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Abstract

Advances in technology are enabling novel approaches to human-computer interac-
tion (HCI) in a wide variety of devices and settings (e.g., the Microsoft R© Surface, the
Nintendo R© Wii, iPhone R©, etc.). While many of these devices have been commercially
successful, the use of multimodal interaction technology is still not well understood
from a more principled system design or cognitive science perspective. The long-term
goal of our research is to build an intelligent multimodal interface for natural inter-
action that can serve as a testbed for enabling the formulation of a more principled
system design framework for multimodal HCI. This thesis focuses on the gesture input
modality. Using a new hand tracking technology capable of tracking 3D hand pos-
tures in real-time, we developed a recognition system for continuous natural gestures.
By nature gestures, we mean the ones encountered in spontaneous interaction, rather
than a set of artificial gestures designed for the convenience of recognition. To date
we have achieved 96% accuracy on isolated gesture recognition, and 74% correct rate
on continuous gesture recognition with data from different users and twelve gesture
classes. We are able to connect the gesture recognition system with Google Earth,
enabling gestural control of a 3D map. In particular, users can do 3D tilting of the
map using nontouch-based gesture which is more intuitive than touch-based ones. We
also did an exploratory user study to observe natural behavior under a urban search
and rescue scenario with a large tabletop display. The qualitative results from the
study provides us with good starting points for understanding how users naturally
gesture, and how to integrate different modalities. This thesis has set the stage for
further development towards our long-term goal.

Thesis Supervisor: Randall Davis
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

As Card et al. [5] mentioned in The Psychology of Human-Computer Interaction, our

society is “transforming itself to use the power of computers throughout its entire

fabric - wherever information is used - and that transformation depends critically on

the quality of human-computer interaction”. Computers have become ubiquitous, be

it in office, at home, in commercial areas or in science laboratories. The amount of

time people interact with computers has increased tremendously.

Following Moore’s law, there is roughly an exponential rate of improvement in

computer hardware in terms of processing speed and memory capacity in the past

few decades. Meanwhile, display technology has also had significant advancement.

Large displays and small pocket-size portable displays are two major trends of the

development. However, the predominant mode of human computer interaction has

not changed substantially since the creation of the windows, icons, menus, and pointer

(WIMP) more than thirty years ago, interfaces that themselves rely on technology

going back forty years and more. As interaction moves away from the confinement of

the desktop, keyboards and mice become inconvenient. For example, using a mouse

with a large display will be very cumbersome due to the large distance to move. A

mouse is also limited to 2D interaction. Even 3D mice are no solution, as they feature

so many buttons that these are not very intuitive to use (Figure 1-11).

Some new interaction techniques have emerged to provide novel ways of interac-

1http://www.jr.com/logitech/pe/LGI_3DX700036/
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Figure 1-1: Logitech SpacePilot PRO 3D mouse

tion (e.g., the Microsoft Surface R©, the Nintendo R© Wii, iPhone R©), with a common

aspiration of making interacting with computation easier. Our goal is to take this

aspiration to the next level by developing an intelligent multimodal interface for nat-

ural interaction. By natural interaction, we mean the kind of cognitively transparent,

effortless multimodal communication that can happen between people; we want to

make this possible in human-computer interaction (HCI), so that the computer inter-

face understands what the user is saying and doing, and the user can simply behave.

We believe that natural interaction can provide better learnability, flexibility,

memorability, convenience and efficiency, but further user studies are needed to in-

vestigate this belief. This thesis work mainly focuses on enabling gesture as one of

the input modalities.

1.1 Mulitmodal Interaction for USAR

We use urban search and rescue (USAR) as our motivating appliation. The task of

emergency response in a USAR operation involves directing and coordinating geo-

graphically distributed teams of people working under time pressure to search build-

ings and aid victims in the aftermath of a disaster. Clearly this requires strategic

assessment of a large volume of complex information. Access to the information by

USAR teams in the command center can be facilitated by various human-computer

interfaces. However, these interfaces are currently hard to use, require a lot of train-

ing, and often impede teamwork [33]. Intelligent, natural, and multimodal interfaces

14



have the potential to lower user cognitive load, allowing them to concentrate on the

decision-making task.

Previous work has shown that users have a preference to interact multimodally

in spatial application domains [23]. Cohen et al. [7] has shown that there can be a

substantial efficiency advantage of multimodal interaction, compared with traditional

WIMP-style GUIs, for a map-based application. Oviatt [24] has also noted that

gesture is particularly useful for specifying spatial information. Most USAR tasks

rely upon geospatial information, often presented as maps. As a result, multimodal

interaction with gesture as one of the inputs becomes particularly relevant for the

USAR application. Our more general goal is to develop a design framework that is

applicable to a range of application domains.

1.2 System Setup

We constructed a tabletop display based on and modified from the one built by

Ashdown and Robinson [1]. The custom tabletop structure includes four 1280× 1024

pixel projectors (Dell 5100MP) that provide a 2560×2048 pixel resolution (see Figure

1-2). The projectors are connected to two NVIDIA GeForce 8600GT dual-headed

graphics card on a Dual-Core 2.4GHz desktop PC with 2GB of RAM.

The display is projected onto a flat white surface digitizer (GTCO Calcomp Draw-

ingBoard V), which uses a stylus as an input device. The digitizer is tilted 10 degrees

down in front, and is placed at 41in (104cm) above the floor, following FAA’s design

standard to accommodate the 5th through 95th percentiles of population. Projected

displays were mechanically aligned to produce a single, seamless large display area.

One Fire-iTMDigital Camera from Unibrain is placed above the center of the tabletop

at the same level of the projectors. It is used for hand tracking based on the method

developed by Wang and Popović [38]. The method requires the user to wear a colored

glove (see Figure 1-3) for easy and efficient pose estimation. We use the Google Earth

web browser plug-in as our basis for 3D maps.
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Figure 1-2: System setup

Figure 1-3: Hand tracking with a color glove

16



1.3 Contributions

Developing a multimodal system requires the integration of different input modalities.

The input can occur in three distinct levels - data, feature, or decision level [9]. Among

these three levels, decision fusion is the most robust and resistant to individual sensor

noise and failure. It has a low data bandwidth and is generally less computationally

expensive than feature fusion [17]. To explore the effectiveness of decision fusion, we

will use a separate preliminary recognition module for each modality, and combine

the results from these modules to provide the recognition outcome. This thesis work

focuses on developing the preliminary recognition module for hand gestures.

We applied the new real-time hand-tracking technology developed by Wang and

Popović [38] in our tabletop environment. The hand-tracking system allows us to

explore finer 3D hand poses for interacting with computer interfaces that goes beyond

the normal hand blob tracking [32] or touch-based interface [39].

As our setup has a more complex environment than the hand tracking system

was originally designed for, we had to modify it to obtain good tracking results.

Chapter 3 describes the details of the modifications. In particular, we developed a

new, purely software-based method for removing the dynamic background produced

by projectors. Our method computes the background in the camera image from the

image being projected. Figure 1-4 shows the result of background removal of a camera

image.

(a) (b)

Figure 1-4: (a) Camera image with the glove and complex background; (b) result
after background removal
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Chapter 4 describes our method for user-independent continuous gesture recogni-

tion based on the data from the hand-tracking system. We focus on natural gestures,

which are free-form and have no fixed structure. We used two layers of Hidden Markov

Models (HMMs), one for gesture segmentation based on the amount of hand motion,

and one for gesture classification based on the segmented hand feature sequence. To

date we have achieved 96% accuracy on isolated gesture recognition, and 74% correct

rate on continuous gesture recognition with data from 3 different users and 12 gesture

classes.

We are also able to connect the gesture recognition system with Google Earth

to demonstrate the result of real-time hand tracking and gesture recognition. In

particular, with our gesture recognition system, we can do 3D tilting of the map

using nontouch-based gesture which is more intuitive than touch-based ones.

