
Binary Image Segmentation Using Graph Cuts
6.854 Advanced Algorithm Term Project

Ying Yin
yingyin@csail.mit.edu

Abstract

We implemented several maximum-flow algorithms, and applied them for segmentation of a de-
graded binary image. The purpose of the segmentation is to track the position of the hand in camera
images for gestural interaction. The segmentation is based on the maximum a posteriori estimation
which can be reformulated as a network flow problem. We compare the running time of the different
algorithms we implemented together with an existing fast implementation. The results show that the
fastest implementation is suitable for solving the segmentation problem in real-time.

1 Introduction

In this project, we apply maximum-flow (max-flow) minimum-cut (min-cut) algorithms to image seg-
mentation of a degraded binary image. The purpose of the segmentation is to track the position of the
hand on a tabletop display for gestural interaction. The colored glove allows easy reconstruction of 3D
hand postures. We need to track the hand in real-time for user interaction. We color classify the camera
image (Figure 1(a)) in order to extract the hand efficiently. If the color classification is perfect, i.e.,
only the hand is classified as colored pixels and the rest pixels in the background are classified as black,
we can find the location of the hand in the image easily by calculating the centroid of all the colored
pixel. However, due to the complex background, there are many mis-classifications (Figure 1(b)) in the
background. These misclassified colored pixels can adversely affect the centroid calculation.

For tracking the position of the hand, we can ignore the actual color of the pixels, and convert the
image to binary (Figure 1(c)). The mis-classifications can be considered as noise added to the binary
image. To remove the noise, we find the maximum a posteriori (MAP) estimate of the true scene from
the degraded binary image. The direct calculation of the MAP estimate is in general computationally
prohibitive, however Greig et al. [4] shows that the problem can be reformulated to a minimum cut
problem in a certain capacitated network, and max-flow min-cut algorithms can be used to find the
MAP estimate exactly and efficiently. In Section 2, we describe the reformulation of the problem, and in
Section 3, we outline several algorithms we implemented (including the Ford-Fulkerson and the blocking
flows algorithms) or used (Cherkassky and Goldberg’s implementation of the push-relabel method) for
solving the min-cut problem. The experimental results appear in Section 4 with an analysis of the
running times.

2 Graph Cuts Formulation of MAP Estimation

In this section, we present the details of a network reformulation of the MAP estimation problem for
binary images as explained by Greig et al. [4]. Let x = (x1, ..., xn) denote a binary image with n pixels,
and each pixel xi is either white (1) or black (0). Let x∗ be the unknown true scene and y = (y1, ..., yn)
be the observed records of x∗. The MAP estimate of x∗ is the image x̂ which maximizes the a posteriori

1

(a) (b)

(c)

Figure 1: (a) Camera image (b) Color classified image (c) Black and white image

distribution p(x|y). Let l(y|x) be the likelihood of any image x and p(x) be the a priori distribution
over all allowable images, then p(x|y) ∝ l(y|x)p(x).

The observed records (y1, ..., yn) are assumed to be conditionally independent given x [4], and each
has known conditional density function f(yi|xi), dependent on x only through xi. Thus the likelihood
function for x may be written as

l(y|x) =
n∏

i=1

f(yi|xi) =
n∏

i=1

f(yi|1)xif(yi|0)1−xi .

The prior distribution p(x) is modeled as a pairwise interaction Markov random field (MRF) of the
form

p(x) ∝ exp[
1
2

n∑
i=1

n∑
j=1

βij(xixj + (1− xi)(1− xj))]

where βij = β > 0 if i and j are neighbors (each pixel has eight neighbors except those at the edges),
and βij = 0 otherwise [4]. This model quantifies the belief that the unknown true scene x∗ consists of
large homogeneous patches.

Thus, apart from an additive constant, lnp(x|y) can be written as

L(x|y) =
n∑

i=1

λixi +
1
2

n∑
i=1

n∑
j=1

βij(xixj + (1− xi)(1− xj)) (1)

where λi =ln(f(yi|1)/f(yi|0)), a log-likelihood ratio at pixel i [4]. The MAP estimate is the image x̂
which maximizes L. There are 2n possible values of L making direct search for x̂ infeasible even for a
small image of n = 64× 64.

