
Published as a conference paper at ICLR 2019

LEARNING TO INFER AND EXECUTE
3D SHAPE PROGRAMS

Yonglong Tian†, Andrew Luo†, Xingyuan Sun‡, Kevin Ellis†, William T. Freeman†,
Joshua B. Tenenbaum† & Jiajun Wu†
†Massachusetts Institute of Technology
‡Princeton University
{yonglong,aluo,ellisk,billf,jbt,jiajunwu}@mit.edu
xs5@princeton.edu

ABSTRACT

Human perception of 3D shapes goes beyond reconstructing them as a set of points
or a composition of geometric primitives: we also effortlessly understand higher-
level shape structure such as the repetition and reflective symmetry of object parts.
In contrast, recent advances in 3D shape sensing focus more on low-level geometry
but less on these higher-level relationships. In this paper, we propose 3D shape
programs, integrating bottom-up recognition systems with top-down, symbolic
program structure to capture both low-level geometry and high-level structural
priors for 3D shapes. Because there are no annotations of shape programs for
real shapes, we develop neural modules that not only learn to infer 3D shape
programs from raw, unannotated shapes, but also to execute these programs for
shape reconstruction. After initial bootstrapping, our end-to-end differentiable
model learns 3D shape programs by reconstructing shapes in a self-supervised
manner. Experiments demonstrate that our model accurately infers and executes
3D shape programs for highly complex shapes from various categories. It can
also be integrated with an image-to-shape module to infer 3D shape programs
directly from an RGB image, leading to 3D shape reconstructions that are both
more accurate and more physically plausible.

1 INTRODUCTION

Given the table in Figure 1, humans are able to instantly recognize its parts and regularities: there
exist sharp edges, smooth surfaces, a table top that is a perfect circle, and two lower, square layers.
Beyond these basic components, we also perceive higher-level, abstract concepts: the shape is
bilateral symmetric; the legs are all of equal length and laid out on the opposite positions of a 2D grid.
Knowledge like this is crucial for visual recognition and reasoning (Koffka, 2013; Dilks et al., 2011).

Recent AI systems for 3D shape understanding have made impressive progress on shape classification,
parsing, reconstruction, and completion (Qi et al., 2017; Tulsiani et al., 2017), many making use of
large shape repositories like ShapeNet (Chang et al., 2015). Popular shape representations include
voxels (Wu et al., 2015), point clouds (Qi et al., 2017), and meshes (Wang et al., 2018). While
each has its own advantages, these methods fall short on capturing the strong shape priors we just
described, such as sharp edges and smooth surfaces.

A few recent papers have studied modeling 3D shapes as a collection of primitives (Tulsiani et al.,
2017), with simple operations such as addition and subtraction (Sharma et al., 2018). These represen-
tations have demonstrated success in explaining complex 3D shapes. In this paper, we go beyond
them to capture the high-level regularity within a 3D shape, such as symmetry and repetition.

In this paper, we propose to represent 3D shapes as shape programs. We define a domain-specific
language (DSL) for shapes, containing both basic shape primitives for parts with their geometric and
semantic attributes, as well as statements such as loops to enforce higher-level structural priors.

Project page: http://shape2prog.csail.mit.edu

1

http://shape2prog.csail.mit.edu


Published as a conference paper at ICLR 2019

Figure 1: A 3D shape can be represented by a program via a program generator. This program can be
executed by a neural program executor to produce the corresponding 3D shape.

Because 3D shape programs are a new shape representation, there exist no annotations of shape
programs for 3D shapes. The lack of annotations makes it dif�cult to train an inference model with
full supervision. To overcome this obstacle, we propose to learn a shape program executor that
reconstructs a 3D shape from a shape program. After initial bootstrapping, our model can then learn
in a self-supervised way, by attempting to explain and reconstruct unlabeled 3D shapes with 3D shape
programs. This design minimizes the amount of supervision needed to get our model off the ground.