We also did a exploratory user study to observe natural behavior under a USAR

scenario with a large tabletop display. Chapter 5 describes the experimental design,

procedure, and results. As we did a Wizard-of-Oz style study, the experiment is highly

realistic in eliciting natural multimodal input including speech, hand, and pen-based

gesture. The qualitative results from the user study provides us with good starting

points for understanding how users will naturally gesture, and for future work in

combining the different modalities in the further development of our interface.
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Chapter 2

Related Work

This chapter describes previous work related to gesture input and multimodal sys-

tems.

2.1 Systems with Gesture Input

Multi-touch displays have gained significant media attention and popularity with the

introduction of the iPhone R© and Microsoft Surface R©. Their wide popularity shows the

great potential and demand for natural and convenient input techniques. However,

with touch-based input, the interaction is still limited in 2D space, and some 3D

interaction cannot be realized, or are hard and unnatural to specify. For instance,

it will be difficult to use a touch-based display to rotate a map in 3D. These new

interfaces are more of a replacement for mouse input, with the addition of allowing

multiple simultaneous control points.

Moving from 2D to 3D, Oblong Industries’ g-speak spatial operating environment1

allows free hand input in 3D space. However, it focuses only on using hand gesture for

manipulating pixels, instead of trying to exploit the communicative power of gesture.

The introduction of Nintendo Wii is a break-through in interaction techniques for

the gaming industry. Its success once again indicates people’s preference for natural

interaction, i.e., movement similar to what we do in the real world. At Electronic En-

1http://oblong.com/
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tertainment Expo 2009, Microsoft unveiled its Project Natal, a controller-free gaming

and entertainment system. It enables users to play video games through a natural

interface using gestures and spoken commands. The device provides full-body 3D

motion tracking. However, it does not track the hand posture to the details of finger

positions Some features of Project Natal are yet to be implemented, but it does paint

an exciting future for natural human-computer interaction.

In our research, we focus on 3D free-form gestures that are not confined to the

surface of the display. Instead of just tracking the hands as finger tips or blobs,

we explore the expressiveness of the hand poses that can enhance human-computer

interaction.

2.2 Gesture Recognition

Much work on computer recognition of hand gestures has focused on synthetic ges-

tures, most notably sign language recognition. Bauer and Hienz [2] developed a

video-based continuous sign language recognition system. The system was based on

continuous density Hidden Markov Models (HMMs) with one model for each sign.

The signer wore simple cotton gloves with colored markers for real-time data ac-

quisition and easy information retrieval. A single color video camera was used for

image recording. They used 3.5 hours of training and 0.5 hours of test data from one

person’s input, and reported an accuracy of 91.7% based on a lexicon of 97 signs.

The research in the sign language recognition provides us with a good start point

on natural gesture recognition. However, there are still many differences between the

two. Sign language is well structured and has a defined grammar. Natural gestures

are free formed and they can occur at any time in any order. Sign language has a

large but limited vocabulary, but natural gestures have potentially unlimited number

of possibilities. These differences pose great challenges for natural gesture recognition.

Because there is no particular pattern in terms of the sequence of the gestures,

and because gestures can be sporadic in natural interaction, we did not use embed-

ded training which is commonly used in speech recognition [40] and sign language

20



recognition.

Cassell [6] was among the first to argue that natural, free-hand gestures can be rel-

evant to HCI, and presented a helpful framework for gesture interaction. Kettebekov

and Sharma [17] focused on using natural gestures when developing a multimodal

framework for large display control. They report that it is possible to recognize natu-

ral gestures continuously with reasonably good rates. Building on this, Krahnstoever

et al. [18] described the technical detail of developing several research prototypes

based on the multimodal framework. For the continuous gesture recognition part,

they focused on deictic gestures, and the system was trained to learn pointing, area

and contour gestures.

Our work is in part built on the foundation given there. For gesture recognition,

we also support manipulative gestures besides the deictic gestures, and we focus on

the manipulative gesture recognition first in this thesis.

2.3 Multimodal Systems

2.3.1 Systems in General

Bolt’s pioneering work in the “Put That There” system [3] demonstrated the potential

for voice and gestural interaction. In that system, the hand position and orientation

was tracked by the Polhemus tracker, i.e., the hand was essentially transformed to a

point on the screening. The actual hand posture did not matter, even if it was not in a

pointing shape. The speech also followed a rigid and limited command-like grammar.

Even though this is an early work, it provides some insight about the advantages of

multimodal interaction. As Bolt summarized in the paper, using pointing gesture

allows the use of pronouns in the speech, with the corresponding gain in naturalness

and economy of expression [3].

More recently, several multimodal interaction prototypes were developed that

moved beyond Bolt’s “Put That There” system. Cohen et al. [8] developed the Quick-

Set prototype which was a collaborative, multimodal system running on a hand-held
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PC using pen and voice as input. They used a novel multimodal integration strategy

that allows speech and pen gesture to compensate for each other, yielding a more

robust system.

Kaiser et al. [15] described an approach to 3D multimodal interaction in immersive

augmented and virtual reality environments. Their multimodal system fused symbolic

and statistical information from a set of 3D gestures, spoken language, and referential

agents. Through a user study, they showed that mutual disambiguation accounted

for over 45% of the succussful 3D multimodal interpretations.

These works demonstrate the value of multimodal interaction to improve interpre-

tation accuracy using mutual disambiguation. In environments that would challenge

unimodal speech recognizer, particularly for non-native speakers and in mobile envi-

ronments [19], the benefits of multimodal interaction is even more prominent.

2.3.2 Systems Related to USAR

The work that is most related to ours is that done by Sharma et al. [33]. They did

substantial amount of work in analyzing the issues in designing speech-gesture driven

multimodal interfaces in the context of crisis management. They did a domain and

task analysis to understand the highly dynamic and collaborative work domain of

crisis management. As part of this work, Brewer [4] conducted onsite visits to state

and county level emergency managers and GIS professionals in South Carolina and

Florida to map out the process of emergency management response to hurricanes, to

design interface prototypes, and to aid in the creation of realistic emergency man-

agement scenarios. Their domain analysis provided us an useful starting point in

designing our multimodal interface for the USAR application.

Based on the domain analysis, and as part of the same research effort, Rauschert

et al. [29] developed a system called Dialogue-Assisted Visual Environment for Geoin-

formation (DAVE G) that used free hand gestures and speech as input. They rec-

ognized that gestures are more useful for expressing spatial relations and locations.

Gestures in DAVE G included pointing, indicating an area and outlining contours.

Speech and gesture were fused for commands that needed spatial information pro-
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vided by the gesture. Their work, however, mainly tracked hand location, rather than

tracking both location and posture, as in our work.
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Chapter 3

Hand Tracking

An important part of multimodal interface is acquiring valid multimodal data. For

each modality, we need to obtain accurate input data in order to perform the subse-

quent recognition. We focus on gesture acquisition first; this chapter describes how

we capture hand motion information.

3.1 Related Work

Figure 3-1: Wireless CyberGlove II motion capture data glove by CyberGlove Systems

The most common acquisition methods for hand gestures are magnetic trackers,

cybergloves and vision-based approaches. Acquisition using magnetic trackers and cy-

bergloves is efficient and accurate, but suffers from the need to wear restrictive devices

(see Figure 3-11). Most existing vision-based hand tracking systems track only hand

movement and finger tips, rather than 3D hand postures [10][22][29]. This limitation

often requires that artificial gestures be defined for easy tracking and recognition.

1http://www.cyberglovesystems.com/products/cyberglove-ii/overview
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3.2 Basic Tracking Method

Figure 3-2: Hand tracking with a color glove

We use the hand-tracking system developed by Wang and Popović [38]. With one

web camera and an ordinary cloth glove imprinted with a custom pattern (see Fig-

ure 3-2), the system can track 3D hand postures in real-time. It provides rich hand

model data with 26 degree of freedom (DOFs): six DOFs for the global transforma-

tion and four DOFs per finger. The glove is very light-weight, with no additional

electronics or wires. As a result, the gestures we can use for interaction are not

limited by the hand-tracking hardware, opening up possibilities for developing and

investigating more natural gestural interaction.

For each frame of the image from the camera, the system classifies each pixel

either as background or as one of the ten glove colors using Gaussian mixture models

trained from a set of hand-labeled images. After color classification, the system uses

mean-shift with a uniform kernel of variable-bandwidth to crop the glove region [38].