Reformulating the problem as a minimum cut problem in a network provides an efficient way to
find the exact MAP estimate. Consider a directed graph G (Figure 2) comprising n+2 veritices, being a

2

source s, a sink t and the n pixels. There is an edge e(s, i) with capacity usi = λi, if λi > 0; otherwise,
there is an edge e(i, t) with capacity uit = −λi. The value of λi depends on the value of yi. There are
two edges e(i, j) and e(j, i) between two internal vertices (pixels) i and j with capacity uij = uji = β
if the corresponding pixels are neighbors.

Figure 2: GraphG from network reformulation of the MAP estimate. The color of
the nodes indicates the value of the observed record yi of each pixel.

For any binary image x = (x1, ..., xn) let W = {s} ∪ {i : xi = 1} and B = {i : xi = 0} ∪ {t}.
Then (W, B) is a cut for G. The capacity of the cut can be written as

u(W) = u(x) =
n∑

i=1

ximax(0,−λi) +
n∑

i=1

(1− xi)max(0, λi) +
1
2

n∑
i=1

n∑
j=1

βij(xi − xj)2

which differs from −L(x|y) by a term which doest not depend on x. Thus, maximizing L(x|y) is
equivalent to finding the minimum cut in G, i.e., in the MAP estimate pixels are white if they are on the
source side of the minimum cut, and are black otherwise.

3 Implementation of Min-Cut Algorithms

There are many algorithms for solving the max-flow min-cut problem with different running times. In
order to evaluate the performance of these algorithms on our particular image segmentation problem,
we implemented the Ford-Fulkerson algorithm with different methods of finding an augmenting path,
the blocking flow algorithm by Dinic, and also used Cherkassky and Goldberg’s implementation of the
push-relabel method. All implementations use the adjacency list representation of the input graph. We
give a brief description of these algorithms here.

3.1 Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm solves the problem by repeatedly finding an augmenting path in the resid-
ual network Gf until there is none. We implemented three methods for find the augmenting path,
namely depth-first-search (DFS), breadth-first-search (BFS, also called shortest augmenting path), and
maximum-capacity augmenting path (MC).

The implementation for DFS and BFS are relatively straight forward. The MC method is similar to
the Dijkstra method. We assign a priority to each vertex the minimum capacity of a path in the residual
network from the source to the vertex, and process the vertices in decreasing order of priorities. We
use a priority queue to efficiently find the vertex with the highest priority, and increase the priority of a
vertex. The following is the pseudocode for finding the maximum-capacity augmenting path [5].

3

//define a node structure
struct Node
vertex //id of the node
priority //the bottleneck capacity of the path from source to vertex
prev //previous vertex on the path

int MC()
priority queque pq
from[] //an array initialized to -1 and keeps track of the visited

//node and the previous node leading to the current node
push Node(source, infinity, -2) to pq
flow = 0

while pq is not empty
node = pop from pq
current = node.vertex, cost = node.priority
from[current] = node.prev //mark current vertex as visited

if(current == sink)
flow = cost
break from while loop

for each vertex next adjacent to current
if(from[next] == -1 and capacity[current][next]>0)

new_cost = min(cost, capacity[current][next])
push Node(next, new_cost, current) to pq

end for

end while

//update the residual network
current = sink
while from[current] > -1

prev = from[current]
capacity[prev][current] -= flow
capacity[current][prev] += flow
current = flow

end while

return path_cap

Listing 1: Pseudocode for finding maximum-capacity augmenting path.

3.2 Blocking Flows Algorithm

The blocking flow algorithm by Dinic (DINIC) is an extension of the shortest augmenting path method.
Both methods use breadth-first-search to find an augmenting path. When we do breadth-first-search, we
obtain many layers in the graph. We can find multiple paths through the layers of the graph and augment
along many of them at once. The DINIC algorithm does this by conserving information about edges
once traversed, and only updates the residual network after pushing flow through all admissible paths.
The running time of DINIC on a general graph without capacity scaling is O(mn2).

