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Abstract

The connection between part-of-speech (POS)
categories and morphological properties is
well-documented in linguistics but underuti-
lized in text processing systems. This pa-
per proposes a novel model for morphologi-
cal segmentation that is driven by this connec-
tion. Our model learns that words with com-
mon affixes are likely to be in the same syn-
tactic category and uses learned syntactic cat-
egories to refine the segmentation boundaries
of words. Our results demonstrate that incor-
porating POS categorization yields substantial
performance gains on morphological segmen-
tation of Arabic. 1

1 Introduction

A tight connection between morphology and syntax
is well-documented in linguistic literature. In many
languages, morphology plays a central role in mark-
ing syntactic structure, while syntactic relations
help to reduce morphological ambiguity (Harley and
Phillips, 1994). Therefore, in an unsupervised lin-
guistic setting which is rife with ambiguity, model-
ing this connection can be particularly beneficial.

However, existing unsupervised morphological
analyzers take little advantage of this linguistic
property. In fact, most of them operate at the vo-
cabulary level, completely ignoring sentence con-
text. This design is not surprising: a typical mor-
phological analyzer does not have access to syntac-

1The source code for the work presented in this paper is
available at http://groups.csail.mit.edu/rbg/code/morphsyn/.

tic information, because morphological segmenta-
tion precedes other forms of sentence analysis.

In this paper, we demonstrate that morphological
analysis can utilize this connection without assum-
ing access to full-fledged syntactic information. In
particular, we focus on two aspects of the morpho-
syntactic connection:

• Morphological consistency within POS cat-
egories. Words within the same syntactic cat-
egory tend to select similar affixes. This lin-
guistic property significantly reduces the space
of possible morphological analyses, ruling out
assignments that are incompatible with a syn-
tactic category.

• Morphological realization of grammatical
agreement. In many morphologically rich lan-
guages, agreement between syntactic depen-
dents is expressed via correlated morphological
markers. For instance, in Semitic languages,
gender and number agreement between nouns
and adjectives is expressed using matching suf-
fixes. Enforcing mutually consistent segmen-
tations can greatly reduce ambiguity of word-
level analysis.

In both cases, we do not assume that the relevant
syntactic information is provided, but instead jointly
induce it as part of morphological analysis.

We capture morpho-syntactic relations in a
Bayesian model that grounds intra-word decisions
in sentence-level context. Like traditional unsuper-
vised models, we generate morphological structure
from a latent lexicon of prefixes, stems, and suffixes.



In addition, morphological analysis is guided by a
latent variable that clusters together words with sim-
ilar affixes, acting as a proxy for POS tags. More-
over, a sequence-level component further refines the
analysis by correlating segmentation decisions be-
tween adjacent words that exhibit morphological
agreement. We encourage this behavior by encoding
a transition distribution over adjacent words, using
string match cues as a proxy for grammatical agree-
ment.

We evaluate our model on the standard Arabic
treebank. Our full model yields 86.2% accuracy,
outperforming the best published results (Poon et
al., 2009) by 8.5%. We also found that modeling
morphological agreement between adjacent words
yields greater improvement than modeling syntac-
tic categories. Overall, our results demonstrate that
incorporating syntactic information is a promising
direction for improving morphological analysis.

2 Related Work

Research in unsupervised morphological segmenta-
tion has gained momentum in recent years bring-
ing about significant developments to the area.
These advances include novel Bayesian formula-
tions (Goldwater et al., 2006; Creutz and Lagus,
2007; Johnson, 2008), methods for incorporat-
ing rich features in unsupervised log-linear models
(Poon et al., 2009) and the development of multilin-
gual morphological segmenters (Snyder and Barzi-
lay, 2008a).

