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Abstract—In this paper we show that the problem of
phase retrieval can be efficiently and provably solved via
an alternating minimization algorithm suitably initialized.
Our initialization is based on One Bit Phase Retrieval that
we introduced in [1], where we showed that O(n log(n))
Gaussian phase-less measurements ensure robust recov-
ery of the phase. In this paper we improve the sample
complexity bound to O(n) measurements for sufficiently
large n, using a variant of Matrix Bernstein concentration
inequality that exploits the intrinsic dimension, together
with properties of one bit phase retrieval.

I. INTRODUCTION

The phase recovery problem can be modeled as the
problem of reconstructing a n-dimensional complex vec-
tor x0 given only the magnitude of m phase-less linear
measurements. Such a problem arises for example in
X-ray crystallography [2], [3], diffraction imaging [4]
or microscopy [5], where one can only measure the
intensities of the incoming waves, and wishes to recover
the lost phase in order to be able to reconstruct the
desired signal.

In practice, phase recovery is often tackled via greedy
algorithms [6], [7], [8] which typically lack convergence
guarantees. Recently, approaches based on convex
relaxations, namely PhaseLift in [9], [10], and Phase cut
in [11], have been proposed and analyzed. These latter
methods can be solved by Semi Definite Programing
(SDP), and allow the exact and stable recovery of the
signal (up to a global phase) from O(n) measurements.
A different approach has been recently considered
in [12], where it is shown that a greedy alternating
minimization, akin to those in [6], [7], [8], can be
shown to geometrically converge to the true vector x0 if
O(n log3 n) measurements are given. Indeed, alternating
minimization algorithms are known to be extremely
sensitive to the initialization and a suitable initialization
is the key of the analysis in [12]. Throughout this paper
we call the initialization step of [12] SubExpPhase.
While alternating minimization approaches provide a
solution only up-to a given accuracy, they often have
very good practical performances when compared to

convex methods [12], with important computational
advantages [12]. The solution of the SDP in convex
approaches is computationally expensive and needs
to be close to a rank one matrix for tight recovery
(which is rarely encountered in practice [11]). Indeed,
some greedy refinement of the SDP solution is often
considered [11].

More recently an approach based on quantization for
phase retrieval was proposed in [1], where a quantization
scheme for non negative phase-less measurements was
proposed, so called one bit quantization. This approach
is called One Bit Phase Retrieval 1bitPhase. It is shown
in [1] that we need O(n log(n)

ε2 ) measurements in order
to achieve an accuracy ε. Using the solution of One
Bit Phase retrieval as an initialization to the alternating
minimization algorithm, it is shown in [1] that the
overall procedure allows to achieve an accuracy ε using
O(n(log n+ log 1

ε log log 1
ε )) measurements.

In this paper we improve on those results and show that
for sufficiently large n, O( nε2 ) measurements are suffi-
cient to achieve an accuracy ε in one bit phase retrieval. It
follows that alternating minimization initialized with the
solution of One Bit Phase retrieval achieves an accuracy
ε from only O(n(1 + log 1

ε log log 1
ε )) measurements.

This result bridges the gap between convex and non
convex approaches for phase retrieval in term of sample
complexity (see Table I), with a computational advantage
for non convex approaches over SDP convex relaxations
as shown in Table II.

Notation: For z ∈ C, |z|2 is squared complex modulus
of z. For a, a′ ∈ Cn, 〈a, a′〉 is the complex dot product
in Cn. For a ∈ Cn, a∗ is the complex conjugate and
||a||2 is the norm 2 of a. Let A a complex hermitian
matrix in Cn, ||A||F denotes the Frobenius norm of A,
||A|| denotes the operator norm of A, tr(A) denotes the
trace of A. Throughout the paper, we denote by c, C
positive absolute constants whose values may change
from instance to instance.



