
On The Universality of Visual and
Multimodal Representations

Thèse de doctorat de l’Université Paris-Saclay
préparée à CentraleSupélec

École doctorale n◦573 INTERFACES
Spécialité de doctorat : Ingénierie des systèmes complexes

Thèse présentée et soutenue à Palaiseau, le 1er Juin 2018, par

YOUSSEF TAMAAZOUSTI

Composition du Jury :

Pr. Mathieu Cord
Professeur des Universités, Université Pierre et Marie
Curie (UMPC) Président

Dr. Florent Perronnin
Directeur de Recherche, Naver Labs Europe Rapporteur
Pr. Philippe-Henri Gosselin
Professeur des Universités, École nationale supérieure de
l’électronique et de ses applications (ENSEA)

Rapporteur

Pr. Iasonas Kokkinos
Professeur des Universités, University College London &
Facebook Examinateur

Dr. Pablo Piantanida
Associate Professor, CentraleSupélec (L2S) Examinateur
Pr. Céline Hudelot
Professeur des Universités, CentraleSupélec (MICS) Directeur de thèse
Dr. Hervé Le Borgne
Ingénieur de recherche, Commissariat à l’énergie atomique
et aux énergies alternatives (CEA) Co-directeur de thèse

N
N

T
:2

01
8S

A
C

LC
03

8

Acknowledgements

I would like to begin this thesis by warmly thanking all the people who have made the completion of

my thesis work possible, directly or indirectly. It was a wonderful adventure for me, both humanly

and scientifically. I would therefore first of all like to thank all the people who welcomed me to

their unit, notably François Gaspard, Patrick Sayd and Bertrand Delezoide. This three-year adventure

ended as usual with the writing of a manuscript and a defense. For this last I had the chance to have an

exceptional jury for which I would like to thank solemnly and with great respect and consideration the

members who gave their precious time to the evaluation of my work. I thank, in particular, Florent

Perronnin and Philippe-Henri Gosselin for having agreed to review my work and for the scientific

exchanges we had. I also thank Mathieu Cord for chairing my defense as well as Iasonas Kokkinos

and Pablo Piantanida for examining my work. The members of my jury also made this day particularly

pleasant for me.

From my point of view, during the execution of a thesis, the supervision team undeniably influences

the progress of the thesis as well as the way in which this experience is lived by the doctoral student.

For my part, I was fortunate to be supervised by people who were able to motivate me on a daily basis,

and who, with their respective experiences and knowledge in the field, played an important role in the

progress of my thesis. I would therefore like to thank my LVIC supervisor, Hervé Le Bogne, who has

been present for me on a daily basis and notably because I learned a lot from him, both scientifically

and humanly. My gratitude also goes, of course, to Céline Hudelot, my thesis director, who made

herself very available, both for the numerous progress meetings and for reviewing the thesis, despite

a very busy schedule. Far beyond the professional aspect, it is the human qualities of Hervé and

Céline that I would like to highlight by this sentence. My thanks also go to my former colleagues,

i

ACKNOWLEDGEMENTS

in particular the trainees, doctoral students, postdocs, engineers, researchers and secretaries of the

LVIC laboratory, for their professionalism, their conviviality and their communicative good humor

and for having thus formed an efficient and pleasant working environment. I would particularly like

to thank the members of the Multimedia team with whom I have had many enriching scientific and

technical exchanges. I would especially like to thank Adrian Popescu for his technical and scientific

help throughout my thesis.

I would now like to express more personal but nonetheless essential thanks. Indeed, the thesis is a

professional adventure which evolves in parallel with the doctoral student’s personal life and which,

therefore, generally has a significant impact on the latter. For me, the support I had throughout this

adventure from my family has been indispensable. More generally, I thank my parents, Chaı̈b and

Malika, for having accepted all my choices, for having always supported me, but also for having

placed at my disposal all the emotional and material resources necessary to allow me to advance in

life. I would also like to thank my brothers and sisters for their support during my studies and their

encouragement as well as for having learned me the sense of human values and encouraged me to

always give the best of myself whatever I do in life. Last but not least, my most loving thanks go to

Wiame, my wife, for the support and comfort she brings me, for the patience and understanding she

always shows me and even more, for the happiness I lived with her since our marriage.