With the learned neural program executor, our model learns to explain input shapes without ground
truth program annotations. Experiments on ShapeNet show that our model infers accurate 3D shape
programs for highly complex shapes from various categories. We further extend our model by
integrating with an image-to-shape reconstruction module, so it directly infers a 3D shape program
from a color image. This leads to 3D shape reconstructions that are both more accurate and more
physically plausible.

Our contributions are three-fold. First, we propose 3D shape programs: a new representation for
shapes, building on classic �ndings in cognitive science and computer graphics. Second, we propose
to infer 3D shape programs by explaining the input shape, making use of a neural shape program
executor. Third, we demonstrate that the inference model, the executor, and the programs they recover
all achieve good performance on ShapeNet, learning to explain and reconstruct complex shapes. We
further show that an extension of the model can infer shape programs and reconstruct 3D shapes
directly from images.

2 RELATED WORK

Inverse procedural graphics. The problem of inferring programs from voxels is closely related
to inverse procedural graphics, where a procedural graphics program is inferred from an image or
declarative speci�cation (Ritchie et al., 2016;�St'ava et al., 2010). Where the systems have been most
successful, however, are when they leverage a large shape–component library (Chaudhuri et al., 2011;
Schulz et al., 2017) or are applied to a sparse solution space (van den Hengel et al., 2015). Kulkarni
et al. (2015a) approached the problem of inverse graphics as inference in a probabilistic program
for generating 2D images, or image contours, from an underlying 3D model. They demonstrated
results on several different applications using parametric generative models for faces, bodies, and
simple multi-part objects based on generalized cylinders. In this work, we extend the idea of inverse
procedural graphics to 3-D voxel representations, and show how this idea can apply to large data sets
like ShapeNet. We furthermore do not have to match components to a library of possible shapes,
instead using a neural network to directly infer shapes and their parameters.

A few recent papers have explored the use of simple geometric primitives to describe shapes (Tulsiani
et al., 2017; Zou et al., 2017; Liu et al., 2018), putting the classic idea of generalized cylinders (Roberts,
1963; Binford, 1971) or geons (Biederman, 1987) in the modern context of deep learning. In particular,
Sharma et al. (Sharma et al., 2018) extended these papers and addressed the problem of inferring 3-D
CAD programs from perceptual input. We �nd this work inspiring, but also feel that a key goal of
3-D program inference is to reconstruct a program in terms of semantically meaningful parts and
their spatial regularity, which we address here. Some other graphics papers also explore regularity,
but without using programs (Mitra et al., 2013; Zhu et al., 2018; Nishida et al., 2018; Li et al., 2017).

Work in the HCI community has also addressed the problem of inferring parametric graphics
primitives from perceptual input. For example, Nishida et al. (2016) proposed to learn to instantiate
procedural primitives for an interactive modeling system. In our work, we instead learn to instantiate
multiple procedural graphics primitives simultaneously, without assistance from a human user.

2



Published as a conference paper at ICLR 2019

Program ! Statement; Program
Statement ! Draw(Semantics, Shape, PositionParams, GeometryParams)
Statement ! For(For Params); Program;EndFor
Semantics ! semantics 1j semantics 2j semantics 3j ...

Shape ! Cuboidj Cylinderj Rectanglej Circle j Line j ...
PositionParams ! (x, y, z)

GeometryParams ! (g1, g2, g3, g4, ...)
For Params ! TranslationParamsj RotationParams

TranslationParams ! (timesi , orientationu)
RotationParams ! (timesi , angle� , axisa)

Table 1: The domain speci�c language (DSL) for 3D shapes. Semantics depends on the types of
objects that are modeled, i.e., semantics forvehicleandfurnitureshould be different. For details of
DSL in our experimental setting, please refer to supplementary.