II. BACKGROUND AND PREVIOUS WORK

In this section, we formalize the problem of recover-
ing a signal from phase-less measurements and discuss
previous results. Throughout this section, and the rest
of the paper, we consider measurements defined by in-
dependent and identically distributed Complex Gaussian
CN (0, In) sensing vectors,

ai ∈ Cn, ai ∼ N (0,
1

2
In)+iN (0,

1

2
In), i = 1 . . .m.

(1)
The (noiseless) phase recovery problem is defined as
follows.

Definition 1 (Phase-less Sensing and Phase Recovery).
Suppose phase-less sensing measurements

bi = | 〈ai, x0〉 |2 ∈ R+, i = 1 . . .m, (2)

are given for x0 ∈ Cn, where ai, i = 1, . . . ,m are
random vectors as in (1). The phase recovery problem
is

find x, subject to | 〈ai, x〉 |2 = bi, i = 1 . . .m.

(3)

The above problem is non convex and in the following
we recall the sample and computational complexity of
recent approaches to provably and efficiently recover
x0 from a finite number of measurements. In the next
section we focus on non convex approaches to phase
retrieval based on suitably initialized alternated mini-
mization (AM).

Sample complexity
PhaseLift [9], [10] O(n)

PhaseCut [11] O(n)

SubExpPhase+AM [12] O(n
(
log3 n+ log 1

ε
log log 1

ε

)
)

1bitPhase+AM [1] O(2n
(
log(n) + log 1

ε
log log 1

ε

)
))

1bitPhase+AM (this paper) O(2n
(
1 + log 1

ε
log log 1

ε

)
))

TABLE I
COMPARISON OF THE SAMPLE OF DIFFERENT PHASE RETRIEVAL

SCHEMES.

Comp. complexity
PhaseLift [9], [10] O(n3/ε2)

PhaseCut [11] O(n3/
√
ε)

SubExpPhase+AM [12] O(n2
(
log3 n+ log2 1

ε
log log 1

ε

)
)

1bitPhase+AM [1] O(n2
(
logn+ log2 1

ε
log log 1

ε

)
)

1bitPhase+AM (this paper ) O(n2
(
1 + log2 1

ε
log log 1

ε

)
)

TABLE II
COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF

DIFFERENT PHASE RETRIEVAL SCHEMES.

A. Phase Retrieval via suitably initialized Alternating
Minimization and Resampling

Let A be the matrix defined by m sensing vectors as
in (1) and B = Diag(

√
b), where b is the vector of

measurements as in (2). Then, Ax0 = Bu0, for u0 =

Ph(Ax0) with Ph(z) =
(
z1
|z1| , . . .

zm
|zm|

)
, z ∈ Cm. The

above equality suggests the following natural approach
to recover (x0, u0),

min
x,u
||Ax−Bu||22, subject to |ui| = 1, i = 1 . . .m,

The above problem is non-convex because of the con-
straint on u. The AM approach consists in optimizing u,
for a given x, and then optimizing x for a given u. It is
easy to see that for a given x, the optimal u is simply
u = Ph (Ax) , and for a given u, the optimal x is the
solution of a least squares problem. The key result in
[12] shows that if such an iteration is initialized with
maximum eigenvector of the matrix

Ĉm =
1

m

m∑
i=1

biaia
∗
i ,

then the solution xt0 of the alternating minimization
(Algorithm 1) globally converges (with high probabil-
ity) to the true vector x0. For a given accuracy ε,
0 < ε < 1, if m ≥ cn(log3 n + log 1

ε log log 1
ε ), then

||xt0 − eiφx0||2 ≤ ε, where φ is a global phase.
A key observation, motivating the above initialization
(called SubExpPhase), is the fact that the expectation of
Ĉm can be shown to satisfy

E(Ĉm) = x0x
∗
0 + I. (4)

Indeed, the proof in [12] relies on the concentration
properties of the random matrix Ĉm around its expec-
tation [13], [14]. It is useful to note that these latter
results crucially depend on a bound on the norm of
biaia

∗
i for i = 1, . . . ,m. Indeed, it is this latter bound

the main cause of the poly-logarithmic term in the
sample complexity of SubExpPhase since the bi’s are
exponential random variables.