Our work most closely relates to approaches that
aim to incorporate syntactic information into mor-
phological analysis. Surprisingly, the research in
this area is relatively sparse, despite multiple results
that demonstrate the connection between morphol-
ogy and syntax in the context of part-of-speech tag-
ging (Toutanova and Johnson, 2008; Habash and
Rambow, 2005; Dasgupta and Ng, 2007; Adler
and Elhadad, 2006). Toutanova and Cherry (2009)
were the first to systematically study how to in-
corporate part-of-speech information into lemmati-
zation and empirically demonstrate the benefits of
this combination. While our high-level goal is simi-
lar, our respective problem formulations are distinct.
Toutanova and Cherry (2009) have considered a
semi-supervised setting where an initial morpholog-

ical dictionary and tagging lexicon are provided but
the model also has access to unlabeled data. Since a
lemmatizer and tagger trained in isolation may pro-
duce mutually inconsistent assignments, and their
method employs a log-linear reranker to reconcile
these decisions. This reranking method is not suit-
able for the unsupervised scenario considered in our
paper.

Our work is most closely related to the approach
of Can and Manandhar (2009). Their method also
incorporates POS-based clustering into morpholog-
ical analysis. These clusters, however, are learned
as a separate preprocessing step using distributional
similarity. For each of the clusters, the model se-
lects a set of affixes, driven by the frequency of their
occurrences in the cluster. In contrast, we model
morpho-syntactic decisions jointly, thereby enabling
tighter integration between the two. This design
also enables us to capture additional linguistic phe-
nomena such as agreement. While this technique
yields performance improvement in the context of
their system, the final results does not exceed state-
of-the-art systems that do not exploit this informa-
tion (for e.g., (Creutz and Lagus, 2007)).

3 Model

Given a corpus of unannotated and unsegmented
sentences, our goal is to infer the segmentation
boundaries of all words. We represent segmen-
tations and syntactic categories as latent variables
with a directed graphical model, and we perform
Bayesian inference to recover the latent variables of
interest. Apart from learning a compact morpheme
lexicon that explains the corpus well, we also model
morpho-syntactic relations both within each word
and between adjacent words to improve segmenta-
tion performance. In the remaining section, we first
provide the key linguistic intuitions on which our
model is based before describing the complete gen-
erative process.

3.1 Linguistic Intuition

While morpho-syntactic interface spans a range of
linguistic phenomena, we focus on two facets of this
connection. Both of them provide powerful con-
straints on morphological analysis and can be mod-
eled without explicit access to syntactic annotations.



Morphological consistency within syntactic cate-
gory. Words that belong to the same syntactic cat-
egory tend to select similar affixes. In fact, the power
of affix-related features has been empirically shown
in the task of POS tag prediction (Habash and Ram-
bow, 2005). We hypothesize that this regularity can
also benefit morphological analyzers by eliminat-
ing assignments with incompatible prefixes and suf-
fixes. For instance, a state-of-the-art segmenter er-
roneously divides the word “Al{ntxAbAt” into four
morphemes “Al-{ntxAb-A-t” instead of three “Al-
{ntxAb-At” (translated as “the-election-s”.) The af-
fix assignment here is clearly incompatible — de-
terminer “Al” is commonly associated with nouns,
while suffix “A” mostly occurs with verbs.

Since POS information is not available to the
model, we introduce a latent variable that encodes
affix-based clustering. In addition, we consider a
variant of the model that captures dependencies be-
tween latent variables of adjacent words (analogous
to POS transitions).

Morphological realization of grammatical agree-
ment. In morphologically rich languages, agree-
ment is commonly realized using matching suffices.
In many cases, members of a dependent pair such
as adjective and noun have the exact same suf-
fix. A common example in the Arabic Treebank
is the bigram “Al-Df-p Al-grby-p” (which is trans-
lated word-for-word as “the-bank the-west”) where
the last morpheme “p” is a feminine singular noun
suffix.

Fully incorporating agreement constraints in the
model is difficult, since we do not have access to
syntactic dependencies. Therefore, we limit our at-
tention to adjacent words which end with similar
strings – for e.g., “p” in the example above. The
model encourages consistent segmentation of such
pairs. While our string-based cue is a simple proxy
for agreement relation, it turns to be highly effective
in practice. On the Penn Arabic treebank corpus, our
cue has a precision of around 94% at the token-level.

3.2 Generative Process
The high-level generative process proceeds in four
phases:

(a) Lexicon Model: We begin by generating mor-
pheme lexicons L using parameters γ. This set

of lexicons consists of separate lexicons for pre-
fixes, stems, and suffixes generated in a hierar-
chical fashion.

