Outline

First talk:

- Background on hash function
- Previous work on SHA-0, and SHA-1
- Improved collision search attack on SHA-0
 Brief description

Second talk:

- Collision search attack on SHA-1
 Major steps, with focus on intuition
- Summary

Efficient Collision Search Attacks on SHA-0

CRYPTO 2005 August 15, 2005

Xiaoyun Wang Hongbo Yu Yiqun Lisa Yin

Hash functions

- Cryptographic hash function: y = h(x)
 - □ Take a message *x* of arbitrary length
 - □ Output a short value *y* of a fixed length
 - y is called hash value or message digest
- Basic security properties
 - \Box One-way: given y, hard to find x s.t. $x = h^{-1}(y)$
 - □ Collision resistant: hard to find $x \neq y$ s.t. h(x) = h(y)

Applications

- □ Digital signatures, password verification, key generation ...
- □ Present in almost all security systems

General design approach

- Iterative structure
 - □ Input message is divided into *fixed-length* blocks
 - \Box Each block is processed using a *compression function F*

- Design of the compression function
 - Block-cipher based
 - Customized design "from scratch"
 - the MDx family

The MDx family of hash functions

Design philosophy

□ Using simple operations available on modern computers

Easy implementation, good performance

Compression function of SHA-0 & SHA-1

Compression function of SHA-0 & SHA-1

Security strengths

Expected security level

 \Box Depends on hash output length *n*

 \Box One-way: 2^n

 \Box Collision resistant: 2^{n/2}

Security of MDx against collision search attacks

Hash function	Expected strength	Best known collision attack	
MD4	264	~ 3	
MD5	264	~ 2 ³⁰⁺	
SHA-0	2 ⁸⁰	2 ³⁹	
SHA-1	2 ⁸⁰	2 ⁶⁹	
SHA-256	2 ¹²⁸	?	

Previous work on SHA-0 & SHA-1

- Chabaud and Joux (Crypto'98)
 - □ Collision attack on SHA-0, with complexity 2⁶¹
 - Introduced two useful tools: local collision and disturbance vector
- Wang (Manuscripts, 97 98)
 - □ Independent analysis on SHA-0
 - Message modification techniques and algebraic analysis
- Biham and Chen (Crypto'04)
 - \square Near collision attack on SHA-0, with complexity 2⁴⁰
 - Neutral bit techniques
- Biham, Chen, Joux etc. (Crypto'04 Rump, Eurocrypt'05)
 - □ First real collision of SHA-0 found, with complexity 2⁵¹
 - Collision attack on SHA-1 reduced to 50+ rounds
 - Multi-block techniques
- Rijmen and Osward (RSA-CT'05)
 - Collision attack on SHA-1 reduced to 53 rounds
 - Analysis using insight from coding theory

Overview of a collision attack: differential style attacks

	Differential attacks were first introduced to analyze block ciphers
•	Basic ideas applicable to hash functions \Box difference: $\Delta x = x \oplus x'$ \Box Express a collision of <i>F</i>
	$\Delta cv = 0, \ \Delta M \neq 0 \Rightarrow \ \Delta cv = 0$ $\Box \text{ Differential path}$ $\blacksquare \text{ Intermediate differences}$ $\blacksquare \text{ Holds with some prob } p$ $\blacksquare \text{ Complexity is about 1/} p$

Chabaud and Joux's Attack on SHA-0

Basic idea

- □ Find *local collision* a collision spanning a few steps
 - By analyzing round function
- □ Stack local collisions together to form a global collision
 - By analyzing message expansion

Local collision of SHA-0

Local collision: a 6-round diff path with $\Delta cv = 0$ before and after.

round	Δm_{i-1}	Δa_i	$\varDelta b_i$	Δc_i	Δd_i	Δe_i
<i>i</i> -1		0	0	0	0	0
i	*	*				
<i>i</i> +1	*		*			
<i>i</i> +2	*			*		
<i>i</i> +3	*				*	
<i>i</i> +4	*					*
<i>i</i> +5	*	0	0	0	0	0

Local collision can start at any round. *Probability* is about $2^{-2} - 2^{-5}$.