Algorithm 1 proposed in [12], proceeds in alternating
the estimation of the phase and the signal. For technical
reasons - mainly ensuring independence - the algorithm
proceeds in a stage-wise alternating minimization. At
each stage we use a new re-sampled sensing matrix and
the corresponding measurements.

Algorithm 1 AltMinPhase with Resampling
1: procedure ALTMINPHASERESAMPLING(A, b, ε)
2: t0 ← c log( 1

ε )
3: Partition b and the corresponding rows of A into
t0 + 1 disjoint sets: (b0, A0), . . . (bt0 , At0).

4: Initialize x
5: for t = 0 . . . t0 − 1 do
6: ut+1 ← Ph(At+1xt)
7: xt ← arg min ||At+1x−Bt+1ut+1||22
8: end for
9: return xt0

10: end procedure



B. Robust One Bit Phase Retrieval and Greedy Refine-
ments

More recently a new approach for phase retrieval
was proposed in [1] based on a quantization scheme
of severely perturbed phaseless linear measurements.
Assume we observe pairs of independent phase-less
measurements:

(b1i , b
2
i ) =

(
θ(|
〈
a1i , x0

〉
|2), θ(|

〈
a2i , x0

〉
|2)
)
, i = 1, . . . ,m,

(5)
where (a1i , a

2
i ) are independent sensing vectors as in

(1) and θ is a possibly unknown rank preserving trans-
formation. In particular θ can model a distortion, e.g.
θ(s) = tanh(αs), α ∈ R+, or an additive noise
θ(s) = s + ν, where ν is a stochastic noise, such as
exponential noise. The recovery problem from severly
perturbed intensity values seems hopeless, and indeed
the key in this approach is a quantization scheme based
on comparing pairs of phase-less measurements. More
precisely for each pair b1i , b

2
i of measurements of the

form (5) we define

yi ∈ {−1, 1} yi = sign(b1i − b2i ), i = 1 . . .m.

The one bit phase retrieval problem reduces to a maxi-
mum eigenvalue problem induced by the matrix

Ĉm =
1

m

m∑
i=1

yi(a
1
i a

1,∗
i − a

2
i a

2,∗
i ). (6)

In [1] it is shown that the expectation of Ĉm satisfies

E(Ĉm) = λx0x
∗
0, (7)

where λ is a suitable constant which depends on θ
and plays the role of a signal-to-noise ratio. Morever
for a given accuracy 0 < ε < 1, if O(n logn

ε2λ ) pairs
of measurements are available, then the solution of the
above maximum eigenvalue problem satisfies

||x̂m − x0eiφ||22 ≤ ε,

where φ ∈ [0, 2π] is a global phase. Interestingly,
the authors in [1] show that provided with the one-
bit retrieval initialization, the alternating minimization
algorithm globally converges (with high probability) to
the true vector x0, and if

m ≥ cn(log n+ log
1

ε
log log

1

ε
), (8)

then ||xt0 − eiφx0||2 ≤ ε. Hence quantization plays the
role of a preconditioning that enhances the sample com-
plexity of the overall alternating minimization. While the
improvement in the sample complexity of 1bitPhase in
[1] compared to SubExpPhase [12] is mainly due to the
boundedness of the one bit measurements, we exploit in
this paper the fact that E(Ĉm) is of rank one in the case
of 1bitPhase as shown in equation (7), as opposed to

E(Ĉm) in the case of SubExpPhase which is full rank
as shown in equation (4). Having a rank one matrix
in expectation allows us to use matrix concentration
inequalities taking into account the intrinsic dimension
of the matrix [14], the latter allows us to get improved
sample complexity bounds.

III. MAIN RESULTS

The main result of this paper is stated in Theorem 1,
the proof of this Theorem is given in Section IV.