Program synthesis. In the AI literature, Ellis et al. (2018) leveraged symbolic program synthesis
techniques to infer 2D graphics programs from images, extending their earlier work by using neural
nets for faster inference of low-level cues such as strokes (Ellis et al., 2015). Here, we show how a
purelyend–to–endnetwork can recover 3D graphics programs from voxels, conceptually relevant
to RobustFill (Devlin et al., 2017), which presents a purely end-to-end neural program synthesizer
for text editing. The very recent SPIRAL system (Clavera et al., 2018) also takes as its goal to learn
structured program–like models from (2D) images. An important distinction from our work here
is that SPIRAL explains an image in terms of paint-like “brush strokes”, whereas we explain 3D
voxels in terms of high-level objects and semantically meaningful parts of objects, like legs or tops.
Other tangential related work on program synthesis includes Balog et al. (2017); Devlin et al. (2017);
Parisotto et al. (2017); Gaunt et al. (2016); Sun et al. (2018a); Liu et al. (2019).

Learning to execute programs. Neural Program Interpreters (NPI) have been extensively studied
for programs that abstract and execute tasks such as sorting, shape manipulation, and grade-school
arithmetic (Reed & De Freitas, 2016; Cai et al., 2017; Bo�snjak et al., 2017). In NPI (Reed &
De Freitas, 2016), the key insight is that a program execution trace can be decomposed into pre-
de�ned operations that are more primitive; and at each step, an NPI learns to predict what operation
to take next depending on the general environment, domain speci�c state , and previous actions.
Cai et al. (2017) improved the generalization of NPIs by adding recursion. Johnson et al. (2017)
learned to execute programs for visual question and answering. In this paper, we also learn a 3D
shape program executor that renders 3D shapes from programs as a component of our model.

3 3D SHAPE PROGRAMS

In this section, we de�ne the domain-speci�c language for 3D shapes, as well as the problem of shape
program synthesis.

Table 1 shows our DSL for 3D shape programs. Each shape program consists of a variable number of
program statements. A program statement can be eitherDraw, which describes a shape primitive as
well as its geometric and semantic attributes, orFor, which contains a sub-program and parameters
specifying how the subprogram should be repeatedly executed. The number of arguments for each
program statement varies. We tokenize programs for the purpose of neural network prediction.

Each shape primitive models a semantically-meaningful part of an object. Its geometric attributes
(Table 1: GeometryParams, PositionParams) specify the position and orientation of the part. Its
semantic attributes (Table 1: Semantics) specify its relative role within the whole shape (e.g., top,
back, leg). They do not affect the geometry of the primitive; instead, they associate geometric parts
with their semantic meanings conveying how parts can be shared across object categories semantically
and functionally (e.g., a chair and a table may have similar legs).

OurFor statement captures high-level regularity across parts. For example, the legs of a table can
be symmetric with respect to particular rotation angles. The horizontal bars of a chair may lay out
regularly with a �xed vertical gap. EachFor statement can contain sub-programs, allowing recursive
generation of shape programs.

3



Published as a conference paper at ICLR 2019

Figure 2: The core of our 3D shape program generator are two LSTMs. The Block LSTM emits
features for each program block. The Step LSTM takes these features as input and outputs programs
inside each block, which includes either a single drawing statement or compound statements.

The problem of inferring a 3D shape program is de�ned as follows: predicting a 3D shape program
that reconstructs the input shape when the program is executed. In this paper, we use voxelized
shapes as input with a resolution of32� 32� 32.

4 INFERRING AND EXECUTING 3D SHAPE PROGRAMS

Our model, calledShape Programs, consists of a program generator and a neural program executor.
The program generator takes a 3D shape as input and outputs a sequence of primitive programs that
describe this 3D shape. The neural program executor takes these programs as input and generates
the corresponding 3D shapes. This allows our model to learn in a self-supervised way by generating
programs from input shapes, executing these programs, and back-propagating the difference between
the generated shapes and the raw input.