(b) Segmentation Model: Conditioned on L, we
draw word types, their segmentations, and also
their syntactic categories (W ,S,T ).

(c) Token-POS Model: Next, we generate the un-
segmented tokens in the corpus and their syn-
tactic classes (w, t) from a standard first-order
HMM which has dependencies between adja-
cent syntactic categories.

(d) Token-Seg Model: Lastly, we generate token
segmentations s from a first-order Markov chain
that has dependencies between adjacent seg-
mentations.

The complete generative story can be summarized
by the following equation:

P (w,s, t,W ,S,T ,L,Θ,θ|γ,α,β) =
P (L|γ) (a)

P (W ,S,T ,Θ|L,γ,α) (b)

Ppos(w, t,θ|W ,S,T ,L,α) (c)

Pseg(s|W ,S,T ,L,β,α) (d)

where γ,α,Θ,θ,β are hyperparameters and pa-
rameters whose roles we shall detail shortly.

Our lexicon model captures the desirability of
compact lexicon representation proposed by prior
work by using parameters γ that favors small lexi-
cons. Furthermore, if we set the number of syntac-
tic categories in the segmentation model to one and
exclude the token-based models, we recover a seg-
menter that is very similar to the unigram Dirichlet
Process model (Goldwater et al., 2006; Snyder and
Barzilay, 2008a; Snyder and Barzilay, 2008b). We
shall elaborate on this point in Section 4.

The segmentation model captures morphological
consistency within syntactic categories (POS tag),
whereas the Token-POS model captures POS tag
dependencies between adjacent tokens. Lastly, the
Token-Seg model encourages consistent segmenta-
tions between adjacent tokens that exhibit morpho-
logical agreement.



Lexicon Model The design goal is to encourage
morpheme types to be short and the set of affixes
(i.e. prefixes and suffixes) to be much smaller than
the set of stems. To achieve this, we first draw each
morpheme σ in the master lexicon L∗ according to a
geometric distribution which assigns monotonically
smaller probability to longer morpheme lengths:

|σ| ∼ Geometric(γl)

The parameter γl for the geometric distribution is
fixed and specified beforehand. We then draw the
prefix, the stem, and suffix lexicons (denoted by
L−, L0, L+ respectively) from morphemes in L∗.
Generating the lexicons in such a hierarchical fash-
ion allows morphemes to be shared among the
lower-level lexicons. For instance, once determiner
“Al” is generated in the master lexicon, it can be
used to generate prefixes or stems later on. To fa-
vor compact lexicons, we again make use of a ge-
ometric distribution that assigns smaller probability
to lexicons that contain more morphemes:

prefix: |L−| ∼ Geometric(γ−)
stem: |L0| ∼ Geometric(γ0)

suffix: |L+| ∼ Geometric(γ+)

By separating morphemes into affixes and stems, we
can control the relative sizes of their lexicons with
different parameters.

Segmentation Model The model independently
generates each word type using only morphemes in
the affix and stem lexicons, such that each word
has exactly one stem and is encouraged to have few
morphemes. We fix the number of syntactic cate-
gories (tags) to K and begin the process by generat-
ing multinomial distribution parameters for the POS
tag prior from a Dirichlet prior:

ΘT ∼ Dirichlet(αT , {1, . . . ,K})

Next, for each possible value of the tag T ∈
{1, . . . ,K}, we generate parameters for a multino-
mial distribution (again from a Dirichlet prior) for
each of the prefix and the suffix lexicons:

Θ−|T ∼ Dirichlet(α−, L−)

Θ0 ∼ Dirichlet(α0, L0)
Θ+|T ∼ Dirichlet(α+, L+)

By generating parameters in this manner, we allow
the multinomial distributions to generate only mor-
phemes that are present in the lexicon. Also, at infer-
ence time, only morphemes in the lexicons receive
pseudo-counts. Note that the affixes are generated
conditioned on the tag; But the stem are not.2

Now, we are ready to generate each word type
W , its segmentation S, and its syntactic category T .
First, we draw the number of morpheme segments
|S| from a geometric distribution truncated to gener-
ate at most five morphemes:

|S| ∼ Truncated-Geometric(γ|S|)

Next, we pick one of the morphemes to be the stem
uniformly at random, and thus determine the number
of prefixes and suffixes. Then, we draw the syntactic
category T for the word. (Note that T is a latent
variable which we recover during inference.)