Theorem 1 (One Bit Phase Retrieval). Let x̂m be
the maximum eigenvector of Ĉm, solution of one bit
phase retrieval. For sufficiently large n, for 0 <
ε < 1, for m ≥ cn

λε2 , ||x̂mx̂∗m − x0x
∗
0||2F ≤

ε with probability at least 1−O(me−2n). where φ is a
global phase.

Theorem 2 (Greedy Refinements). Let x̂m be the so-
lution of One bit Phase Retrieval, and consider Al-
gorithm 1 initialized with x̂m for all ε, 0 < ε <
1. Define xt0 the output of Algorithm 1. For m =
O
(
2n(1 + log 1

ε log log 1
ε )
)
, we have ||xt0 − x0eiφ||2 ≤

ε with high probability.

Leveraging results from [12] that does not depend on
the initialization step, Theorem 2 shows that the greedy
refinements of one bit solution, ensures convergence to
the optimum with high probability and lower sample
complexity than the ones obtained in [12], and [1].

IV. IMPROVED SAMPLE COMPLEXITY RESULT FOR
ONE BIT PHASE RETRIEVAL

For completeness we give and simplify some proofs
from [1], and then focus on the main contributions of
this paper in the concentration techniques and results.

Proposition 1 (Correctness in Expectation). Let
a1, a2 ∼ CN (0, In), 2 iid complex Gaussian vectors.
For x0 ∈ Cn,||x0|| = 1, let y = sign(θ(

∣∣〈a1, x0〉∣∣2) −
θ(
∣∣〈a2, x0〉∣∣2)). Let C = Ey,a1,a2

(
y(a1a1,∗ − a2a2,∗)

)
,

we have

C = λx0x
∗
0,

where λ = E(sign(θ(E1) − θ(E2))(E1 − E2)), and
E1, E2 iid ∼ Exp(1).

Proof: Let ej , j = 1 . . . n, be the canonical basis.
Note aj` =

〈
aj , e`

〉
, j = 1, 2, ` = 1 . . . n. By rotation

invariance of Gaussians we can consider x0 = e1 =
(1, 0 . . . 0). Hence y = sign(θ(|a11||2) − θ(|a21|2)). Let
E1 = |a11|2, E2 = |a21|2, E1 and E2 are iid exponential



random variables Exp(1). It follows that:

C = E(y(a1a1,∗ − a2a2,∗))
= E

∑
k,`

y(a1kā
1
` − a

2
kā

2
`)eke

∗
` )

= E(sign(θ(|a11|2)− θ(|a21|2))(|a11|2 − |a21|2))e1e
∗
1

= λe1e
∗
1,

where the last equalities follow from independence and
that the Gaussian are centered.

Proposition 1 suggests that x0 can be recovered as
the maximum eigenvector of the matrix C. Moreover C
is a rank one matrix. The empirical problem amounts
therefore to finding the maximum eigenvector of the
matrix

Ĉm =
1

m

m∑
i=1

yi(a
1
i a

1,∗
i − a

2
i a

2,∗
i ).

Remark 1. The only assumption we make on θ is that θ
is such that λ > 0. For values of λ associated to different
noise and distortion models we refer the reader to [1].

Lemma 1 (Comparison Inequality). Let x̂m be the
maximum eigenvector of Ĉm, we have:

λ

2
||x̂mx̂∗m − x0x∗0||2F ≤ 2

∣∣∣∣∣∣Ĉm − C∣∣∣∣∣∣ .
Proof: For x ∈ Cn, ||x|| = 1, let Ex0(x) = x∗Cx,

and Êx0(x) = x∗Ĉmx.

Ex0(x0)−Ex0(x) = λ−λ| 〈x0, x〉 |2 =
λ

2
||xx∗−x0x∗0||2F .