4.1 PROGRAM GENERATOR

We model program generation as a sequential prediction problem. We partition full programs into two
types of subprograms, which we call blocks: (1) a single drawing statement describing a semantic
part, e.g. circle top; and (2) compound statements, which are a loop structure that interprets a set of
translated or rotated parts, e.g. four symmetric legs. This part-based, symmetry-aware decomposition
is inspired by human perception (Fleuret et al., 2011).

Our program generator is shown in Figure 2. The core of the program generator consists of two
orthogonal LSTMs. The �rst one,the Block LSTM, connects sequential blocks. The second one, the
Step LSTM, generates programs for each block. At each block, we �rst render the shape described
by previous program blocks with a graphics engine. Then, the rendered shape and the raw shape
are combined along the channel dimension and fed into a 3D ConvNet. The Block LSTM takes the
features output by the 3D ConvNet and outputs features of the current block, which are further fed
into the step LSTM to predict the block programs. The reason why we need the step LSTM is that
each block might have a different length (e.g., loop bodies of different sizes).

Given block featurehblk , the Step LSTM predicts a sequence of program tokens, each consisting
of a program id and an argument matrix. Thei -th row of the argument matrix serves for thei -th
primitive program. From the LSTM hidden stateht , two decoders generate the output. The softmax
classi�cation probability over program sets is obtained byf prog : RM ! RN . The argument matrix
is computed byf param : RM ! RN � K , whereN is the total number of program primitives and
K is the maximum possible number of arguments. The feed-forward steps of the Step LSTM are
summarized as

ht = f lstm(x t ; ht � 1); (1)
pt = f prog(ht ); at = f param(ht ); (2)

where thept andat corresponds to the program probability distribution and argument matrix at time
t. After getting the program ID, we obtain its arguments by retrieving the corresponding row in the

4



Published as a conference paper at ICLR 2019

Figure 3: The learned program executor consits of an LSTM, which encodes multiple steps of
programs, and a subsequent 3D DeconvNet which decodes the features to a 3D shape.

argument matrix. At each time step, the input of the Step LSTMx t is the embedding of the output in
the previous step. For the �rst step, the block featurehblk is used instead.

We pretrain our program generator on a synthetic dataset with a few pre-de�ned simple program
templates. The set of all templates for tables are shown in Section A1. These templates are much
simpler than the actual shapes. The generator is trained to predict the program token and regress
the corresponding arguments via the following losslgen =

P
b;i wp lcls(pb;i ; p̂b;i )) + wa l reg(ab;i ; âb;i ),

wherelcls(pb;i ; p̂b;i )) andl reg(ab;i ; âb;i ) are the cross-entropy loss of program ID classi�cation and
theL -2 loss of argument regression, in stepi of blockb, respectively. The weightswp andwa balance
the losses between classi�cation and regression.

4.2 NEURAL PROGRAM EXECUTOR

We propose to learn a neural program executor, an approximate but differentiable graphics engine,
which generates a shape from a program. The program executor can then be used for training the
program generator by back-propagating gradients. An alternative is to design a graphics engine that
explicitly executes a symbolic program to produce a voxelized 3D shape. Certain high-level program
commands, such asFor statements, will make the executor non-differentiable. Our use of a neural,
differentiable executor enables gradient-based �ne-tuning of the program synthesizer on unannotated
shapes, which allows the model to generalize effectively to novel shapes outside training categories.

Learning to execute a long sequence of programs is dif�cult, since an executor has to learn to interpret
not only single statements but also complex combinations of multiple statements. We decompose
the problem by learning an executor that executes programs at the block level, e.g., either a single
drawing statement or a compound statements. Afterwards, we integrate these block-level shapes by
max-pooling to form the shape corresponding to a long sequence of programs. Our neural program
executor includes an LSTM followed by a deconv CNN, as shown in Figure 3. The LSTM aggregates
the block-level program into a �xed-length representation. The following deconv CNN takes this
representation and generates the desired shape.