ii

Contents

1 Introduction 7
1.1 Context . 7
1.2 Problematic & Goals . 8
1.3 Contributions . 9

2 State-of-The-Art 11
2.1 Image and Multimodal Representations . 12

2.1.1 Hand-Crafted Features . 12
2.1.2 Semantic-Features Learned with Explicit Supervision 13
2.1.3 CNN-Features with Learned with Implicit Supervision 15
2.1.4 Multimodal Features . 17
2.1.5 Transfer-Learning . 19

2.2 Universality of Representations . 20
2.2.1 Universality Definitions . 20
2.2.2 Universality of Semantic-Features . 23
2.2.3 Universality of CNN-Features . 24
2.2.4 Universality of Multimodal-Features . 25
2.2.5 Category-Names and Universality . 26

2.3 Interpretability . 27
2.3.1 Interpretability and Neural-Networks . 28
2.3.2 Extension-Based Detector-Concept Association 30
2.3.3 Intention-Based Detector-Concept Association 33

3 Improving Universality of Semantic Representations using Structured Sparsity 35
3.1 Constrained Local Semantic Features . 36

3.1.1 Introduction . 36
3.1.2 Proposed Method . 37

3.2 Diverse Concept-Level Semantic Features . 42
3.2.1 Introduction . 42
3.2.2 Proposed Method . 43
3.2.3 Experimental Results . 47
3.2.4 Settings . 48
3.2.5 In-Depth Analysis . 52

3.3 Conclusions . 60
3.3.1 Complementaries of the Two Contributions 60
3.3.2 Discussion About Semantic-Features . 61

4 Improving Universality using Discriminative-Problem Variation 63
4.1 Multi Discriminative-Problem Networks . 64

1

4.1.1 Introduction . 64
4.1.2 Proposed Method . 65

4.2 Evaluation of Universalizing Methods . 74
4.3 Experimental Results . 76

4.3.1 Learned Features Analysis . 76
4.3.2 Comparison to State-Of-The-Art Methods 81
4.3.3 In-Depth Analysis . 86

4.4 Conclusions . 92

5 Preserving Unimodal Semantics in Multimodal Representations 93
5.1 Non-Semantic Meta-Concepts Classification . 94

5.1.1 Introduction . 94
5.1.2 Proposed Method . 95

5.2 Experimental Results . 103
5.2.1 Settings . 104
5.2.2 Comparison to State-Of-The-Art Methods 107
5.2.3 In-Depth Analysis . 107

5.3 Conclusions . 108

6 Conclusions and Perspectives 110
6.1 Summary of Conclusions & Discussions . 110

6.1.1 Evaluation Protocol and Metrics for Universality 111
6.1.2 Semantically Reducing Noise on Large Semantic-Representations 111
6.1.3 More Features on CNN-Representations Without More Annotated Data . . . 112
6.1.4 Preserving Unimodal Semantics on Multimodal Representations 113

6.2 Directions for Further Research . 114
6.2.1 SPV by Splitting: From Specific to Finer Categories 114
6.2.2 Exploring FSFT in Theory and Practice . 114
6.2.3 Efficient Parametrization of the Model . 115
6.2.4 Longer Term Perspectives . 116

7 Publications 117
7.1 Articles in Peer-Reviewed Journals . 117

7.1.1 In Preparation or Revision . 117
7.2 International Peer-Reviewed Conferences . 117

7.2.1 In Preparation . 118
7.3 National Peer-Reviewed Conferences . 118
7.4 Patents . 119
7.5 Other Publications and Talks . 119

A Tasks and Datasets 120
A.1 Classification Task . 120
A.2 Cross-Modal Retrieval Task . 120
A.3 Training and Evaluation Datasets . 121

B Deep-Learning Background 126
B.1 Modeling One Neuron . 126

B.1.1 Commonly used Activation Functions . 128
B.2 Artificial Neural Networks . 129

2

B.2.1 Architecture of ANNs . 130
B.2.2 Feed-Forward Computation in ANNs . 131

B.3 Training Neural Networks . 132
B.3.1 Weights and Biases Initialization . 132
B.3.2 Loss Functions . 133
B.3.3 Learning the Weights and Biases . 135
B.3.4 Regularization Techniques . 138

B.4 Convolutional Neural Networks (CNNs) . 139
B.4.1 Spatial Convolution . 140
B.4.2 Spatial Pooling . 142
B.4.3 Overview of a CNN . 143