T ∼ Multinomial(ΘT )

After that, we generate each stem σ0, prefix σ−, and
suffix σ+ independently:

σ0 ∼ Multinomial(Θ0)
σ−|T ∼ Multinomial(Θ−|T )

σ+|T ∼ Multinomial(Θ+|T )

Token-POS Model This model captures the de-
pendencies between the syntactic categories of ad-
jacent tokens with a first-order HMM. Conditioned
on the type-level assignments, we generate (unseg-
mented) tokens w and their POS tags t:

Ppos(w, t|W ,T ,θ)

=
∏
wi,ti

P (ti−1|ti, θt|t)P (wi|ti, θw|t)

where the parameters of the multinomial distribu-
tions are generated by Dirichlet priors:

θt|t ∼ Dirichlet(αt|t, {1, . . . ,K})
θw|t ∼ Dirichlet(αw|t,W t)

2We design the model as such since the dependencies be-
tween affixes and the POS tag are much stronger than those be-
tween the stems and tags. In our preliminary experiments, when
stems are also generated conditioned on the tag, spurious stems
are easily created and associated with garbage-collecting tags.



Here, W t refers to the set of word types that are
generated by tag t. In other words, conditioned on
tag t, we can only generate word w from the set of
word types inW t which is generated earlier (Lee et
al., 2010).

Token-Seg Model The model captures the mor-
phological agreement between adjacent segmenta-
tions using a first-order Markov chain. The proba-
bility of drawing a sequence of segmentations s is
given by

Pseg(s|W ,S,T ,L,β,α) =
∏

(si−1,si)

p(si|si−1)

For each pair of segmentations si−1 and si, we de-
termine: (1) if they should exhibit morpho-syntactic
agreement, and (2) if their morphological segmenta-
tions are consistent. To answer the first question, we
first obtain the final suffix for each of them. Next,
we obtain n, the length of the longer suffix. For
each segmentation, we define the ending to be the
last n characters of the word. We then use matching
endings as a proxy for morpho-syntactic agreement
between the two words. To answer the second ques-
tion, we use matching final suffixes as a cue for con-
sistent morphological segmentations. To encode the
linguistic intuition that words that exhibit morpho-
syntactic agreement are likely to be morphological
consistent, we define the above probability distribu-
tion to be:

p(si|si−1)

=


β1 if same endings and same final suffix
β2 if same endings but different final suffixes
β3 otherwise (e.g. no suffix)

where β1 + β2 + β3 = 1, with β1 > β3 > β2. By
setting β1 to a high value, we encourage adjacent
tokens that are likely to exhibit morpho-syntactic
agreement to have the same final suffix. And by set-
ting β3 > β2, we also discourage adjacent tokens
with the same endings to be segmented differently. 3

4 Inference

Given a corpus of unsegmented and unannotated
word tokens w, the objective is to recover values of

3Although p sums to one, it makes the model deficient since,
conditioned everything already generated, it places some prob-
ability mass on invalid segmentation sequences.

all latent variables, including the segmentations s.

P (s, t,S,T ,L|w,W ,γ,α,β)

∝
∫
P (w, s, t,W ,S,T ,L,Θ,θ|γ,α,β)dΘdθ

We want to sample from the above distribution us-
ing collapsed Gibbs sampling (Θ and θ integrated
out.) In each iteration, we loop over each word type
Wi and sample the following latent variables: its tag
Ti, its segmentation Si, the segmentations and tags
for all of its token occurrences (si, ti), and also the
morpheme lexicons L:

P (L, Ti, Si, si, ti|
s−i, t−i,S−i,T−i,w−i,W−i,γ,α,β) (1)

such that the type and token-level assignments are
consistent, i.e. for all t ∈ ti we have t = Ti, and for
all s ∈ si we have s = Si.