Let x̂m = arg maxx,||x||=1 Êx0(x), we have: Ex0(x0)−
Ex0(x̂m) = Ex0(x0)− Êx0(x0) + Êx0(x0)− Êx0(x̂m) +
Êx0(x̂m)− Ex0(x̂m).
Noticing that the term Êx0(x0) − Êx0(x̂m) is non-
positive in light of the definition of x̂m, we have finally:
Ex0(x0)− Ex0(x̂m) ≤ 2 supx,||x||=1 Êx0(x)− Ex0(x) =

2
∣∣∣∣∣∣Ĉm − C∣∣∣∣∣∣.
Lemma 1 shows that the concentration of the self

adjoint matrix Ĉm around C controls the sample com-
plexity of the recovery. Interestingly in One Bit Phase
retrieval the matrix C is a rank one matrix. Recent
results in matrix concentration inequalities allow us to
get improved concentration results taking in account the
intrinsic dimension. Before studying the concentration
of Ĉm around its mean we pause to give a precise
definition of the intrinsic dimension and introduce the
matrix Bernstein concentration inequality with intrinsic
dimension.

Definition 2 (Intrinsic Dimension [14]). For a positive-
semidefinite matrix A, the intrinsic dimension is defined

as:
intdim(A) =

trA

||A||
.

Theorem 3 ([14]). Consider a finite sequence Xi of
independent centered self adjoint random n×n matrices.
Assume we have for some number R and a positive
semidefinite matrix V that:

||Xi|| ≤ R almost surely E

(∑
i

Xi

)2

4 V.

Then, for every t > ||V || 12 + R
3 , we have:

P{||
∑
i

Xi|| > t} ≤ 4 intdim(V ) exp

(
−t2/2

||V ||+Rt/3

)
.

When compared with Bernstein inequality intdim(V )
replaces the dimension n. Note that 1 ≤ intdim(V )) ≤
rank(V ) ≤ dim(V ) = n, hence this result improves the
sample complexity bound. We are now ready to prove
the concentration result using the fact that C is a rank
one matrix.

Proposition 2 (Concentration). For sufficiently large
n we have that, for m ≥ cn

λε2 , ||Ĉm − C|| ≤
ελ with probability at least 1−O(me−2n).

Proof: Let Xi = 1
m (yi(a

1
i a

1,∗
i − a2i a

2,∗
i )− λx0x∗0).

We would like to get a bound on ||
∑m
i=1Xi||, the main

technical issue is the fact that ||Xi|| are not bounded
almost surely. We will address this issue by rejecting
samples outside the ball of radius

√
M , where M is

defined in the following.
Let M = 2n(1 + β)2. Let E = {(a1, a2), ||a1||2 ≤
M and ||a2||2 ≤M}. Let

(ã1i, ã2i) = (a1i , a
2
i ) if (a1i , a

2
i ) ∈ E and 0 otherwise.

Let ỹi = sign
(
θ(|
〈
a1i , x0

〉
|2)− θ(|

〈
a2i , x0

〉
|2)
)

if (a1i , a
2
i ) ∈

E and 0 otherwise. Let

C̃m =
1

m

m∑
i=1

ỹi(ã
1
i ã

1,∗
i − ã

2
i ã

2,∗
i ) C̃ = E(C̃m).

Note that C̃m is the sum of bounded random variable ,
so that we can use the matrix Bernstein inequality given
in Theorem 3, in order to bound

∣∣∣∣∣∣C̃m − C̃∣∣∣∣∣∣. On the
other hand by the triangular inequality we have:

||Cm − C|| ≤
∣∣∣∣∣∣Cm − C̃m∣∣∣∣∣∣+

∣∣∣∣∣∣C̃m − C̃∣∣∣∣∣∣+
∣∣∣∣∣∣C̃ − C∣∣∣∣∣∣

(9)
Bounding

∣∣∣∣∣∣Cm − C̃m∣∣∣∣∣∣:
Note that ||a||2 ∼ χ2

2n, ||a|| is a Lipchitz function of
Gaussian with constant one. A Gaussian concentration
bound implies,

P(||ai||2 ≥ (
√

2n+ t)2) ≤ e− t2

2 . (10)



Setting t = β
√

2n, it follows that: P(||ai||2 ≥ 2n(1 +
β)2) ≤ e−β2n.