B.5 CNN Architectures . 145
B.5.1 Shallow CNN (LeNet) . 145
B.5.2 Deep CNN (AlexNet) . 146
B.5.3 Very Deep CNN (VGG) . 146
B.5.4 Residual CNN (ResNet) . 147
B.5.5 Other Architectures and Learning Schemes 147

C Implementation details 149
C.1 Data-Enlargement: A Way to Universality . 149

C.1.1 Fine-Tuning for Diversified Genericness . 150
C.2 More Implementation Details of MulDiP-Net . 152

D Résumé en Français 155

Bibliography 156

3

List of Figures

2.1 Different schemes of semantic features. 16
2.2 Different learned image representations. 17
2.3 Transfer-learning scheme. 20
2.4 Definition of a universal model, representation and task-solving. 21
2.5 Importance of the discriminative problem. 28
2.6 Learned filters in conv1. 29
2.7 Some feature-maps. 30
2.8 Top-k patch activations for some neurons (from [82]). 31
2.9 Top-k patch activations for some neurons (from [291]). 32
2.10 Top-k patch activations for some neurons (from [296]). 33
2.11 Top-k patch activations for some neurons (from [18, 295]). 34
2.12 More details of top-k patch activations for some neurons (from [18, 295]). 34

3.1 Illustration of the proposed CBS method. 38
3.2 Illustration of the four prototypical semantic representation profiles. 39
3.3 Illustration of the threshold computed by our CBS method. 41
3.4 Illustration of our Constrained Local Semantic Features (CLSF) method. 41
3.5 Illustration of concepts predicted by our D-CL representation. 44
3.6 Illustration of the different processing according the categorical-levels. 44
3.7 Illustration of the asymmetric process in our representation. 46
3.8 Illustration of our concept groups identification method. 47
3.9 Comparison of image retrieval results. 53

4.1 Universal representations. 64
4.2 Detailed illustration of our MulDiP-Net method. 67
4.3 Different Source Problem Variations (SPVs). 69
4.4 Illsutration of the proposed grouping-SPV . 70
4.5 Detailed illustration of the proposed MulDiP-Net method. 71
4.6 Proposed Focused Self Fine-Tunning (FSFT). 72
4.7 Proposed universality evaluation scheme. 75
4.8 Illustration of cross-networks correlations. 77
4.9 Top-k patches of similar convolutional filters. 78
4.10 Top-k patches of unique filters. 78
4.11 Visualization of unique filters learned by Net-S and Net-G. 80
4.12 Comparison of discriminability results. 81
4.13 Different baseline methods. 88
4.14 Different grouping-SPV results. 90

5.1 Proposed NAMRank approach . 95
5.2 Two-branch network proposed by Wang et al. [271] 96
5.3 Different training strategies of NAMRank . 98

4

5.4 Different kind of concepts (meta, non-semantic and namecon) 99
5.5 Method to build Namecons . 100
5.6 Method to compute visual and textual Namecons 101

A.1 General classification scheme . 121
A.2 Examples of samples from datasets used in this Thesis 124

B.1 Biological neuron . 127
B.2 Formal model of a neuron . 127
B.3 Activation functions . 129
B.4 Artificial Neural Network . 131
B.5 Loss-function principle . 134
B.6 Convolution of a filter applied on all spatial locations of an image 141
B.7 2D-convolution . 141
B.8 3D-convolution . 142
B.9 Spatial pooling applied at all spatial regions of an image 143
B.10 Flatten operation between convolutional and fully-connected layers 144
B.11 Overview of a CNN . 145
B.12 LeNet architecture [140] . 146

C.1 Categorical-levels (superordinate, basic and subordinate) 152
C.2 Difference between categorical and hierarchical-levels 153

5

List of Tables

3.1 Notations used in Chapter 3 . 36
3.2 Comparison with state-of-the-art methods (Semantic features context) 50
3.3 Comparison with baseline methods (Semantic features context) 51
3.4 Ablation study (Semantic features context) . 54
3.5 Evaluation of the impact of CNN features on Semantic features 55
3.6 Evaluation of the impact of region detectors on our CLSF method 56
3.7 Comparison of purely visual classifiers and our semantic ones 58
3.8 Evaluation of the contribution of different concept groups in our proposed D-CL method 59