The following (Listing 2) is the pseudocode of a relative simple implementation of Dinic’s algorithm
without using any fancy data structure. During the breadth-first-search, we use an array prev[] to store
the previous node u that leads to the current node v in the shortest path from s to v. After an augmenting
path is found, we push flow through all admissible paths that have the same shortest length by back-

4

tracking using prev[]. The flow pushed in each admissible path equals to the bottleneck capacity of the
path.

int DINIC()
queque q
prev[]

flow = 0

while true
initialize prev[] to -1
push source to q
prev[source] = -2 //mark source as visited
//breadth-first-search to create an layered graph
while q is not empty and prev[sink] == -1

u = pop from q
for each vertex v adjacent to u

if v is not visited and capacity[u][v]>0
push v to q
prev[v] = u

end for
end while

if prev[sink] == -1 //cannot find path anymore
break while loop

//augment through all admissible paths
for each vertex z

if m[z][sink] > 0 and prev[z] != -1
//find bottle_neck capacity of the path from sink to z to source
bottle_neck = capacity[sink][z]
v = z and back-track using prev[v] to update bottle_neck

if bottle_neck > 0
update capacities in path from sink to z to source in Gf

flow += bottle_neck
end for

end while
return flow

Listing 2: Pseudocode for DINIC.

3.3 Push-Relabel Algorithm

The push-rebel method again improves on the blocking flows method. One improvement is being lazy,
and only updating the distance labels when necessary. The other is making the work count by pushing
flow along each augmentable edge found instead of waiting to find an augmentation path.

The efficiency of the push-relabel method depends on the ordering of the update (push and relabel)
operations [1]. For the generic push-relabel method, there is no particular ordering of selecting an
applicable push or relabel operation, and the algorithm runs in O(mn2) time. This time bound is not
better or worse than DINIC. We used Cherkassky and Goldberg’s implementation of the highest-label
(HLPR) variant of the push-relabel method1. The HLPR algorithm repeatedly selects an active node

1http://www.avglab.com/andrew/soft/hipr.tar

5

(node with excess flow) u with the highest label, and then “discharges” it, that is, performing push and
relabel operations until u no longer has a positive excess [3]. This results in a time bound of O(n2√m).

It would not be efficient if we use a heap to keep track of the vertex with the highest label. As the
distance label is bounded by n, using an array and buckets will be more efficient. The HLPR algorithm
maintains an array of sets Bi (buckets), 0 ≤ i ≤ n− 1, and an index b into the array. Set Bi consists of
all active nodes with label i, so that insertion and deletion take O(1). The index b is the largest label of
an active node [1].

The HLPR algorithm has a much better time bound. However, it still has poor practical performance
because relabel is a local operation, and the method loses the global picture of the distances [1]. Two
heuristics, the global relabeling and gap relabeling heuristics, are used in Cherkassky and Goldberg’s
implementation which drastically improves the running time.

The global relabeling heuristics updates the distances in the residual graph from all nodes to the sink
in linear time. As this update is computationally expensive compared to the push and relabel operations,
it is performed only periodically [1].

The gap relabeling heuristics updates the labels of nodes that are disconnected from the sink to n so
that they will no longer be active. These nodes can be found efficiently by detecting the gap among the
distance labels of all the nodes.

4 Experimental Results

4.1 Computing Environment

Our experiments were conducted on a Dell Vostro 420 Tower desktop with a Intel Core2 Quad pro-
cessor at 2.83GHz running WindowsXP Professional. The desktop has 3GB of RAM. All codes we
implemented are written in C++. The code by Cherkassky and Goldberg is written in C. All codes are
compiled with GCC compiler version 3.4.4 (cygming special).