To train the program executor, we synthesize large amounts of block-level programs and their
corresponding shapes. During training, we minimize the sum of the weighted binary cross-entropy
losses over all voxels via

L =
X

v2 V

� w1yv log ŷv � w0(1 � yv ) log(1 � ŷv ); (1)

wherev is a single voxel of the whole voxel spaceV , yv andŷv are the ground truth and prediction,
respectively, whilew0 andw1 balance the losses between vacant and occupied voxels. This training
leverages only synthetic data, not annotated shape and program pairs, which is a blessing of our
disentangled representation.

4.3 GUIDED ADAPTATION

A program generator trained only on a synthetic dataset does not generalize well to real-world datasets.
With the learned differentiable neural program executor, we can adapt our model to other datasets such
as ShapeNet, where program-level supervision is not available. We execute the predicted program
by the learned neural program executor and compute the reconstruction loss between the generated
shape and the input. Afterwards, the program generator is updated by the gradient back-propagated
from the learned program executor, whose weights are frozen.

This adaptation is guided by the learned program executor and therefore calledguided adaptation
(GA), and is shown in Figure 4. Given an input shape, the program generator �rst outputs multiple
block programs. Each block is interpreted as 3D shapes by the program executor. A max-pooling

5



Published as a conference paper at ICLR 2019

Figure 4: Given an input 3D shape, the neural program executor executes the generated programs.
Errors between the rendered shape and the raw input are back-propagated.

operation over these block-level shapes generates the reconstructed shape. The use of max-pooling
also enables our executor to handle programs of variable length. Vacant tokens are also executed
and pooled. Gradients can then propagate through vacant tokens and the model can learn to add new
program primitives accordingly. Here, the loss forGuided Adaptationis the summation of the binary
cross-entropy loss over all voxels.

5 EXPERIMENTS

We present program generation and shape reconstruction results on three datasets: our synthetic
dataset, ShapeNet (Chang et al., 2015), and Pix3D (Sun et al., 2018b).

Setup. In our experiments, we use a single model to predict programs for multiple categories. Our
model is �rst pretrained on the synthetic dataset and subsequently adapted to target dataset such as
ShapeNet and Pix3D under the guidance of the neural program executor. All components of our
model are trained with Adam (Kingma & Ba, 2015).

5.1 EVALUATION ON THE SYNTHETIC DATASET

Program generator. We �rst pre-train our program generator on our synthetic dataset with simple
templates. The synthetic training set includes 100,000 chairs and 100,000 tables. The generator is
evaluated on 5,000 chairs and tables. More than 99.9% of the programs are accurately predicted. The
shapes rendered by the predicted programs have an average IoU of 0.991 with the input shapes. This
high accuracy is due to the simplicity of the synthetic dataset.

Program executor. Our program executor is trained on 500,000 pairs of synthetic block programs
and corresponding shapes, and tested on 30,000 pairs. The IoU between the shapes rendered by
the executor and the ground truth is 0.93 for a single drawing statement and 0.88 for compound
statements. This shows the neural program executor is a good approximation of the graphics engine.

5.2 GUIDED ADAPTATION ON SHAPENET

Setup. We validate the effectiveness ofguided adaptationby testing our model on unseen examples
from ShapeNet. For both tables and chairs, we randomly select 1,000 shapes for evaluation and all
the remaining ones forguided adaptation.

Quantitative results. After our model generates programs from input shapes, we execute these
programs with a graphics engine and measure the reconstruction quality. Evaluation metrics include
IoU, Chamfer distance (CD) (Barrow et al., 1977), and Earth Mover's distance (EMD) (Rubner et al.,
2000). While the pre-trained model achieves 0.99 IoU on the synthetic dataset, the IoU drops below
0.5 on ShapeNet, showing the signi�cant disparity between these two domains. As shown in Table 2,
all evaluation metrics suggests improvement afterguided adaptation. For example, the IoUs of table
and chair increase by 0.104 and 0.094, respectively. We compare our method with Tulsiani et al.
(2017), which describes shapes with a set of primitives; and CSGNet (Sharma et al., 2018), which
learns to describe shapes by applying arithmetic over primitives. For CSGNet, we evaluate two
variants: �rst, CSGNet-original, where we directly test the model released by the original authors;