4.1 Comparison of the different evaluation metrics according different desirable properties 73
4.2 Detailed descriptive of the datasets used in Chapter 4 82
4.3 Example of re-labeling of subordinate concepts to basic-level and superordinate ones 83
4.4 Comparison with state-of-the-art methods (CNN features context) 84
4.5 Comparison of methods with different universality evaluation metrics 86
4.6 Comparison with baseline methods (CNN features context) 89
4.7 Impact of categorical-levels considered in our MulDiP-Net method 91
4.8 Evaluation of MulDip-Net with different architectures and more data 91

5.1 Comparison with state-of-the art (Multimodal features context) 107
5.2 Ablation study (Multimodal features context) . 108

6.1 Performances of a network increases with the specificity of that learning-labels . . . 114

A.1 Detailed descriptive of the datasets used in this Thesis 125

C.1 Performances of a CNN according size of the training-dataset 150
C.2 Transferability according amount of categories retained by our diversification strategy

(FTDG) . 151
C.3 Comparison of FTDG with baseline on the source-problem 152

6

1

Introduction

1.1 Context

A rtificial Intelligence is a hot topic that is on everyone’s lips, in the news, in industry and even in
politics, because of the key societal, economic and cultural challenges it implies [75, 234]. We

even talk about an AI race that takes place on a national scale – e.g., the member of parliament Cedric
Villani was commissioned by the government to define an AI strategy for France –, continental – e.g.,
the European Commission is funding several projects on the AI topic –, or even international. It should
also be noted that because of the high stakes, AI research has been massively invested by the industry,
in particular the well-known GAFAM (i.e., Google, Amazon, Facebook, Apple, Microsoft). Industrial
strategies are sometimes established independently of governments, which makes the geopolitical
context of AI very complex. Consequently, there is a parallel desire to clarify the situation and
anticipate the possible consequences of AI on society. This is conducted through multiple debates
and initiatives around the ethical and legislative aspects of AI. The only point of agreement is that this
extremely promising field, that started half a century ago, is still in its infancy.

In general, the application interest of AI is to develop systems to facilitate the life of humans, for
example by relieving human beings of the most tedious tasks, such that they can focus on more
rewarding occupations. In this vein, major advances are expected with regard to autonomous ve-
hicle [32], industrial robots [28], household robots [29], decision support in the medical field [146],
augmented reality [238] (for industry [239], marketing [78] and localization [79]), image-based search
engine [81], and much more.

From a scientific perspective, there is no unanimous definition of AI, at this stage [201] and different
approaches coexist corresponding to different founding schools of thought (act rationally, like a hu-
man, think rationally, like a human) [218]. Among the sub-fields of AI, Machine Perception has been
impacted dramatically, in particular computer vision and speech processing, although one notes recent
significant gains in performances in Natural Language Processing as well, in particular for translation.
These progresses are strongly linked to those of Machine Learning these last thirty years, and in par-
ticular to the “third historical wave of artificial neural networks” [88], better known as deep-learning,
that emerged in the mid-2000’s. In conjunction with technological progresses that allowed to gather
larger amounts of data and offered an availability of computing power and storage to process that data,
the approaches turned progressively into solutions that, by design, derive from data. From the nineties,

7

these machine learning-based techniques mainly concern the decision level, while the features used
to represent the data were designed by hand. In computer vision, such notable low-level features
included wavelets [158], SIFT [151] and HOG [50] while famous higher level features built on these
were for example GIST [185], BOV [46] and Fisher Vectors [196]. At the mid-2000’s, a resurgence
of artificial networks known for a while (Multi-layer perceptron, CNN [140], LSTM [102]) allowed
to learn the representation level of the tasks to solve, leading to end-to-end systems with significantly
improved performances [20]. It resulted not only from the technological progresses cited previously
as well as important contributions of some researchers to make datasets available to the community
(ImageNet [53, 216], Places [297]), but also from theoretical advances [100] that allowed to learn
significantly deeper networks. This has enabled a significant breakthrough in the quality of systems
performance on many traditional tasks. These new performances have made the industrial use of AI
possible and are therefore the main motivation for all this enthusiasm around AI.

