. Visual recognition of
american sign language using hidden markov
models. In In International Workshop on Au-
tomatic Face and Gesture Recognition, pages
189–194, 1995.

[8] U. von Agris, D. Schneider, J. Zieren, and K.-
F. Kraiss. Rapid signer adaptation for iso-
lated sign language recognition. Computer Vi-
sion and Pattern Recognition Workshop, 2006.
CVPRW ’06. Conference on, pages 159–159,
June 2006. doi: 10.1109/CVPRW.2006.165.

7