Disturbance vector (DV) for SHA-0

Stack local collisions
 Need to specify starting points of local collisions

Disturbance vector (DV) for SHA-0

Improved collision search attack on SHA-0 — brief description

1. Construct differential path

- Select a good DV
 - Search in less constraint vector space (fewer conditions)
 - HW of the DV is lower than those in existing attacks
- Fine tune the differential path
- 2. Boost success probability of the attack
 - Apply message modification techniques from the attack on MD5
 - Complexity of the attack: 2³⁹
 - Real collisions can be found quickly

Finding Collisions in the Full SHA-1

CRYPTO 2005 August 15, 2005

Xiaoyun Wang Yiqun Lisa Yin Hongbo Yu

Collision search attack on SHA-1

- 1. Construct differential path
 - Leverage on techniques from the attack on SHA-0
 - Local collisions and generalized disturbance vectors
 - Search for low Hamming weight vectors
 - Exploit weakness in SHA-1 message expansion
 - Fine tune the differential path
 - Exploit weakness in round function
- 2. Boost success probability of the attack
 - Apply techniques from the attack on MD5
 - Derive conditions associated with the differential path
 - Modify messages so that many of the conditions hold with probability one
 - Construct two-block collision using near collision

Disturbance vector (DV) for SHA-1

Search for good DVs for SHA-1

Construct a valid differential path

What are the difficulties?

- □ Local collisions can no longer be stacked together
 - Since all conditions on DV are removed
- How to solve the problem?
 - Derive an impossible path using DV and local collisions
 - Identify un-wanted bit differences
 - Cancel these differences in two ways
 - Carry expansion to introduce a new difference
 - Boolean function to absorb a difference

Derive conditions for differential path

Conditions on chaining variables

- Control carry expansion
 - E.g., setting $a_{i,5} = 1$, $a_{i,6} = 0$ expands $\Delta a_{i-1} = 2^5$ to $\Delta a_i = -2^5 + 2^6$
- □ Control output difference of $f = (b \land c) \lor (\neg b \land d)$
 - E.g., setting c=d ensures [$\Delta b = 1 \rightarrow \Delta f = 0$]
- Conditions on message words
 - Set relations among message bits
 - Eliminate carry effect in local collision to increase success prob.
- Note: Carry can be good or bad
 Setting the right conditions can help both ways

Message modification

- Conditions on a_i are of a general form $\Box a_{i,i} = 0, 1$
- Basic idea
 - □ Round function: $a_i = T + m_{i-1}$
 - □ Set $a_{i,i}$ = the bit, and compute $m_{i-1} = a_i T$

□ So the condition holds with p=1

□ Works when m_i's are independent

More complex methods: Multi-message modification
 Use of local collisions

Breaking the 2⁸⁰ barrier

One-block collision

- □ 75-round SHA-1: complexity is less than 2⁸⁰
 - Already show that "security margin" is not enough

Near collision

- □ 80-round SHA-1: complexity is about 2⁶⁸
- Two-block collision
 - □ Use two near collisions
 - □ Set output differences so that they offset with *probability one*
 - No increase in search complexity
 - □ Attack complexity is 2⁶⁹

Summary — cryptanalyst's viewpoint

- Message modification techniques
 - Very effective for boosting success probability
 - □ Idea applies to any key-less hash function
- Extensive use of local collisions
 - Basic building block for a differential path
 - □ Also useful in multi-message modification
 - Like a local disturbance without affect global computation
- Manipulation of differential path
 - □ "Front-loading" path tailored to message modification
 - Turn an impossible path into a possible one
- All techniques leverages on each other

Summary — designer's viewpoint

- The MDx family all follows similar design approaches
 - The M-D iterative structure
 - Some weaknesses found (Joux; Kelsey, Schneier)
 - □ Message expansion
 - Not enough avalanche effect, even for SHA-1
 - Round function
 - Non-linear components can actually facilitate attack
- What about the SHA-2 family?
 - Local collision existing with smaller prob. (Hawks, Paddon, Rose)
 - Message expansion is much more complicated
 - □ More analysis is still needed

Thank you very much!