4.1 Approximate Inference

Naively sampling the lexicons L is computationally
infeasible since their sizes are unbounded. There-
fore, we employ an approximation which turns is
similar to performing inference with a Dirichlet Pro-
cess segmentation model. In our approximation
scheme, for each possible segmentation and tag hy-
pothesis (Ti, Si, si, ti), we only consider one possi-
ble value for L, which we denote the minimal lexi-
cons. Hence, the total number of hypothesis that we
have to consider is only as large as the number of
possibilities for (Ti, Si, si, ti).

Specifically, we recover the minimal lexicons as
follows: for each segmentation and tag hypothesis,
we determine the set of distinct affix and stem types
in the whole corpus, including the morphemes intro-
duced by segmentation hypothesis under considera-
tion. This set of lexicons, which we call the minimal
lexicons, is the most compact ones that are needed
to generate all morphemes proposed by the current
hypothesis.

Furthermore, we set the number of possible POS
tags K = 5. 4 For each possible value of the tag,
we consider all possible segmentations with at most
five segments. We further restrict the stem to have no

4We find that increasing K to 10 does not yield improve-
ment.



more than two prefixes or suffixes and also that the
stem cannot be shorter than the affixes. This further
restricts the space of segmentation and tag hypothe-
ses, and hence makes the inference tractable.

4.2 Sampling equations
Suppose we are considering the hypothesis with seg-
mentation S and POS tag T for word type Wi. Let
L = (L∗, L−, L0, L+) be the minimal lexicons for
this hypothesis (S, T ). We sample the hypothesis
(S, T, s = S, t = T,L) proportional to the product
of the following four equations.

Lexicon Model∏
σ∈L∗

γl(1− γl)|σ| ×

γ−(1− γ−)|L−| ×
γ0(1− γ0)|L0| ×
γ+(1− γ+)|L+| (2)

This is a product of geometric distributions involv-
ing the length of each morpheme σ and the size
of each of the prefix, the stem, and the suffix lexi-
cons (denoted as |L−|, |L0|, |L+| respectively.) Sup-
pose, a new morpheme type σ0 is introduced as a
stem. Relative to a hypothesis that introduces none,
this one incurs an additional cost of (1 − γ0) and
γl(1 − γl)|σ0|. In other words, the hypothesis is pe-
nalized for increasing the stem lexicon size and gen-
erating a new morpheme of length |σ0|. In this way,
the first and second terms play a role similar to the
concentration parameter and base distribution in a
DP-based model.

Segmentation Model

γ|S|(1− γ|S|)|S|∑5
j=0 γ|S|(1− γ|S|)j

×

n−iT + α

N−i + αK
×

n−iσ0
+ α0

N−i0 + α0|L0|
×

n−iσ−|T + α−

N−i−|T + α−|L−|
×

n−iσ+|T + α+

N−i+|T + α+|L+|
(3)

The first factor is the truncated geometric distribu-
tion of the number of segmentations |S|, and the
second factor is the probability of generate the tag
T . The rest are the probabilities of generating the
stem σ0, the prefix σ−, and the suffix σ+ (where the
parameters of the multinomial distribution collapsed
out). n−1

T is the number of word types with tag T
and N−i is the total number of word types. n−iσ−|T
refers to the number of times prefix σ− is seen in all
word types that are tagged with T , and N−i−|T is the
total number of prefixes in all word types that has tag
T . All counts exclude the word type Wi whose seg-
mentation we are sampling. If there is another pre-
fix, N−i−|T is incremented (and also n−iσ−|T if the sec-
ond prefix is the same as the first one.) Integrating
out the parameters introduces dependencies between
prefixes. The rest of the notations read analogously.

Token-POS Model

αw|t
(mi)

(M−it + αw|t|W t|)(mi)
×

K∏
t=1

K∏
t′=1

(m−it′|t + αt|t)
(mi

t′|t)

(M−it + αt|t)
(mi

t′|t)
(4)

The two terms are the token-level emission and tran-
sition probabilities with parameters integrated out.
The integration induces dependences between all
token occurrences of word type W which results
in ascending factorials defined as α(m) = α(α +
1) · · · (α + m − 1) (Liang et al., 2010). M−it is
the number of tokens that have POS tag t, mi is the
number of tokens wi, and m−it′|t is the number of to-
kens t-to-t′ transitions. (Both exclude counts con-
tributed by tokens belong to word type Wi.) |W t| is
the number of word types with tag t.

