

Through-Wall Pose Estimation

Goal: See human poses through walls and occlusions

Motivation:

- Visible Light blocked by walls and opaque objects
- Radio Frequency signals traverse walls and occlusions

Properties of RF signals:

- Traverse walls but have low spatial resolution
- Human body is specular in the frequency range
- Complex numbers + different geometric perspectives

Main Challenge:

- Labeling RF signals is hard for human
- Solution: Using Vision modality to teach RF modality

Through-Wall Human Pose Estimation Using Radio Signals

Mingmin Zhao, Tianhong Li, Mohammad Abu Alsheikh, Yonglong Tian, Hang Zhao, Antonio Torralba, Dina Katabi MIT CSAIL

http://rfpose.csail.mit.edu

Large Scale Data Set

- Synchronized data from web camera and RF sensor
- More than 50 hours and 50 environments More than 1k different people
- Number of people in each frame: 0 to 14 Various activities

Comparison with Vision System

RGB image						
Our method						
Ø K OpenPose						
Non-through-w	vall	Metho	ds	Hea	Nec	Sho

NUITtillUugii-wa **RF-Pose** Setting

Spatial Attention

RGB image

Horizontal Heatmap

Method:

- Extract skeleton heatmap using RF-Pose
- Accuracy: For 100 people, 84% in top-1 and 96% in top-5

Results

Analysis

Temporal Attention

Application: Identification

• Identify people based on 50 consecutive frames of skeleton heatmaps