The region is then normalized, and the resultant image is used to look up the nearest

neighbors in the database.

Wang and Popović [38] used a single Point Grey Research Dragonfly camera for

hand tracking. This model is ceased to be manufactured. We used a Fire-iTMdigital

camera instead which is closer to an everyday webcam that people would use at

home. This camera also works better with the Dell projectors we use. The projectors
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in our setup (Section 1.2) are DLP projects which use a spinning color wheel to

modulate the image. This produces a visible artifact on the screen, referred to as the

“rainbow effect2”, with colors separating out in distinct red, green, and blue. At any

given instant in time, the image on the screen is either red, green, or blue, and the

technology relies upon people’s eyes not being able to detect the rapid changes from

one to the other. When using a Logitech Qickcam Pro 9000, we observed horizontal

color stripes in the camera image. The Fire-i camera does not have this artifact;

instead, the whole image turns red, green or blue periodically. We are able to reduce

this effect on the Fire-i camera by adjusting its exposure rate to be a multiple of the

rotation period of the color wheel. The projector uses 2x color wheel speed, which

is about 120 rotation/second. Hence, the period is about 8.3ms. After adjusting the

exposure rate of the camera to approximately 8.3ms, the effect is greatly mitigated,

but still present.

We also developed a wrapper for the Fire-i camera driver to interface with the hand

tracker using the FireAPITM1394a/1394b development toolkit. We used the Fire-i

DLL interface which directly talks to the camera and offers better performance. This

allows the tracker to continuously capture images from the camera with minimum

latency. The camera is set to capture 640× 480 video with RGB colors at 15Hz.

3.3 Background Removal

Wang’s hand-tracking software was developed originally for use in an office environ-

ment with standard illumination. The accuracy of the tracking relies largely on the

accuracy of color classification of the colored patches on the glove. However, in our

tabletop environment, we have a complex and dynamic background (the maps), and

non-uniform illumination of the glove from the maps. This poses great challenges for

the color classification step described in the previous section (see Figure 3-3(a)).

When the background is simple (as in a an office), color classification is often

almost correct, i.e., only the hand is classified as colored pixels. Then we can crop

2http://www.projectorcentral.com/lcd_dlp.htm
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(a) (b)

Figure 3-3: (a) Camera image with complex background; (b) result of color classifi-
cation without background removal

the region of the hand in the image easily using the mean-shift method which involves

calculating the centroid of all the colored pixel. However, with a complex background

that has regions with colors close to the ones on the glove, those regions will be

classified as colored pixels instead of background (Figure 3-3(b)). These misclassified

colored pixels can adversely affect the centroid calculation.

To remove the effect of the background, we use background subtraction. The way

it is done, despite the name, is by division, i.e., dividing the camera image pixel-by-

pixel by the background image. Traditional background subtraction involves taking

an image of the static background only, or keeping a running average which is a

linear combination of the current image and the running average image [13], and then

subtracting the background image from the current image.

In our case we have the advantage that the background is the display, and we

know what is being displayed by taking a screen capture. We then apply geometric

and color transformations to the screen capture to determine how the background

image looks to the camera. Figure 3-4 shows how the image pixels from the computer

graphics card are transformed as they are projected to the tabletop and then captured

by the camera. Steps 1 - 4 are the physical process what produces the image (IA)

in the camera. We want to compute the background image (IB) to eliminate it from

IA. Step T is the computational process that produce the same effect as steps 1 -

4. In step T, we take the image (IC) directly from the graphics card through screen
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capture and transform (scaling, cropping, and color mapping) it to IB.

Figure 3-4: Transformation of image pixels

As the projectors are above the table, the light from the project also shines on the

hand. The color signal reaching the camera is the multiplication of illumination and

reflectance of the color glove for each pixel. To eliminate the effect of the illumination

on the glove, we first rectify the camera image (removing distortion in IA) to get

IA RECT , and then divide its values pixel-by-pixel by the screen capture values after

transformation (IB). We use the RGB color model, so each color pixel is a triplet

with values representing the intensities of red, green and blue channels. We use the

subscripts r, g, b to denote the three channels through out this chapter. Let p
A

be

a pixel in IA RECT with RGB values (pAr, pAg, pAb), and p
B

be a pixel in IB, then a

pixel p
R

in the resultant image IR is calculated as

p
R

= (pRr, pRg, pRb) = (
pAr

pBr

,
pAg

pBg

,
pAb

pBb

)
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Figure 3-5 shows an example of the result after division, where the background is

mostly white and the glove colors are closer to the actual colors. The result is not

perfect, due to imperfections in the geometric and color calibrations, but color clas-

sification of the glove colors based on the image after this background elimination is

more robust.

Figure 3-5: Resultant image after background elimination

3.3.1 Geometric Calibration and Transformation

There are two steps of geometric calibration and transformation we need to perform.

The first one is rectifying the camera image; it has noticeable barrel distortion (see

Figure 3-6(a)). We used the Camera Calibration Toolbox for Matlab3 to obtain the

intrinsic parameters (focal length, principal point and distortion coefficients) of the

camera.

For realtime performance, we pre-generate a lookup table (LUTRECT ) that maps

the x, y-coordinates in the rectified image to the coordinates in the original distorted

image. Let IRECT and IDISTORT be the rectified and the distorted images respectively,

3http://www.vision.caltech.edu/bouguetj/calib_doc/
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then the pixel at (x, y) of IRECT is

IRECT (x, y) = IDISTORT (LUTRECT (x, y)).

Figure 3-6 shows the result of rectifying the original image.

(a) (b)

Figure 3-6: (a) Distorted image captured by the camera; (b) rectified image

The second step is calibrating the extrinsic parameters (rotation and translation)

of the camera relative to the tabletop display. This step is necessary for transforming

IC (screen captured the image) to IB in Figure 3-4.

The calibration process involves displaying a checkerboard image (target image)

on the tabletop display, and recording the x,y-coordinates of the grid corners of the

checkerboard image. We take a picture of the tabletop with the target image displayed

on it. Then we rectify the camera image and record the corresponding coordinates of

the grid corners on the image. Using homogeneous coordinates, we find the least error

transformation Q that maps the tabletop display coordinates to the camera image

coordinates.

We also use a lookup table to improve the speed of the transformation. Let

ISCREEN and ITR be the screen captured and the transformed image respectively.

Then the pixel at (x, y) of ITR is

ITR(x, y) = ISCREEN(LUTTR(x, y))

where LUTTR(x, y) = Q−1((x, y)).
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3.3.2 Color Calibration and Transformation

For background subtraction, we also need to transform the projected colors to the

colors captured by the camera. Let cp be the projected color and cc be the camera

captured color. We want to find a function f : R3 → R3 where f = [fr, fg, fb] such

that cc = f(cp).

To find function f , we did a color calibration using a palette with 80 colors (see

Figure 3-7(a)). The colors are chosen because they are the most frequent colors in

Google Earth. Figure 3-7(b) shows the same color palette as seen from the camera.

From these two images, we obtained a set of training examples (cip, c
i
c) for i = 1 . . . 80.

(a) (b)

Figure 3-7: (a) Color palette for color calibration; (b) the same palette captured by
the camera

We experimented with three methods of finding the mapping function f . Method

1 assumes the transformation is linear, so for example, the R value ccr = ar3cpr +

ar2cpg + ar1cpb + ar0. The equations for G and B values are similar.

Method 2 assumes the transformation is a second degree polynomial, but each

color channel is independent, i.e., ccr = ar2c
2
pr + ar1cpr + ar0. We find the parameters

using least-square error methods.

For Method 3, we also assume a second degree polynomial model, but each color

channel depends on all three color channels. Let x be one of the color channels, i.e.,

x ∈ {r, g, b}, and fx(cp) = θx · φ(cp) where φ(cp) contains all polynomial terms up

to degree 2 (e.g. cpr, cpg, c
2
pr, cprcpg etc.). We use regularized least-squares regression
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to find the optimal parameter θx. The regularization term ‖θx‖ is added to prevent

over-fitting.