Token-Seg Model

β
miβ1
1 β

miβ2
2 β

miβ3
3 (5)

Here,mi
β1

refers to the number of transitions involv-
ing token occurrences of word type Wi that exhibit
morphological agreement. This does not result in
ascending factorials since the parameters of transi-
tion probabilities are fixed and not generated from
Dirichlet priors, and so are not integrated out.



4.3 Staged Training

Although the Gibbs sampler mixes regardless of the
initial state in theory, good initialization heuristics
often speed up convergence in practice. We there-
fore train a series of models of increasing complex-
ity (see section 6 for more details), each with 50 iter-
ations of Gibbs sampling, and use the output of the
preceding model to initialize the subsequent model.
The initial model is initialized such that all words are
not segmented. When POS tags are first introduced,
they are initialized uniformly at random.

5 Experimental Setup

Performance metrics To enable comparison with
previous approaches, we adopt the evaluation set-up
of Poon et al. (2009). They evaluate segmentation
accuracy on a per token basis, using recall, precision
and F1-score computed on segmentation points. We
also follow a transductive testing scenario where the
same (unlabeled) data is used for both training and
testing the model.

Data set We evaluate segmentation performance
on the Penn Arabic Treebank (ATB).5 It consists of
about 4,500 sentences of modern Arabic obtained
from newswire articles. Following the preprocessing
procedures of Poon et al. (2009) that exclude certain
word types (such as abbreviations and digits), we
obtain a corpus of 120,000 tokens and 20,000 word
types. Since our full model operates over sentences,
we train the model on the entire ATB, but evaluate
on the exact portion used by Poon et al. (2009).

Pre-defined tunable parameters and testing
regime In all our experiments, we set γl = 1

2 (for
length of morpheme types) and γ|S| = 1

2 (for num-
ber of morpheme segments of each word.) To en-
courage a small set of affix types relative to stem
types, we set γ− = γ+ = 1

1.1 (for sizes of the af-
fix lexicons) and γ0 = 1

10,000 (for size of the stem
lexicon.) We employ a sparse Dirichlet prior for the
type-level models (for morphemes and POS tag) by
setting α = 0.1. For the token-level models, we set
hyperparameters for Dirichlet priors αw|t = 10−5

5Our evaluation does not include the Hebrew and Arabic
Bible datasets (Snyder and Barzilay, 2008a; Poon et al., 2009)
since these corpora consists of short phrases that omit sentence
context.

Model R P F1 t-test
PCT 09 69.2 88.5 77.7 -
Morfessor 72.6 77.4 74.9 -
BASIC 71.4 86.7 78.3 (2.9) -
+POS 75.4 87.4 81.0 (1.5) +
+TOKEN-POS 75.7 88.5 81.6 (0.7) ∼
+TOKEN-SEG 82.1 90.8 86.2 (0.4) ++

Table 1: Results on the Arabic Treebank (ATB) data
set: We compare our models against Poon et al. (2009)
(PCT09) and the Morfessor system (Morfessor-CAT).
For our full model (+TOKEN-SEG) and its simplifica-
tions (BASIC, +POS, +TOKEN-POS), we perform five
random restarts and show the mean scores. The sample
standard deviations are shown in brackets. The last col-
umn shows results of a paired t-test against the preceding
model: ++ (significant at 1%), + (significant at 5%), ∼
(not significant), - (test not applicable).

(for unsegmented tokens) and αt|t = 1.0 (for POS
tags transition.) To encourage adjacent words that
exhibit morphological agreement to have the same
final suffix, we set β1 = 0.6, β2 = 0.1, β1 = 0.3.

In all the experiments, we perform five runs us-
ing different random seeds and report the mean score
and the standard deviation.