1.2 Problematic & Goals

A long standing goal of AI is to design machines, capable of perceiving the world, of interacting
with humans, and all this in an evolutionary way. In other words, we are trying to design human
counterparts. For example, we can even mention the AI named “Sophia” which was naturalized cit-
izen of the state of Saudi-Arabia. For this, we will sometimes draw inspirations from the human
learning system [8, 214, 118] on the three aspects mentioned above (perception, interaction and evo-
lution). Moreover, the learning technique we are interested in, namely deep neural networks, is said
bio-inspired [249, 258]. The work of this Thesis is based on the personal intuition that in humans, we
can explicit two different learning objectives:

• learning for the purpose of expertise, to perceive a specific environment with sometimes very
technical interactions (for example, a surgeon will have to acquire very technical knowledge);

• learning for a generic purpose, that is to say, for everyday use in our perception of the environ-
ment and our interactions (for example, learning to count objects).

We propose in this thesis to categorize the work around AI in a similar way. Indeed, the two learning
objectives in humans can be translated into the machine world by these two learning approaches:

• learn representations from few specific tasks. The aim is to then be able to carry out very
specific tasks (specialized in a certain field) with a very good level of performance. We are
talking here about specialization.

• learn representations from several general tasks. The aim is to perform as many tasks as possible
in different contexts. We are talking here about universality.

Note that, the common difficulty to both approaches, is to switch from low-level data (pixels in the
case of images) to the realization of high-level tasks, which are associated with human semantics (for
example, recognize cars in images). This is well known as the semantic-gap [230], resulting from
the need to match human semantics and low-level data, that should be considered when one design or
learn an adequate representations.

8

While the first approach of learning (specialization) was extensively explored by the deep-learning
community [20, 132, 228, 97, 2, 4, 63, 34, 98, 149, 271, 270, 224, 222, 289] (and much more),
only a few implicit attempts [4, 23, 121, 210, 130, 42, 44, 43, 235] were made towards universality.
Thus, in this Thesis, the goal is to explicitly address the problem of universality for deep neural
network learning methods and for visual and textual data. More precisely, to tackle the problem
of universality of a learning-based AI model (that consists in a representation extractor followed
by a task-solving elements), two aspects needs to be addressed (independently or jointly), namely,
universal representation and universal task-solving. In this Thesis, we are interested by the former
aspect. For universal representations, it is important to state that, a priori, no representation is purely
universal (i.e., able to handle data from all the possible kinds), but each representation has a certain
level of universality. Hence, our goal in this Thesis, is to start from a reference representation (with a
high-level of universality) and try to learn a more universal representation (i.e., with a higher level of
universality).

1.3 Contributions

In this Thesis, we address this topic of universality in two different forms: through the implemen-
tation of methods to improve universality (called universalizing methods in the following) of a deep
learning-based system; and through the design of a protocol to quantify its universality. Concerning
universalizing methods, the general approach applied in this Thesis consists in forcing the system to
learn a representation :

• containing individual detectors that are able to manage a maximum number of modalities, that
is different types of data (e.g., image, text, sound, etc.);

• containing individual detectors that are useful for a maximum of tasks (e.g., classification, de-
tection, segmentation, retrieval, etc.);

• containing detectors capable of managing a maximum number of visual domains (e.g., photo-
realistic images, cartoon images, commercial images, etc.);

• capable of handling as many semantic domains as possible, that is to say, more concepts (e.g.,
dog, cat, horse in the domain of animals, car, bicycle, truck in the domain of vehicles, etc.).

More specifically, in this Thesis we proposed the following three technical contributions:

The first contribution (Chapter 3) is placed within the framework of learning methods for the image
modality, the classification task and the visual domain of natural images. The goal is to increase the
semantic domain of the representation by increasing its number of detectors. For this contribution we
started from the semantic representation proposed by Ginsca et al. [81], which has (by construction)
the advantage over other representations of literature to be directly interpretable from a semantic and
evolutionary point-of-view. In particular, they proposed a representation composed of several tens of
thousand concepts. The resulting representation nevertheless carries lots of redundancy between the
detectors. They addressed this problem with a thresholding approach of a fixed number of concepts.
We have proposed a method to select the detectors adaptively, according to the amount of information
in the image. In a second version, we propose another method to select the detectors that relies on a

9

semantic knowledge that links the concepts with respect to their semantic relationships.

The second contribution (Chapter 4) is placed in the same framework as the previous one and with
the same objective, but addresses a different problem. Indeed, an increasing number of detectors
usually requires a significant growth in the number of annotated data to learn them. We have there-
fore proposed an approach that increases the number of detectors without increasing the amount of
annotated data. Our approach is composed of three modules: (i) automatically vary an initial set of
annotated data to create new datasets, (ii) learn new detectors on new data and (iii) merge the detectors
learned on the initial set and those learned on the variants of this set, to form the final representation.