To evaluate the three color transformation methods, we use four 640 × 480 pixel

testing background images (with different levels of details and a variety of colors

like water bodies and forests) in both projected form and camera captured form.

We color transform the projected images using the three methods, and divide the

camera captured image by the color transformed image pixel by pixel in each R, G, B

value. Ideally, we would obtain a white image after the division. However, the color

calibration is not perfect. Hence, the evaluation metric we use measures how much

each pixel in the resulting image deviates from a neutral (gray) color. Any neutral

color is distinct from the colors on the glove; it need not be pure white. With a

neutral background, the accuracy of color classification of the glove can be improved.

If n is the number of pixels in image I, (pir, pig, pib) the RGB values of pixel pi, and

p̄i the average value of (pir, pig, pib), the metric M for image I can be expressed as

M(I) =
n∑

i=1

(pir − p̄i)
2 + (pig − p̄i)

2 + (pib − p̄i)
2.

Table 3.1 shows the result of average M(I) for the four testing images. Method 3 has

the lowest value which means less deviation from neutral colors. As a result Method

3 is used for color transformation. Figure 3-8 shows the result of color transformation

using Method 3 (all images are blurred to eliminate the high frequency noise).

Method Average M(I) Classification Accuracy
1. linear 666 0.9986
2. polynomial, independent channels 600 0.9979
3. polynomial, dependent channels 497 0.9988

Table 3.1: Evaluation metrics for the three color transformation methods

As the goal of background elimination is to improve the the accuracy of color classi-

fication, we also evaluate the three methods based on the result of color-classification.

We tested with the same four different background images and took several color clas-

sified images to calculate the average accuracy. The ground truth classification is done
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(a) (b)

(c)

Figure 3-8: (a) Scaled background image in its original color through screen capture;
(b) background image after color transformation; (c) rectified camera image
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manually. Table 3.1 also shows the result of the average accuracy using the three dif-

ferent color transformation methods. The accuracies are all very high, but Method

3 gives the best result. Figure 3-9 shows the result of color classification when using

Method 3 to transform the color of the screen captured background.

Figure 3-9: Result of color classification after background removal using Method 3
for color transformation

3.4 Discussion

We applied a new hand-tracking technology in our tabletop environment. Despite the

complex lighting environment and background, we can obtain good tracking results

by reducing the adverse effects computationally.

We developed a new background removal method for a projector-based system.

With geometric and color calibrations, the background removal can be done com-

putationally and relatively accurately. Although there may be other methods, for

example, using polarizing filter or synchronized optical shutters [14], our method is

purely software-based, and hence, does not require additional hardware setup.
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Chapter 4

Gesture Recognition

The hand tracking system described in Chapter 3 provides us with detailed 3D hand

pose data. In this chapter, we describe the methods we use to infer gestures from

that data.

4.1 Gesture Taxonomy

We adopt the taxonomy of hand movements proposed by Pavlović et al. [25], which

distinguishes gestures from unintentional hand movements (like beats). They then

further divid the gestures into manipulative and communicative.

Manipulative gestures are used to act on objects, while communicative gestures

have an inherent communicational purpose [25]. In a natural environment, com-

municative gestures are usually accompanied by speech. Hence, for manipulative

gestures, classification is based on the hand states, while for communicative gestures,

both hand and speech recognitions will be combined for recognition. In this chapter,

we focus on manipulative gesture recognition where speech is not involved.

4.2 Temporal Modeling of Gestures

Human gestures are a dynamic process. If recognition is to work, it is important to

understand the temporal (dynamic) characteristics of gestures. Psychological studies
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of gestures provide us with some insights to the properties of gesture intervals. Kendon

[16] calls the gesture interval a “gesture phrase”. It has been established that three

phases make a gesture: preparation, nucleus (peak or stroke [20]), and retraction. The

preparation phase consists of preparatory movement that sets the hand in motion from

a resting position. The nucleus of a gesture has some “definite form and enhanced

dynamic qualities” [16]. In the retraction phase, the hand either returns to the rest

position or is repositioned for the next gesture.

4.3 Isolated Gesture Recognition

4.3.1 Feature Vector

The output from the hand tracker is a sequence of data describing the translations in

x, y, z coordinates, and orientations in quaternions of the hand and each finger joint.

Figure 4-1 shows the coordinate system we use. There are three joints per finger in the

model. The joint at the base of each finger has 2 DOFs while the other two joints of

each finger have 1 DOF each. From the tracker output, we derive the feature vector at

each time step. For each finger, we are interested in the bending angles of the joints,

so we convert the joint orientation in quaternions to Euler angles. The translation

of the joint is irrelevant because it is relative to the hand and stays the same. The

feature vector we use fro recognition includes the velocity of hand movement in the

x-y plane (obtained from the global translation of the hand), z position of the hand,

roll, pitch and yaw of the hand, and four angles for each finger (one angle for each of

the first two joints and two angles for the base joint). The result is a 26-dimensional

feature vector x.

The feature vector produces a description of the hand motion and pose, and as such

provides more generality than would be available from a set of features chosen because

they discriminated among a set of predetermined gestures. Our feature vector gives

us the flexibility of investigating and training different gestures that can be obtained

through a user-centered approach instead of prescribing a rigid set of gestures.
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tabletop surface

x

y

Figure 4-1: The coordinate system we use: the table surface is the x-y plane, with z
axis coming out from the table surface

4.3.2 Hidden Markov Models

The position and the orientation of the hand through time can be assumed to follow

the first order Markov process [35]. Hence, we use Hidden Markov Models (HMMs)

to classify gestures. There exist many kinds of HMMs [28]. One that can model time-

series signals whose characteristics change successively over time is called the Bakis

model [2] or the Left-Right model [27], often used in speech recognition systems [2].

The Bakis model allows transitions to the same state, the next state, and the one

after the next state. It is particularly useful for our task because it allows different

gesture speeds to be compensated [2].

Figure 4-2 shows an example of a four-state Bakis model with transition prob-

ability from state s′ to state s as t(s|s′) for s, s′ ∈ {1, 2, . . . ,m}. We also add the

non-emitting entry and exit states to the model, similar to what Young et al. [40] did

for their speech recognition system. The entry state is added to represent the initial

state parameters t(s). Only the first two states can be the initial state, and only the

last two states can transit to the exit state.

There is one HMM (θk) trained for each gesture k. The probability of an observed

sequence P (x1, ...xt; θk) will be evaluated for all competing models, with the classifi-
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Figure 4-2: The state transition diagram of a 4-state Bakis model with corresponding
transition probabilities

cation based on the model that gives the highest log-likelihood. More formally, the

classification for an observation sequence x1, ..., xt is:

k̂ = arg max
k

logP (x1, ...xt; θk). (4.1)

4.3.3 Model Selection

Emission Probabilities

We start with the simple case of recognizing isolated gestures from one single user. We

define emission probability e using a simple Gaussian distribution whose parameters

depend on its underlying state. More specifically,

e(x | s) = N(x;µ
s
,Σs) (4.2)

We then generalize the method to accommodate multiple users by using a Gaussian

mixture model for each state to account for the variance among different people. It

is assumed that each of the m states has its own set of l mixtures, so there are l×m

mixture components. Let qs(z|s) specify a distribution over the l possible mixture

components, which depends on the underlying state s, so z ∈ {1 . . . l}. Hence,

e(x | s) =
l∑

z=1

qs(z | s)N(x;µ
s,z
,Σs,z). (4.3)

Note that Equation 4.2 is just a special case of Equation 4.3 when l = 1.
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Model Size

The choice of the size of a model (the number of states) is an important issue in

implementing HMMs. An underlying state in HMMs represents a particular velocity,

orientation and shape of the hand of the user during the continuous movement. Hence,

the states can be associated with the temporal gesture phases described in Section

4.2. As a result we can say that a gesture HMM should contain at least (and usually

more than) three (hidden) states [25].

A literature review shows that people have used different numbers of states in their

Bakis model for gesture recognition. Starner and Pentl [35] used four-state HMMs

for all signs, while von Agris et al. [37] used an average of 41 states. The discrepancy

may lie in the differences of the data sampling rates. Starner and Pentl [35] used a

5 frame/sec rate for data recording, while von Agris et al. [37] used a 25 frame/sec

rate.