6



Published as a conference paper at ICLR 2019

Models IoU " CD # EMD #

table chair table chair table chair

CSGNet-original 0.111 0.154 0.216 0.175 0.205 0.177

Tulsiani et al. (2017) 0.357 0.406 0.083 0.079 0.073 0.072
CSGNet-augmented 0.406 0.365 0.072 0.077 0.069 0.076
Nearest Neighbour 0.445 0.389 0.083 0.084 0.084 0.084

Shape Programs w/o GA 0.487 0.422 0.067 0.072 0.063 0.072
Shape Programs 0.591 0.516 0.058 0.063 0.056 0.060

Table 2: Shape reconstruction results on ShapeNet, evaluated in intersection over union (IoU, higher
is better), Chamfer distance (CD, lower is better), and Earth Mover's distance (EMD, lower is better).
Our model outperforms the baselines.

second, CSGNet-augmented, where we retrain CSGNet on our dataset with the additional shape
primitives we introduced. We also introduce a nearest neighbor baseline, where we use Hamming
distance to search for a nearest neighbour from the training set for each testing sample.

Our model withoutguided adaptationoutperforms Tulsiani et al. (2017) and CSGNet by a margin,
showing the bene�t of capturing regularities such as symmetry and translation. The NN baseline
suggests that simply memorizing the training set does not generalize well to test shapes. With
the learned neural program executor, we try to directly train our program generator on ShapeNet
without any pre-training. This trial failed, possibly because of the extremely huge and complicated
combinatorial space of programs. However, the initial programs for pre-training can be very simple:
e.g., 10 simple table templates (Fig. A1) are suf�cient to initialize the model, which later achieves
good performance under execution-guided adaptation.

Qualitative results. Figure 5 shows some program generation and shape reconstruction results for
tables and chairs, respectively. The input shapes can be noisy and contain components that are not
covered by templates in our synthetic dataset. After guided adaption, our model is able to extract
more meaningful programs and reconstruct the input shape reasonably well.

Our model can be adapted to either add or delete programs, as shown in Figure 5. In (a), we observe
an addition of translation describing the armrests. In (b) the “cylinder support” program is removed
and a nested translation is added to describe four legs. In (c) and (d), the addition of “Horizontal bar”
and “Rectangle layer” leads to more accurate representation. Improvements utilizing modi�cations
to compound programs are not restricted to translations, but can also be observed in rotations, e.g.,
the times of rotation in (a) is increased from 4 to 5. We also notice new templates emerges after
adaptation, e.g., tables in (c) and (d) are not in the synthetic dataset (check the synthetic templates for
tables in supplementary). These changes are signi�cant because it indicates the generator can map
complex, non-linear relationships to the program space.

5.3 STABILITY AND CONNECTIVITY MEASUREMENT

Stability and connectivity are necessary for the functioning of many real-world shapes. This is dif�cult
to capture using purely low-level primitives, but are better suited to our program representations.

We de�ne a shape as stable if its center of mass falls within the convex hull of its ground contacts, and
we de�ne a shape as connected if all voxels form one connected component. In Table 3 we compare
our model against Tulsiani et al. (2017) and observe signi�cant improvements in the stability of shapes
produced by our model when compared to this baseline. This is likely because our model is able to
represent multiple identical objects by utilizing translations and rotations. Before GA, our model
produces chairs with lower connectivity, but we observe signi�cant improvements with GA. This can
be explained by the signi�cant diversity in the ShapeNet dataset under the “chair” class. However,
the improvements with GA also demonstrate an ability for our model to generalize. Measured by
the percentage of produced shapes that are stable and connected, our model gets signi�cantly better
results, and continues to improve withguided adaptation.