P( max
i=1,...m,j=1,2

||aji ||
2 > M) ≤ 2mP(||a||2 > M)

≤ 2me−β
2n.

It follows that :∣∣∣∣∣∣Cm − C̃m∣∣∣∣∣∣ = 0 with probability at least 1−2me−β
2n.

Bounding
∣∣∣∣∣∣C̃ − C∣∣∣∣∣∣:

By the rotation invariance of Gaussian we can assume
x0 = (1, 0, . . . , 0).
The off diagonal terms of E(ỹ(ã1ã1,∗− ã2ã2,∗) are zero.
The same holds for E(y(a1a1,∗−a2a2,∗). The only term
that is non zero on the diagonal is the first one.

||C̃ − C|| = E(y(|a11|2 − |a21|2)1(a1,a2)/∈E)

≤
(
E(y2(|a11|2 − |a21|2)2)

) 1
2 (E(1Ec))

1
2

= (E(|a11|4 + |a21|4 − 2|a11|2|a22|2))
1
2

√
P(Ec)

≤
√

2 + 2− 2
√

2e−β2n

= 2e−β
2n/2.

Bounding
∣∣∣∣∣∣C̃m − C̃∣∣∣∣∣∣:

It is easy to see that: C̃ = λ̃e1e
∗
1, λ̃ = λ −

E
(
sign(θ(|a11|2)− θ(|a21|2))(|a11|2 − |a21|2)1(a1,a2)/∈E

)
.

Let
X̃i =

1

m

(
ỹi(ã

1
i ã

1,∗
i − ã

2
i ã

2,∗
i )− C̃

)
,

we have E(X̃i) = 0, and ||X̃i|| ≤ 4Mm .
Moreover E(X̃2

i ) 4 2M
m2 C̃. Hence we have:

E
(∑

i X̃i

)2
4 2M

m C̃. The intrinsic dimension

intdim(C̃) = tr(C̃)

||C̃|| = λ̃
λ̃

= 1. We are now ready

to apply Theorem 3: P
(∣∣∣∣∣∣C̃m − C̃∣∣∣∣∣∣ ≥ t) ≤

4intdim(C̃) exp
(

−t2/2
2M
m ||C̃||+4M

m t/3

)
. To achieve a

relative error ε, such that 0 < ε < 1, we have for
m ≥ cM

ε2||C̃|| ,
∣∣∣∣∣∣C̃m − C̃∣∣∣∣∣∣ ≤ ε||C̃||, with probability

1− cintdim(C̃)c = 1− c′.

Putting all together:
Setting β =

√
2. We have with probability at least 1 −

2me−2n − c′, for m ≥ cM
ε2||C̃||

||Ĉm − C|| ≤ ε||C̃||+ 2e−n

where M = 2n(1 +
√

2)2. Therefore for suf-
ficiently large n, for m ≥ cn

λε2 , ||Ĉm − C|| ≤
ελ with probability at least 1−O(me−2n).

The proof of Theorem 1 follows easily from Lemma
1 and Proposition 2:

Proof of Theorem 1: By Lemma 1, and
Proposition 2 we conclude for sufficiently large
n: For m ≥ cn

λε2 , ||x̂mx̂∗m − x0x
∗
0||2F ≤

ε with probability at least 1 − O(me−2n). where c
is a sufficiently large numeric constant.

V. CONCLUSION

We showed in this paper that One Bit Phase Retrieval
and its greedy refinements allow efficient phase retrieval
from O(n) Gaussian measurements, with a computa-
tional complexity of O(n2). This result bridges the
sample complexity gap between convex and non-convex
approaches for phase retrieval, with a computational
advantage for the non-convex approach that is based on
alternating minimization suitably initialized with One Bit
Phase Retrieval solution.
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