Intuitively, using more states means discretizing the whole movement further,

which should lead to better accuracy. However, there is also a trade-off between the

complexity of the model and over-fitting the dataset. In addition, the number of

states should also be related to the sampling rate (around 12 frame/sec in our case)

which affects the number of frames per gesture. We use cross-validation to determine

the choice of model size.

4.3.4 Experiments and Results

To test the performance of our recognition method, we obtained training data for 12

gestures chosen for basic map manipulations. The gestures include pan left, right, up

and down; pitch, roll and yaw in clockwise and anticlockwise directions; and zoom in

and out. Panning is moving the hand left, right, up or down, with the hand flat on

the tabletop surface. Pitch, roll and yaw gestures are rotating the hand about the x,

y, and z axes respectively (see Figure 4-1 for the coordinate system). Zooming in is

spreading the fingers outwards, while zooming out is the reverse action, i.e., moving

the fingers inwards. Figure 4-3 shows the examples of some gestures we used for
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training. As the feature vector we use is not influenced by these gestures, we believe

our the results will be generalizable for other gestures.

Figure 4-3: Examples of some gestures used in the experiment

We used a MATLAB HMM toolbox 1 for obtaining the maximum likelihood pa-

rameters of the models using the expectation-maximization (EM) algorithm.

Single User

We collected a single user data set XS over three different days. There are 9 samples

for each of the 12 gestures. Three samples per gesture are set aside for testing, and

the remaining six samples per gesture used for training.

A 3-fold cross-validation on the training data is performed to evaluate the effect

of the number of states (m) on performance (Table 4.1). The results show that using

3 states give the highest accuracy rate. However, the results for using 4 or 5 states

are also very close.

m Accuracy Rate
3 0.736
4 0.722
5 0.708
6 0.611

Table 4.1: Cross-validation with different number of states

We then perform the training on all the training data, and the resulting models are

tested with the remaining 36 test samples. Table 4.2 shows the results with different

1http://www.cs.ubc.ca/̃murphyk/Software/HMM/hmm.html
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numbers of states. Using 3-5 states gives the best result.

m Test Accuracy Training Accuracy
3 0.972 1.000
4 0.972 1.000
5 0.972 1.000
6 0.917 1.000

Table 4.2: Test accuracy and training accuracy with different number of states

Multiple Users

As it is important to test whether the models generalize well to different users, we

collected a second data set XM with three different users. We use the Gaussian mix-

ture model for the emission probability for each state and experiment with different

values of l in Equation 4.3. We use k-means clustering for initializing parameter es-

timates for a mixture of Gaussians. Table 4.3 shows the performance when tested

with different users. The training data includes 14 samples per gesture, and the test

data includes 4 samples per gesture (48 test samples in total with data from three

different users).

m = 3 m = 4 m = 5
l=1 0.938 0.917 0.917
l=2 0.896 0.896 0.896
l=3 0.938 0.958 0.917
l=4 0.938 0.875 0.917

Table 4.3: Test accuracy on data from three different users with different number of
mixtures (l) and different number of states (m)

Table 4.3 shows the performance when using different numbers of mixtures (l) for

the emission probabilities, and different number of states (m). Using 3 mixtures of

Gaussians and 4 states gives the highest recognition accuracy of 95.6%.

4.4 Continuous Gesture Recognition

The next important step is continuous online gesture recognition. Some previous

systems distinguish gestures from unintentional hand movements by restricting the
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hand motion or defining some arbitrary gesture to indicate the start of a gesture [34].

For an interface that a user can interact with more naturally, we need a more flexible

approach.

There are two issues we need to address. One is gesture segmentation, i.e., we need

to detect the start and the end points in a continuous gesture sequence in order to

use the HMMs trained for isolated gestures. The other issue is real-time recognition

with minimum delay.

4.4.1 Segmentation

Gesture is signified by motion. We compute dt, the difference between the feature

vectors of consecutive time steps, as

dt = xt − xt−1, ∀t ∈ {1 . . . T}.

Note that there is no d0. We then take the 2-norm of the difference vector, i.e., ‖dt‖.

A larger value in ‖dt‖ signifies bigger motion. We use a two-state HMM to model the

start and the end of a gesture (see Figure 4-4) using ‖dt‖ as the observation sequence.

Figure 4-4: State machine for HMM: s1 = gesture starts, s2 = gesture ends

Figure 4-5 shows an example of the segmentation of a series of continuous gestures

using the trained HMM. The green line is the ‖dt‖ value. The red segments are

the manually labeled gesture intervals. The blue segments are the gesture intervals

resulted from HMM segmentation. Note that the manual labels are not perfect either

because it is hard to determine the exact point in time a gesture starts or ends.

There are many fluctuations in the ‖dt‖ values. Several factors may contribute to

this. One factor is the noise in the feature vectors coming from the hand tracker. The
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z value in the feature vector is especially noisy and fluctuates greatly because there

is no stereo imaging. The variation in the speed of the hand movement is another

factor. Using an HMM is more robust than simply calculating the average value

of ‖dt‖ for gesture intervals, and using that as a threshold, because an HMM takes

the transition probabilities into account, making it less sensitive to high-frequency

fluctuations. However, there still can be false detections like the one shown in Figure

4-5.
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Figure 4-5: An example of gesture segmentation result

Figure 4-6 shows the system level structure of the continuous gesture recognition

module. We have two levels of HMMs: the first level is used to detect the starting

and ending points of gesture intervals; the second level is used to classify the gesture

interval using the HMMs trained for isolated gestures. The results can be used to

drive the GUI of an application, for example, Google Earth.
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Figure 4-6: Continuous gesture recognition system

4.4.2 Real-Time Recognition

Achieving minimum time delay of gesture recognition is necessary for a real-time

interactive system. To have a responsive system, we will ideally need to recognize

the gesture even before it ends. Therefore, instead of evaluating the log-likelihood

of a gesture HMM at the end of the gesture interval and finding the model with the

maximum value, as in Equation 4.1, we evaluate the feature vector at each time step

as it comes from the tracker, and update the estimated likelihood of each gesture.

Let ts and te be the starting and ending time steps of a gesture. At time step

ts ≤ t ≤ te, we calculate the probability of the observation sequence xts , . . . , xt for

the gesture model θk as

P (xts , . . . , xt; θk) =
∑

s

P (xts , . . . , xt, st = s; θk) =
∑

s

α[t, s]. (4.4)

α[t, s] can be calculated using the forward algorithm:

α[t, s] =
∑

s′

[α[t− 1, s′]× t(s|s′)× e(xt|s)] (4.5)

As the probabilities will become very small, our implementation uses logarithmic

probabilities. We only need an array to keep track of the α values and the log-

46



likelihood value for each gesture model. Hence, the storage requirement is O(1) and

time requirement is O(t).

We analyzed the change of log-likelihood values of 12 gesture HMMs from the

start of a gesture until the end for the isolated gestures in the test data set XM . So

for each gesture observation sequence (x1, . . . , xT ), we plotted log(P (x1, . . . , xt; θk))

against time t where t = 1 . . . T and k = 1 . . . 12. We observed that the log-likelihood

of the correct gesture model is the highest even very early in the gesture. This means

that we can make an early decision about the gesture based on the highest log-

likelihood value. Figure 4-7 shows one such example: the actual gesture is pan down,

and the log-likelihood of the observation sequence with the gesture model parameter

θpan down is the highest at the very beginning.
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Figure 4-7: The change of log-likelihood values for 12 HMMs over time, the actual
gesture is pan down

However, it is not true that the correct gesture model will always have the highest

log-likelihood at the very beginning, because some gestures are similar at the start.
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Figure 4-8 is one such example; the correct gesture model does not have the highest

log-likelihood during the first few time steps, with all the log-likelihood values very

close in the beginning.
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Figure 4-8: The change of log-likelihood values for 12 HMMs over time, the actual
gesture is pitch anticlockwise

Eickeler et al. [11] used a similar method (calculating the probability of the feature

vector sequence at each time step t) for continuous gesture recognition. For real-time

recognition, they defined the condition for the moment of recognition as the following:

if the probabilities of the observation sequence for all the models are decreasing during

a short interval, the most likely model at the end of this interval is the recognition

result. The reason behind this choice of the condition seems empirical, but we did not

observe the same pattern as described by them. They did not report the recognition

accuracy rate either.

