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26 degrees of freedom The system uses a simple web camera; the user
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We have chosen urban search and rescue (USAR) as our application 
domain because most USAR tasks rely upon geospatial information weight, with no additional electronics and wires. Hence, the gestures we 
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The hand-tracking software was developed originally for use in an office
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The output from the hand tracker is a time sequence (12fps) describing the 
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with a variety of input modalities: high resolution input from the stylus onOne Fire-i with a variety of input modalities: high resolution input from the stylus on 
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