4.2 Input

Given a binary image (the observed records) y = (y1, ..., yn) with noise (Figure 1(c)) as an input, we
want to estimate the true scene x∗ by labeling the hand as white (1) and the background as black (0). An
analysis of such input images yields the statistics in Table 1.

f(yi|xi) value
f(1|1) 0.99
f(0|1) 0.01
f(1|0) 0.1
f(0|0) 0.9

Table 1: Values for the conditional density functions.

To construct the network G from y according to the reformulation in Section 2, we need to find the
corresponding capacities based on λi =ln(f(yi|1)/f(yi|0)) and β. From the above statistics, if yi = 1,
λi = 2.3; if yi = 0, λi = −4.5. We choose β = 0.3, 0.7 or 1.1 (the same values as chosen by Greig at
el. [4]) to investigate the effect of varying β. We scale all these values by 10 to have integral capacities.

The original image is 480×640 pixel in size. We scale the image down to various sizes to investigate
the effect of different input sizes on the running time of the algorithms.

6

4.3 Output

The min-cut algorithms separate the pixels into two sets. The pixels in the same set as the source are
labeled white, and the pixels in the same set of the sink are labeled black. For an input image of size
44 × 60, obtained by scaling the original image (see Figure 1(c)) by a factor of 0.1 and removing the
edges, the exact MAP estimates of the true scene are shown in Figure 3 for different choices of β. The
result is best when β = 1.1. This is because the larger value of β increases the weight of the prior
distribution p(x) in the MAP estimation (Equation (1)), making the result smoother.

(a) β=0.3 (b) β=0.7 (c) β=1.1

Figure 3: Exact MAP estimates with different β values.

4.4 Running Times

Table 2 shows the running times of the five algorithms mentioned in Section 3 for different input sizes by
scaling down the input image. The scale factor refers to the scale in one dimension of the image, hence,
the actual scale down will be the square of the scale factor. The results reported here all use β = 1.1.
When tabulating results of our experiments, we give the running times in milliseconds. The running
time excludes the input and output times. We also plot the running times against the number of nodes in
log scale (Figure 4) to visualize the results better.

scale nodes (n) edges (m) max flow (f) MC DFS BFS DINIC HLPR
0.1 2642 23140 7137 897 658 265 12 1
0.2 10562 93796 25332 15300 6688 4131 112 3
0.3 23762 211972 53285 166515 32000 21263 544 8
0.4 42242 377668 85923 475810 120552 69861 1040 17

Table 2: Running times for different input sizes in ms.

The three algorithms (MC, DFS, and BFS) in the Ford-Fulkerson family are close in performance, al-
though max-capacity augmenting path (MC) is asymptotically slower. MC has running timeO(m2logf)
which is quadratic in the number of edges. The graph is very dense with most of the vertices having
degree 9 as each pixel vertex is connected to the source or the sink, and eight neighboring pixel vertices
(except those on the edges). As a result, a time bound which is quadratic in m will drastically affect
the performance. Moreover, as we use a Dijkstra-like algorithm for finding the maximum-capacity aug-
menting path, it takes O(mlogn) time to find such a path. Hence the actual running time of MC is
O(m2logflogn), making it even slower. The running time of BFS is O(m2n) which is also quadratic
in m, but in practice it is much faster than MC, and is also faster than DFS which has a time bound of
O(mf).

From those time bounds, it is not obvious to reason the results in Table 2 for MC, DFS and BFS.
This is because these are worst case time bounds. In practice the actual topology of the network, and the
implementation of the algorithms will also affect the performance. The experimental results show that

7

Figure 4: Plot of running time vs. number of nodes in log scale.

DFS and BFS have similar performance with BFS being slightly faster by about a factor of two. Both
DFS and BFS take O(m) time to find an augmenting path. However, BFS makes fewer iterations of
finding augmenting paths. For an input with scale factor 0.1, BFS takes 984 iterations, while DFS and
MC takes 6753 and 2057 iterations respectively. BFS is more efficient by making the work count.