Instead, we make the recognition decision only after the difference between the

highest and second highest log-likelihood values are greater than an empirically de-

rived threshold value. The reason is that greater difference in the probabilities means
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greater confidence that the highest one is the correct gesture. We obtain the threshold

value through analysis of the test data in the isolated gesture data set, and calculate

the average maximum difference between the highest and second highest log-likelihood

values when the higher one does not correspond to the correct gesture.

4.4.3 Experiments and Results

We recorded a data set XC containing sequences of continuous gestures, and manually

labeled the gestures, and their start and end points to get the ground truth. We use

four examples to train the HMMs for segmentation. As the data is fully labeled,

we can get the maximum likelihood parameters directly instead of using the EM

algorithm. The examples contains different number of gestures, ranging from 2 to 9,

with 76 gestures in total.

We measure the recognition rate defined as the total number of correctly recog-

nized gestures over total number of gestures (without considering the false positives).

Note that Sharma et al. [32] used a similar metric for the performance of their recogni-

tion system, however they did not mention whether the timing of the recognition was

also considered or whether they just compared the output gesture sequences with the

true gesture sequences. For the recognition to be useful for an interactive interface,

we define a correct recognition as one in which the label is correct and the output

gesture interval overlaps with the true gesture interval. To date, we are able to obtain

a recognition rate of 74%.

Figure 4-9 shows a graphical representation of the recognition process. It plots

the log-likelihood values of 12 gesture HMMs against time for a sequence of gestures.

The log-likelihood values are set to be 0 when there is no gesture detected. The

upper horizontal line segments indicate the manual labels of the gestures in those

time intervals. The lower line segments are the outputs of the recognition algorithm

indicating the recognized gesture intervals. The lines with different styles correspond

to different gestures.
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Figure 4-9: The change of log-likelihood values for 12 HMMs over time, the actual
gesture sequence is pan left, yaw anticlockwise, zoom in, zoom in
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4.5 Real-Time Interaction with Google Earth

We implemented the continuous gesture recognition algorithm in Java to make a

real-time interactive system. Using the Google Earth Plug-in and its JavaScript API,

we embedded Google Earth, a 3D digital globe, into a web page. We use the Java

web browser object in the JDesktop Integration Components (JDIC) library to load

the web page. In this way, we can augment the browser and make it respond to

the gesture events from the gesture recognizer and provide the corresponding actions

(panning, rotation, tilting and zooming) to the map. The actions on the map are

written in JavaScript, invoked through the Java browser object.

When a gesture is recognized, we calculate the parameters needed for the cor-

responding action on the map. For instance, if a panning gesture is recognized, we

calculate the translation of the hand to determine the amount of panning needed.

The continuous gesture recognition described above is not perfect and can have false

positives. However, as long as the false detection period is short, it may not have

an effect on the action resulted from the gesture because the actual change in the

parameters is negligible.

After an action is executed, the map is changed, and so is the background displayed

on the tabletop surface. As a result, we need to re-capture the screen display to

compute the background image for background removal.

4.6 Discussion

We obtained a good recognition rate for isolated gestures even with different users.

For the continuous gesture recognition, the recognition rate is lower because there are

two more sources of potential errors: the detection of start and end of the gestures,

and the classification of the gesture even before the gesture ends. There are also false

positives due to unintentional movement or repositioning of the hand. In the future

work, we plan to add the hand retraction movement to the training of the isolated

gestures to take this into account.
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We defined the set of gestures only for the purpose of testing the performance

of the recognition methods. We need to verify this performance with another set

of gestures, probably obtained through our user study, to test the flexibility and

generalizability of the system.
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Chapter 5

User Study

An important feature of a natural interface would be the absence of predefined speech

and gesture commands [33]. As our motivating application domain is natural inter-

action in USAR Command and Control, we need first to understand what kinds of

spontaneous speech, drawings, and gestures people make in such scenarios. In this

chapter, we describe the exploratory user study we conducted under an incident com-

mand system (ICS) environment using our tabletop display system, and summarize

the main observations and insights we obtained that will be useful for designing and

developing a natural multimodal interface.

5.1 Related Work

We need to learn from the multimodal data in order to develop a natural multimodal

interface. However, the lack of an existing fully functional multimodal system that

allows natural gesture and speech input creates a “chicken-and-egg” problem [33].

Various techniques have been used to address this problem.

Sharma et al. [32] studied the analogous domain of the TV weather broadcast to

analyze the gesture/speech inputs by a subject under natural conditions. The most

frequent gestures in that environment are pointing, contour and area gestures. While

these are useful observations, they are still limited in terms of the large variety of

ways users can possibly interact with a large display.
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Micire et al. [21] conducted an experiment to determine the gestures that people

would naturally use for controlling robots on multi-touch tabletop surfaces, rather

than the gestures they would be instructed to use in a pre-designed system. They

used a Mitsubishi DiamondTouch tabletop surface as the display, but with no vi-

sual or audio feedback to the participants. They found that prior experience of the

participants introduced some bias into the gestures they wanted to use. In partic-

ular, selection and movement gestures were heavily influenced by standard mouse

paradigms. Participants who had used iPhones used significantly more pinch ges-

tures for zooming. They mentioned that the lack of visual audio feedback eliminated

any potential biasing, but at the same time also removed any indications that the

participant might be providing inconsistent or nonsensical input.

Salber and Coutaz [30] applied the Wizard of Oz (WOz) technique to the study of

multimodal systems. The WOz technique is an experimental evaluation mechanism.

It allows the observation of a user operating an apparently fully functioning system

whose missing services are supplemented by a hidden wizard. They state that in the

absence of generalizable theories and models, the WOz technique is an appropriate

approach to the idenfication of sound design solutions. They showed the WOz tech-

nique can be extended to the analysis of multimodal interfaces, and developed Neimo,

a multimodal Wizard of Oz platform using mouse, speech and facial expression as

inputs. Their focus is formulating the requirements for a generic multimodal WOz

platform rather than the findings from such an user experiment.

Oviatt [23] did a WOz study on using speech and pen-based input for interacting

with map displays. They simulated a realistic task that asked users to select real

estates using dynamic maps, and had an assistant to make the response in minimum

delay. They videotaped the user’s actions, and then later did a quantitative analysis

that showed combining speech and pen input decreased the disfluencies and task

completion time. Our experiment is similar to Oviatt [23]’s except that we are also

interested in gesture input and our application domain is different.

54



5.2 Experiment Design

We conducted a WOz user study in which the experimenter viewed and interpreted

user actions, then simulated system response as we believe this creates a more real-

istic environment to elicit natural user behavior. The system setup is the same as

described in Section 1.2. Google Earth was used to provided a dynamic interactive

map interface. We added markups to the map to simulate an earthquake scenario

in a city where many major roads were impassable, and a fire had broken out in a

chemical plant (see Figure 5-1).

Figure 5-1: Map interface with markups using Google Earth

Experimental subjects played the role of command center personnel charged with

receiving event reports coming from the field, and making appropriate updates to the

map display. As the user study is for bootstrapping an experimental testbed, we want

minimum overhead in terms of system development. Hence, no attempt was made in

this exercise to process the drawings, speech or gestures. Instead, as mentioned, the

experimenter interpreted all user input and produced a contemporaneous response

from the system. We videotaped the subjects and recorded their gestures and speech,
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then analyzed the results to find commonalities.

Nineteen people participated in the study. Six experiments involved two people

working together, seven involved a single person working alone. We had two kinds

of experiments to observe the difference in the interaction pattern when people work

alone versus collaborate with others. All participants were from 18 to 40 years old;

eleven were female. Seventeen of them were right-handed and two were left-handed.

Fourteen participants reported prior experience with tablet-based PCs, and one

participant used it regularly. Seventeen had experience with the Apple iPhone or

similar touch screen phones, and twelve of them used such phones on a daily basis.