The third contribution (Chapter 5) is placed in a framework of learning methods for the image and
text modality, the cross-modal retrieval task (for a query image, find the associated texts and inversely,
for a text query, find the most associated images), the visual domain of natural images and the general
semantic domain (common vocabulary). The objective is to increase the universality of the repre-
sentation through the learning of detectors that manages several modalities (image and text). The
difficulty is to find a common space of representation between these two modalities. In the literature
this is mainly done by mapping the detectors of the multiple unimodal representations (text or image).
More precisely, this mapping is traditionally learned by solving an intermediate task of bi-directional
ranking. The problem is that this procedure encourages the learning of detectors that are too spe-
cific to each instance and therefore less suited to universality. To solve this problem, we proposed
to perform an additional classification subtask based on classes obtained automatically by clustering
without adding new annotations.

Regarding the quantification of universality (in Chapter 4), we proposed to evaluate universalizing
methods in the context of Transfer-learning (TL). This last consists in learning a representation on a
task A (source-task), then reusing this representation to describe the data of a task B (target-task).
This is useful, for example, if one is interested in a target-task that contains too few annotated data.
We notice that the lack of data means that a network learned directly from the data associated with this
target-task will be less efficient (if even possible without overfitting!) than if we first learn this network
on a task for which much more annotated data are available, even if these last are very different from
those of the task of interest [1, 11, 34, 209, 186, 187]. This can thus be seen as learning universal
representations, since it can be reused in different problems of interest. Hence, this technical context
naturally meets the principle of universality, at the core of this Thesis, and we therefore evaluated
our contributions in the context of TL. To get even closer to the principle of universality, the methods
were learned on one source-task and evaluated on several target-tasks. This also led us to propose a
new quantitative evaluation criterion for universalizing methods.

The outline of the Thesis is organized as follow: in Chapter 2 we extensively discuss the state-of-
the-art with regard to our goal of learning universal representations. In Chapters 3, 4 and 5, we
respectively describe the first, second and third contributions. The metric proposed to evaluate uni-
versality is described in 4. Chapter 6 gives a general discussion on the salient results of the Thesis
and draws some perspective to the work.

10

2

State-of-The-Art

Contents
2.1 Image and Multimodal Representations . 12

2.1.1 Hand-Crafted Features . 12

2.1.2 Semantic-Features Learned with Explicit Supervision 13

2.1.3 CNN-Features with Learned with Implicit Supervision 15

2.1.4 Multimodal Features . 17

2.1.5 Transfer-Learning . 19

2.2 Universality of Representations . 20

2.2.1 Universality Definitions . 20

2.2.2 Universality of Semantic-Features . 23

2.2.3 Universality of CNN-Features . 24

2.2.4 Universality of Multimodal-Features . 25

2.2.5 Category-Names and Universality . 26

2.3 Interpretability . 27

2.3.1 Interpretability and Neural-Networks . 28

2.3.2 Extension-Based Detector-Concept Association 30

2.3.3 Intention-Based Detector-Concept Association 33

W e start by recording the most seminal works related to the field of image and multimodal rep-
resentations (Section 2.1). Then, we describe and discuss the few attempts made in the litera-

ture towards universality (Section 2.2). Finally, since universality is closely related to interpretability,
we discuss this aspect in the context of neural-networks (Section 2.3).

11

2.1 Image and Multimodal Representations

As mentioned in the introduction, learning universal data representations is fundamental for the con-
struction of a general AI. Thus, in this section, we report and discuss the works in the literature
that proposed to learn representations from data. We make a special emphasis on learned repre-
sentations [20] and more precisely, representations obtained from pre-trained Convolutional Neural
Networks (named “CNN-Features” in the following) and pre-trained bank of semantic classifiers on
top of CNN-features (named “Semantic-Features” in the following). Learned representations have
shown to be among the state-of-the-art representations used for image classification since their intro-
duction [114, 291, 11, 209, 81, 115, 252, 22, 21, 186]. They also proved to be rather generic and
were applied in various other vision and multimodal tasks, using a large variety of categories and
domains [186, 209, 11, 291]. Due to the success of these approaches and the sheer amount of papers
describing new features, modifications and improvements, we do not aim at being exhaustive but fo-
cus on the most relevant works with regard to the rest of the manuscript. Specifically, we first discuss
(in Section 2.1.1) hand-crafted (i.e., not learned) representations, then semantic-representations (in
Section 2.1.2) and finally learned CNN-representations (in Section 2.1.3). An overview illustration
of learned representations is given in Figure 2.2. Since learned representations are generally used in
a Transfer-Learning scheme, we describe it in Section 2.1.5.