If we look at the input image (Figure 1(c)), the small white patches of pixels are the noise we want to
remove. As the white pixels are only connected to the source, and the black ones are only connected to
the sink, any path must be from a while pixel to a black pixel. We convert the noisy white pixel to black
by saturating the edge from the source to the white pixel. These white pixels corresponds to vertices
on shortest paths because they are very close to black pixels which are connected to the sink. Instead
of being directly “primal” greedy as in MC, BFS is being greedy in the “dual” sense by augmenting
through shortest paths to increase the distance between the sink and the source.

Intuitively, there could be many short paths with the same length in the graph, so DINIC saturates
all shortest paths in one blocking flow, making it much faster than BFS. The experiments show that, for
an input size with scale factor 0.1, DINIC makes 25 iterations of blocking flow. This is much fewer
iterations than BFS. The running time of the blocking flows algorithm for a general graph is O(mn2)
which is quadratic in the number of nodes. For a dense graph, the number of nodes is much smaller than
the number of edges like in our case, so DINIC is orders of magnitude faster than the Ford-Fulkerson
family algorithms. For an input with scale factor 0.1, it takes 12 ms to finish which makes it possible to
use it in a real-time application.

The highest-label push-relabel (HLPR) is the fastest by orders of magnitude, and it scales well with
increasing input size. By discharging from the highest label, HLPR “accumulates” flow into fewer piles
when moving towards the sink. This reduces the number of nonsaturating pushes, making the work done
more efficient. Without using heuristics, HLPR runs in O(n2√m) time in the worst case [2]. Hence,
HLPR should have better performance than DINIC asymptotically especially for dense graphs. As the
results show, with the global and gap relabeling heuristics, HLPR is superior to DINIC by a wide margin.

Setting β = 1.1 gives the best image estimation result. However, different β values change the
capacities of the graph, and hence, the total maximum flow f . We investigate the effect of changing f
on the running time. We run the algorithms on the input with scale factor 0.1. The results are shown in
Table 3 and Figure 5. The increase in the maximum flow does not affect the running times much, but it is
interesting to observe that the running times of MC and BFS decrease with increasing f . This is because

8

the number of iterations in BFS and MC increases with decreasing β. As β is usually the bottleneck
capacity in the augmenting paths, it requires more augmenting paths to saturate the edge from the source
to a pixel vertex when β is smaller.

nodes arcs max flow (f) MC DFS BFS DINIC HLPR
2642 23140 4196 1747 519 520 8 0.74
2642 23140 6376 915 621 333 10 0.89
2642 23140 7137 897 658 265 12 0.92

Table 3: Running times with the same number of nodes but different maximum
flow in ms.

Figure 5: Plot of running time vs. maximum flow in log scale.

5 Conclusion

The results show that the exact MAP estimation gives accurate restoration of the true scene from a
degraded binary image. Using this technique, we can remove the mis-classifications in the background,
and segment out the hand. We can extract the location of the hand accurately by calculating the centroid
of the white pixels. The network reformulation, together with the max-flow min-cut algorithms, provides
an efficient way to find the exact MAP estimation. However, the Ford-Fulkerson algorithms are not fast
enough for real-time applications. The HLPR with heuristics is fantastic in practice, and is the best
choice for real-time applications. However, the simple DINIC algorithm also have good performance
on relatively small problem size, and can also be considered for real-time implementation. As our goal
is to find the location of the hand, scaling the image to small size will not affect the result. The DINIC
algorithm without fancy data structure is much simpler to implement.

9

References

[1] B. V. Cherkassky and A. V. Goldberg. On implementing push-relabel method for the maximum flow
problem. Algorithmica, 19:390–410, 1994.

[2] E. Cohen and N. Megiddo. Strongly polynomial-time and nc algorithms for detecting cycles in
dynamic graphs. In STOC ’89: Proceedings of the twenty-first annual ACM symposium on Theory
of computing, pages 523–534, New York, NY, USA, 1989. ACM.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT
Press, 2nd revised edition, September 2001.

[4] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori estimation for binary
images. 1989.

[5] efer . Maximum flow. TopCoder Algorithm Tutorials, Dec 2009. URL http://www.
topcoder.com/tc?module=Static&d1=tutorials&d2=maxFlow/.

10