Seven have used multi-touch tabletop displays once or a few times. Eight participants

had some experience with speech-enabled interfaces, but only one of them used it on

a regular basis.

5.3 Procedures

Each participant was first shown a short video showing the capabilities of the map

interface. The video only showed the outcome of the manipulation, for example, that

the map could be tilted and rotated to see the 3D buildings and places could be

marked. It did not show what inputs (gestures) were needed to achieve the output.

This was done to avoid biasing the participants in the ways they could interact with

the interface. They were then briefed on the experiment scenario and tasks. Partic-

ipants were told they could use speech, gestures (both touch- and non-touch-based

ones), a stylus pen or any combination of these to achieve the goal of the task. Other

than specifying the available input modalities, an effort was made not to influence

the manner in which people expressed themselves. The participants did not know

that there was a “wizard” behind the scene that actually controlled the system.

In a questionnaire survey with 12 emergency managers in various states done by

Sharma et al. [33], the results showed the need for a GIS-based emergency response

system to support zoom, pan, buffer, display, and spatial selection of geospatial data.

Based on this, the tasks we used are designed to cover some of the most frequent
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use cases required by a GIS-cased emergency response system, including pan, zoom,

rotation in 3D, selection, and indicating a path. There are seven tasks in total in the

experiment (see Appendix A).

The study began with the system prompting the participant(s) with a field report

and a task. Each task involved some manipulation or updates to the digital map.

When the task was done, the system prompted the participant(s) with the next one.

The tasks were not disjoint, but formed a coherent sequence of actions that a com-

mander would encounter in such a scenario. The reason for making the tasks realistic

was to elicit natural behaviour. The experimenter sat behind the participant(s) at

some distance. She observed the participant(s)’ action through a video feed, and then

controlled the map through a wireless keyboard correspondingly.

5.4 Results

As this is an explorative user study, we focus on a qualitative analysis of the com-

monalities in the observed user behavior instead of a quantitative analysis. We use

the same gesture taxonomy mentioned in Section 4.1 for the analysis.

5.4.1 Manipulative Gesture

We consider panning, rotation and zooming as manipulative gestures, as they act on

the map object. One commonality among all participants is that they move the map

instead of moving the position of the camera when asked to pan or rotate. This is

expected because the map is a more obvious object in front of them for manipulation

where the camera viewpoint is only implicit.

Panning

The gestures participants used for panning were relatively similar, with some small

variations. Most participants used one hand on or above the surface, moving the

map in the desired direction. The majority used multiple fingers, while some used

the index finger or the palm. One user also used the stylus pen to move the map.
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Two participants also used both hands to gesture. These variations also occurred

within the same participants. Figure 5-2 shows some examples of common panning

gestures.

(a) (b) (c)

Figure 5-2: Panning gestures, (b) and (c) shows different gestures from the same
participant

Rotation

There are two kinds of rotation: one is 2D rotation about the axis perpendicular to

the tabletop surface; the other is 3D tilting.

For 2D rotation, some people rotated their hands on or above the surface as if

grabbing the map to rotate it; some people used two hands above or on surface to

do a circular motion. A few people used the index finger or the stylus pen to draw a

curve on the surface (see Figure 5-5).

(a) (b) (c)

Figure 5-3: Examples of 2D rotation gestures
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For tilting, we observed the most variety of gestures mainly because there is no

existing interface that allows users to do 3D gestures. As a result, participants are

not preconditioned to any existing common gestures. Some participants used two

hands in 3D space to make a circular motion (Figure 5-4(a)); some used one hand

to do that (Figure 5-4(b)); some curled the fingers into a ball shape and rotated

the hands (Figure 5-4(c)); some used one or two hands in 3D space to represent the

tilted surface (Figure 5-4(d)); some participants used one or two hands to do a lifting

action (Figure 5-4(e)). Some participants initially still had the mental model that the

gesture needed to be touch-based, but then realized that it was hard to do that for the

tilting gesture. Eventually they started to do some non-touch-based gestures. There

were also a few participants who did touch-based gestures, for example, by putting

two hands on the surface, moving in the opposite directions (Figure 5-4(f)) or the

same direction. These gestures seem artificial because they do not resemble tilting

in any ways. However, the participants still tried to make them distinct from other

gestures. One participant resolved to give a speech command by speaking “angled

view of 30 degree” to the system.

Zooming

The most common gesture for zooming is using two hands with index fingers or

multiple fingers or palm moving towards or away from each other (Figure 5-5(a)).

This is very much the same as the gesture used for zooming in the existing tabletop

interfaces like Microsoft Surface. Some participants used an iPhone like gesture (a

pinch gesture with thumb and index finger) (Figure 5-5(b)). Some put their hands on

the surface, while some put hands above (Figure 5-5(c)). The choice of using touch

or non-touch gestures was not consistent within the same user either. Some also used

different gestures for zoom in and out.
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(a) (b) (c)

(d) (e) (f)

Figure 5-4: Examples of tilting gestures

(a) (b) (c)

Figure 5-5: Different zoom gestures used by the same participant: (a) zoom out; (b)
zoom in; (c) zoom out
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5.4.2 Communicative Gesture

Communicative gestures can be further classified into acts and symbols. This clas-

sification is suggested by Pavlović et al. [25] which is in turn based on Quek [26]’s

proposed gesture taxonomy. In act gestures, the movements performed relate directly

to the intended interpretation. Act gestures may be divided into two classes: mimetic

and deictic [26]. Mimetic gestures are characterized by their iconicity. They are usu-

ally performed as pantomimes of the referent [26]. Deictic (or pointing) gestures are

of great interest for computer input, and are our focus of analysis, because they are

the most common gesture for our application. Symbol gestures are a kind of mo-

tion shorthand, serving in a linguistic role. Sign languages, for example, are largely

symbolic.

Deictic Gestures

Deictics can refer to actual physical entities and locations, or to spaces that have

previously been marked as relating to some concept and idea [6].

In our scenario, the deictic gestures were used for specifying a location, selection

of an area and indicating a path.

For specifying a location, the most common gesture is circling the target with the

index finger or the stylus pen. Other common gestures are pointing with the index

finger, and tapping with multiple fingers. One participant also marked cross signs

over places with the index finger. The gestures were always accompanied by speech

such as “here”, “inform this hospital and this one”, “there is one shelter there”, “this

residential area go to this shelter”, “shelter here, shelter there”.

When pointing with the index finger, people did not alwasy touch the tabletop

surface. For example, one participant said “there is 31st street” while pointing the

index finger in a general direction without touching the surface.

For selecting an area and indicating a path, there were not many varieties in the

gestures. All participants used the stylus pen or the index finger to make an outline

of the area of interest or follow the lines of the path. Some participants also said
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“give me the shortest route to . . . ” when indicating the path.

Symbol Gestures

The only symbol gesture we observed was a “stop” gesture made by one participant

when asking the interface to stop tilting further. The participant put two hands

together to form a “T” shape to symbolize stop. The gesture is also accompanied

with a speech command “stop”. To support symbol gesture, we must recognize that

they are usually arbitrary in nature [26] and are often culture specific. However, its

occurrence with speech allows the opportunity for adaptive learning.

5.4.3 Speech and Gesture

Because of the inherent communicational purpose of the communicative gesture, we

observed that when there were two participants working together collaboratively,

there were more communicative gestures accompanied by speech. In the single par-

ticipant case, there were a few participants who did not use any speech commands.

However, the two-user case resembles the real world command and control center

more closely where there are many people working together.

One participant used speech for most of the tasks. For example, for locating a

place, the participant said “show me the intersection of Commercial Street and 29th

street”. The other commands used were “zoom in/out”, “look straight down”, “show

me the radius of 3 street blocks from here”. Notice that instead of saying the actual

location of the chemical plant, she substituted that with a pointing gesture and the

adverb “here”. This participant also had used a speech-enabled interface a few times

in the past.