2.1.1 Hand-Crafted Features

Up to the early 2000’s, images were usually represented by a vector of global features reflecting the
colors, textures or shapes present in the image [230]. A higher level of abstraction was provided
through the popular Bag-of-Visual-Words (BoVW) representation [229, 46], that consists in extract-
ing a set of local patch descriptors, encoding them into a high dimensional vector and then pooling
them into an image-level signature. It was inspired by the traditional Bag-of-Words (BoW) method
proposed by [221] to represent textual data. In practice, the local patches were usually described by
local features such as the SIFT descriptors [151]. The usual pipeline was composed of the following
three main steps:

Codebook learning. From the images in a training dataset, local features are extracted, then one
learns a codebook from this collection, using for instance a clustering algorithm such as k-means.
Each cluster is then represented by a unique visual word (or codeword), that could be its center of
gravity (or its closest local feature in the training set).

Coding. For each image to describe, local features extracted from this image are mapped to vi-
sual words into compact descriptors. In the original BoVW model, hard-coding [46] maps a local
feature to its nearest visual word. However, this coding often introduces large quantization errors.
[259] proposed the soft-coding method that assigns a local feature to all codewords, according to
the similarity between this local feature and each codeword. While reducing the quantization errors,
coding on the entire codebook may not be optimal. Wang et al. [269] proposed an efficient locality
constrained linear coding (LLC) that maps each local feature to its L-nearest codewords. This linear
local approximation of the manifold supporting the codewords yields to good performances for image
classification [269, 147].

Pooling. In the pooling step, the local descriptors are aggregated into a unique image-level repre-
sentation using a pooling function. The latter can be the average, the sum [135] or the maximum

12

function [282] of all local descriptors (component by component) of an image. An extension named
BossaNova [9] was proposed to preserve important information about the distribution of the local de-
scriptors around each codeword, by taking into account the distribution of the distance between local
descriptors and the codeword.

Many refinement have been proposed to improve this core scheme. One of the most successful,
named spatial pyramid matching (SPM) [135], consists in computing a BoVW in several subparts
of the image then (weighting and) concatenating the resulting BoVWs into a unique representative
vector. Such a scheme allows to take into account the distribution of the local feature at a global scale
of the image. Other works focused on the local spatial consistency of the local features to improve
the coding [225].

The Fisher Vector (FV) [196] extends the BoVW by going beyond counting, i.e 0-order statistics, to
encode second order statistics. The FV representation is computed by characterizing local descriptors
by their corresponding deviations from an “universal” generative Gaussian Mixture Model (GMM)
of the log-likelihood of the problem. The GMM model can thus be seen as a “probabilistic visual
vocabulary”. The deviation is measured by computing the gradient of the sample log-likelihood
with respect to the model parameters. Originally designed for classification, [197] further greatly
improved the retrieval performance of FV by applying a set of normalization strategies e.g., L2 or
power normalization to FV and combining this representation with the spatial pyramids.

Jegou et al. [113] proposed a simple efficient way of aggregating local image descriptors into a vector
of limited dimension for large-scale applications, called Vector of Locally Aggregated Descriptors
(VLAD). VLAD is often presented as a simplified version of the Fisher Vector representation, that
uses a (quite small) codebook in place of the GMM of the log-likelihood to represent the “universal
vocabulary”, and replaces the gradient by a simple point-wise difference of the local vector and the
codewords. VLAD has been further extended by aggregating tensor products of local descriptors,
leading to the Vector of Locally Aggregated Tensors (VLAT) [198, 199] representation, exhibiting
good performances both in image retrieval and classification.

2.1.2 Semantic-Features Learned with Explicit Supervision

A drawback of hand-crafted features is their lack of semantics. This has been alleviated in the seman-
tic representations that were introduced in the 2000’s by Natsev et al. [178] and extensively re-used
and extended by [208, 266, 115, 252, 65, 62, 81] for different applications like image matching,
retrieval or classification. Here, we thus first highlight three aspects that are important to describe
semantic-features, namely semantic concept detectors; the semantic-level of the concept detectors;
and the explicit supervision for learning the detectors. Then, we will formally describe semantic
representations and detail the implementation used in this thesis as well as the reasons of this choice.