7



Published as a conference paper at ICLR 2019

Figure 5: The program generation for ShapeNet chairs and tables. For each shape, the �rst and second
rows represent results before and afterguided adaptation. Best viewed in color.

Models Stable (%) Conn. (%) Stable & Conn. (%)

table chair table chair table chair

Tulsiani et al. (2017) 36.7 31.3 37.1 68.9 15.4 19.6

Shape Programs w/o GA 94.7 95.1 76.6 54.2 73.7 51.6
Shape Programs 97.0 96.5 78.4 68.5 77.0 66.0

Ground Truth 98.9 97.6 98.8 97.8 97.7 95.5

Table 3: Measurement of stability and connectivity. Our model is able to capture shape regularity such
as symmetry. Therefore, shapes represented by our programs are more stable and better connected.

5.4 GENERALIZATION ON OTHER SHAPES

While our program generator is pre-trained only on synthetic chairs and tables, generalization on
other shape categories is desirable. We further demonstrate that withguided adaptation, our program
generator can be transferred to other unseen categories.

8



Published as a conference paper at ICLR 2019

Models IoU " CD #

bed sofa cabinet bench bed sofa cabinet bench

Shape Programs w/o GA 0.234 0.296 0.251 0.176 0.126 0.103 0.104 0.098
Shape Programs 0.367 0.597 0.478 0.418 0.096 0.067 0.092 0.059

Table 4: Shape reconstruction results on unseen categories. Results with or withoutguided adaptation
in intersection over union (IoU, higher is better) and Chamfer distance (CD, lower is better).

Figure 6: ShapeNet objects from unseen categories reconstructed with shape programs before and
afterguided adaptation. Shape Programs can learn to adapt and explain objects from novel classes.

Figure 7: 3D reconstruction results on Pix3D dataset. MarrNet generates fragmentary shapes and our
model further smooths and completes such shapes.

We considerBed, Bench, Cabinet, andSofa, which share similar semantics with table and chair but
are unseen during pre-training. We split 80% shapes of each category forguided adaptationand the
remaining for evaluation. Table 4 suggests the pre-trained model performs poorly for these unseen
shapes but its performance improves with this unsupervisedguided adaptation. The IoU of bed
improves from 0.23 to 0.37, sofa from 0.30 to 0.60, cabinet from 0.25 to 0.48, and bench from 0.18
to 0.42. This clearly illustrates the generalization ability of our framework. Visualized examples are
show in Figure 6.

5.5 SHAPE COMPLETION AND SMOOTHING BY PROGRAMS

One natural application of our model is to complete and smooth fragmentary shapes reconstructed
from 2D images. We separately train a MarrNet (Wu et al., 2017) model for chairs and tables on
ShapeNet, and then reconstruct 3D shapes from 2D images on the Pix3D dataset. As shown in
Figure 7, MarrNet can generate fragmentary shapes, which are then fed into our model to generate
programs. These programs are executed by the graphics engine to produce a smooth and complete
shape. For instance, our model can complete the legs of chairs and tables, as shown in Figure 7.

While stacking our model on top of MarrNet does not change the IoU of 3D reconstruction, our
model produces more visually appealing and human-perceptible results. A user study on AMT shows
that 78.9% of the participant responses prefer our results rather than MarrNet's.

6 DISCUSSION

We have introduced 3D shape programs as a new shape representation. We have also proposed a
model for inferring shape programs, which combines a neural program synthesizer and a neural

9


	Introduction
	Related Work
	3D Shape Programs
	Inferring and Executing 3D Shape Programs
	Program Generator
	Neural Program Executor
	Guided Adaptation

	Experiments
	Evaluation on The Synthetic Dataset
	Guided Adaptation on ShapeNet
	Stability and Connectivity Measurement
	Generalization on Other Shapes
	Shape Completion and Smoothing by Programs

	Discussion
	Defined Programs
	Architecture Details
	Synthetic Templates v.s. ShapeNet
	Additional Results