Occasionally, manipulative gestures are also accompanied with speech. Some used

speech commands such as “pan left”, “rotate clockwise”, “zoom in”, or “tilt up”

while they were gesturing. Some participants said “smaller” when gesturing zooming

in. Some said “faster” or “more” when doing the tilting gesture. These words are

adjectives or adverbs to describe the actions.
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5.5 Discussion

We summarize some of the main observations that will be useful for designing a

natural multimodal interface.

1. There are variations in people’s gestures, some are small while some are signif-

icant. Prior experience with multi-touch devices such as iPhone or Microsoft

Surface influence the gestures people use and make the gestures more uniform.

Within a single user, the gestures may change for the same action. This is un-

derstandable because there are more than one natural way to perform curtain

tasks. This demands great flexibility when developing an interface that can

accommodate such variations. It may not be possible or necessary to accom-

modate all possibilities, however, the system can be bootstrapped with several

common gestures, and then continue to learn new variations adaptively while

in use. The system should also be easily customizable. For example, the user

can give some examples of the gestures at the beginning, and the system can

learn the gestures defined by the user.

2. People use one hand or two hands to gesture interchangeably, so it is impor-

tant that the system support bimanual input. For the same task, for example

zooming out or rotation, the same user may use different gestures either on or

above the surface. Hence, supporting non-touch based gesture input will greatly

improve the flexibility and naturalness of the interface. Some users used their

right hand to hold the stylus pen and left hand to gesture, while some used

the same hand to hold the stylus and gesture. This means both hand gesture

and stylus can be incorporated as input, and people will naturally select the

modality that suits the task best. The stylus pen is useful for high resolution

input, while finger tips can be more convenient for tasks that do not require

high resolution.

3. Users may speak and the gesture at the same time. As mentioned by some

previous works [8][32][15], we can utilize the co-occurrence of the two modalities
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for mutual disambiguation. The co-occurrence can alos be used for adaptive

learning. For example, if the system recognizes the speech command “stop”

and does not recognize the gesture, it can then associate the the gesture with

the “stop” action.

4. Sometimes manipulative gestures are accompanied by adjectives and adverbs

that describe the actions. This shows that speech not only can reinforce the

gesture, but also can augment the gestures when there is a limitation in the

expressiveness of the gesture or in the physical space of the gesture. The phys-

ical space can either be limited by the working volume of the system or human

anatomy. Schlattmann and Klein [31] mentioned about the problem of limited

work space for their bimanual 3D gesture interaction system. If a virtual object

needs to be moved through a long distance, the hands may move outside the

work volume, i.e., out of the view of the cameras. When this occurs, they sug-

gested the user decrease the distance between the hands. An example limitation

in human anatomy is that when doing a tilting gesture, there is a limit in the

degree the hand can rotate. One way to overcome this is to repeat the gesture.

This is analogous to repeating the mouse actions, for instance, repeating the

scrolling action for zooming. However, a simpler way is to use speech, which we

observed in our study: people naturally use modifiers like “more” or “smaller”

to specify actions.

5. Speech commands people use tend to be succinct and may not be grammatically

correct or complete. Many previous systems require users to conform to a

predefined syntax such as “put [point] that [point] there” [3] or “build <object>

here [point]” [36]. While we observed certain high frequency words such as

“here” and “there” that are often accompanied by pointing gestures, there are

also a variety of ways people express the commands. One common pattern

is that people will mention the name of the target of interest, for instance,

“hospital” or “shelter” and words for location. Sharma et al. [32] used a key-

word spotting algorithm to combine speech and gesture, and was able to improve
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the continuous gesture recognition rate. The key-word spotting algorithm allows

a more flexible way to understand speech, and we plan to explore these in our

future work.

6. Using gestures and speech commands allows us to move away from the WIMP

paradigm because we need fewer controls to complete the tasks. This allows

us to design more natural and intuitive user interfaces. During the study, only

one participant wanted to have menus and buttons to click to do tilting and

zooming.
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Chapter 6

Conclusion

We have described the development of a gesture recognition module that is a necessary

part of an overall multimodal system, and an exploratory user study for analyzing

natural behaviours with a large tabletop display under USAR scenarios. In this

chapter, we discuss the lessons learned and the direction for future work.

6.1 Lessons Learned

This thesis work demonstrates one possible valuable application of the hand-tracking

system developed by Wang and Popović [38]. Despite the complex lighting and back-

ground, we can obtain good tracking results by reducing the adverse effects compu-

tationally.

We have also shown that background removal in a projector-based system can be

done computationally and relatively accurately. The advantage of this method is that

it is purely software-based, and hence, does not require additional hardware setup.

We obtained 96% recognition rate on isolated gestures for different users using

data from the new hand-tracking system. To date, we achieved 74% correct rate

on continuous gesture recognition with data from 3 different users and 12 gesture

classes. Continuous gesture recognition is more difficult because we need to detect

the start and end points of the gesture accurately. The ambiguities in the gestures,

for example, whether a hand movement is part of the gesture or is just a retraction,
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create more challenges to the problem. We need to include different retraction cases

in our training examples.

We obtained many insights through our user study for multimodal interaction

under a natural condition. We observed a need for 3D gestures specially when inter-

acting with 3D data. This shows the usefulness of a gesture recognition system that

goes beyond a touch-based system. The co-occurrence of gesture and speech also pro-

vides possibility to further improve the continuous gesture recognition by modality

fusion and mutual disambiguation.

6.2 Future Work

Our user study showed that speech in natural interaction is highly unstructured and

rarely grammatical. We plan to use an off-the-shelf speech recognizer for key-word

spotting [32]. Unlike the design of some previous multimodal systems, which re-

strict speech to short, specific verbal commands, we want to be able to deal with

the informal, ungrammatical, and largely unrestricted speech we expect people to

use spontaneously while performing this task. Given current speech understanding

technology, the only plausible way to deal with this is to explore keyword spotting,

relying on research (e.g., Cohen et al. [7]) showing that gestures and relevant classes

of words (e.g., nouns) often appear contemporaneously, and repeated gestures often

indicate coreference [12].

We plan to support bi-manual input because our study shows that people will

naturally use both hands for interaction. Currently the hand tracker can not obtain

the height of the hand relative to the table very accurately. We plan to improve

the accuracy by stereo imaging so that we can enable a variety of touch sensitivity.

This will permit a rich interaction environment with different input modalities: high

resolution input from the stylus on the digitizer table, low resolution input from the

finger tips, 3D gestures, and speech.

Once the sketch, gesture, and speech capabilities are operational, we will mea-

sure the impact of these on human efficiency and performance on the task. With a
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preliminary working prototype, we can use more quantitative metrics to measure the

performance of a natural multimodal interface, which, as mentioned in the introduc-

tion, includes learnability, flexibility, memorability, convenience and efficiency.
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Figure 6-1: System architecture for the multimodal interface prototype

The longer term vision of our research involves building a multimodal interface

for natural interaction that can serve as a testbed for conducting user studies to

understand the human factors (human capabilities, e.g., attention, use of multiple

information channels) involved in multimodal HCI. Based on the results of studies, we

want to formulate a more principled system design framework for natural multimodal

human-computer interaction. The modalities we will consider include hand gesture,
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speech, and pen-based input (i.e., sketches). Figure 6-1 shows the system architecture

for developing the multimodal interface prototype.
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Appendix A

User Study Tasks

Waiting for reports ...

1. Report: There is a big explosion at the chemical plant at the intersection of

Commercial Street and 29th Street.

Task: Locate the chemical plant on the map.

2. Task: Get an angled view of the chemical plant area.

3. Task: Zoom in and take a look around the surroundings at different angles.

4. Task: Zoom out and get back to the initial view looking straight down.

5. Report: The liquid chemicals are flowing steadily towards the surrounding res-

idential areas. Radius of about 3 street blocks from the chemical plant is con-

sidered at high risk..

Task: Indicate this high risk zone surrounding the chemical plant on the map.

6. Report: Local hospitals and shelter facilities need to be informed about the

incident.

Task: Indicate the closest two hospitals and shelters.

7. Report: The leaked toxic chemicals from the explosion cannot be prevented

from moving into the residential area. People need to be evacuated in time.
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Task: Work out some routes for evacuating people to the nearest hospitals and

shelters. Watch out for places that are blocked due to damaged roads.
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