Baselines Our primary comparison is against the
morphological segmenter of Poon et al. (2009)
which yields the best published results on the ATB
corpus. In addition, we compare against the Mor-
fessor Categories-MAP system (Creutz and Lagus,
2007). Similar to our model, their system uses latent
variables to induce clustering over morphemes. The
difference is in the nature of the clustering: the Mor-
fessor algorithm associates a latent variable for each
morpheme, grouping morphemes into four broad
categories (prefix, stem, suffix, and non-morpheme)
but not introducing dependencies between affixes di-
rectly. For both systems, we quote their performance
reported by Poon et al. (2009).

6 Results

Comparison with the baselines Table 1 shows that
our full model (denoted +TOKEN-SEG) yields a
mean F1-score of 86.2, compared to 77.7 and 74.9
obtained by the baselines. This performance gap
corresponds to an error reduction of 38.1% over the
best published results.



Ablation Analysis To assess relative impact of
various components, we consider several simplified
variants of the model:

• BASIC is the type-based segmentation model
that is solely driven by the lexicon.6

• +POS adds latent variables but does not cap-
ture transitions and agreement constraints.

• +TOKEN-POS is equivalent to the full model,
without agreement constraints.

Our results in Table 1 clearly demonstrate that
modeling morpho-syntactic constraints greatly im-
proves the accuracy of morphological segmentation.

We further examine the performance gains arising
from improvements due to (1) encouraging morpho-
logical consistency within syntactic categories, and
(2) morphological realization of grammatical agree-
ment.

We evaluate our models on a subset of words that
exhibit morphological consistency. Table 2 shows
the accuracies for words that begin with the prefix
“Al” (determiner) and end with a suffix “At” (plural
noun suffix.) An example is the word “Al-{ntxAb-
At” which is translated as “the-election-s”. Such
words make up about 1% of tokens used for eval-
uation, and the two affix boundaries constitute about
3% of the all gold segmentation points. By intro-
ducing a latent variable to capture dependencies be-
tween affixes, +POS is able to improve segmenta-
tion performance over BASIC. When dependencies
between latent variables are introduced, +TOKEN-
POS yields additional improvements.

We also examine the performance gains due to
morphological realization of grammatical agree-
ment. We select the set of tokens that share the
same final suffix as the preceding token, such as
the bigram “Al-Df-p Al-grby-p” (which is translated
word-for-word as “the-bank the-west”) where the
last morpheme “p” is a feminine singular noun suf-
fix. This subset makes up about 4% of the evaluation
set, and the boundaries of the final suffixes take up
about 5% of the total gold segmentation boundaries.

6The resulting model is similar in spirit to the unigram DP-
based segmenter (Goldwater et al., 2006; Snyder and Barzilay,
2008a; Snyder and Barzilay, 2008b).

Model
Token Type

F1 Acc. F1 Acc.
BASIC 68.3 13.9 73.8 24.3
+POS 75.4 26.4 78.5 38.0
+TOKEN-POS 76.5 34.9 82.0 49.6
+TOKEN-SEG 84.0 49.5 85.4 57.7

Table 2: Segmentation performance on words that begin
with prefix “Al” (determiner) and end with suffix “At”
(plural noun suffix). The mean F1 scores are computed
using all boundaries of words in this set. For each word,
we also determine if both affixes are recovered while ig-
noring any other boundaries between them. The other
two columns report this accuracy at both the type-level
and the token-level.

Model
Token Type

F1 Acc. F1 Acc.
BASIC 85.6 70.6 79.5 58.6
+POS 87.6 76.4 82.3 66.3
+TOKEN-POS 87.5 75.2 82.2 65.3
+TOKEN-SEG 92.8 91.1 88.9 84.4

Table 3: Segmentation performance on words that have
the same final suffix as their preceding words. The F1
scores are computed based on all boundaries within the
words, but the accuracies are obtained using only the final
suffixes.

Table 3 reveals this category of errors persisted un-
til the final component (+TOKEN-SEG) was intro-
duced.

7 Conclusion

Although the connection between syntactic (POS)
categories and morphological structure is well-
known, this relation is rarely exploited to improve
morphological segmentation performance. The per-
formance gains motivate further investigation into
morpho-syntactic models for unsupervised language
analysis.
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