In this thesis, we define semantic representations as a representation learned from data and for which
each dimension corresponds to the output of semantic concept detectors that can be associated to a
humanly understandable word or n-gram (e.g., car, Eiffel-tower, ceramics collectibles cooking, etc.).
In the literature, three image representation levels are usually considered, low, mid and high-level,
depending on the “quantity of semantics” the representation carries. However, such level has no
formal or strict definition and can just be defined relatively. In a nutshell, the low-level corresponds
to the information directly extracted from the data of interest, close from a signal, for instance the
pixels of an image [111, 119, 134, 226]. At the opposite, the high level should match the (human)

13

user need or understanding, reflecting the semantic concepts that are expressed through language. Let
us nevertheless note that the information reflected by low-level features can also be named, “color”,
“shape” and “texture” being the most usual words used for this. The difference seems thus to lie in the
complexity of that is named, and the possibility of describing a high-level semantic as a compound
concept while it is harder for a low-level one. From this remark, the mid-level representation of
a concept reflects such a part of a compound concept, that can be named as the two other levels,
such as a part of an object. It worth mentioning that in a CNN, such a transition from low-level
representation to high-level ones can be directly observed through the layers when the network maps
pixels (as inputs) to semantic concepts (learning classes) [291]. Theoretically, each semantic-detector
of a semantic representation can be at any semantic-level and in practice all the detectors of the
representation are at the same level. Notice that, if a detector is at a particular semantic-level, it
has necessarily detected lower-level entities [13]. For instance, if a detector fires on a person (high-
level), it has necessarily detected lower level entities such as leg, head, hand, etc. Regarding the
semantic terminology, it comes from their semantic detectors. Finally, for the last aspect (i.e., explicit
supervised learning of detectors), it corresponds to the way we learn the individual detectors of a
semantic representation. Indeed, each dimension of the semantic representation is learned to directly
classify data of a certain semantic concept. More precisely, each detector learns to fire on instances
of a known semantic concept and for which positive and negative instances of that concept have been
given to learn the detector. In that sense, the detectors are learned with explicit supervision.

Formally, a semantic-representation can be defined as a set of pre-trained semantic detectors. Let
us consider an image I and a global image representation x ∈ Rn (i.e., representation of the data at
a lower semantic-level than the desired one, that of the concept detector) extracted from I . A raw
semantic-feature representation is a C-dimensional vector ζraw(x) = [ςraw1 (x), . . . , ςrawC (x)] where
each dimension ςrawc (x) is the output (i.e., probability of presence) of a pre-trained classifier of the
concept c. Each classifier was learned to recognize a semantic concept c of a certain semantic-level.
Each of these classifiers were trained using global representations x of the images associated to the
concept as positive samples and global representations of the images associated to other concepts as
negative ones. The complete set of C classifiers can be trained jointly or independently. In the former
case, for example, the complete set of classifiers can be trained by applying a softmax function on
top of their prediction for each training image, which results to output a real probability of presence
of each class among the complete set of classes 1. In the latter case, each classifier is trained in-
dependently, thus the classifiers are binary and are learned with SVMs or logistic regression. This
latter outputs, for a training image and a class c, the probability of presence (score that is generally
squeezed between 0 and 1 through a sigmoid function) of that class on the image, regardless the
probability of presence of other concepts. The main advantage the independent training of the set of
classifiers is that it allows to extend easily the set of classifiers. This property refers to the life-long
learning (LLL) scheme [4, 206] recently introduced in response to the catastrophic forgetting phe-
nomenon [76] observed in transfer-learning, which is highly related to the problem of universality of
representations (as expressed in the introduction). Another important point is that the representation
of the image x used as input of the classifiers can be pre-learned and fixed or trainable jointly in a
neural network. The latter case is theoretically better than the former, since it learns a representation
x that is designed to better classify the C classes and thus learns a better semantic representation.
However, in a LLL scheme and using neural networks, it may lead to this well-known catastrophic
forgetting problem [76]. Indeed, by being learned on new categories, the representation x will get
better at representing images of the last learned categories and get worse in the previously learned
ones. For these reasons, we focus on semantic features that are obtained on top of fixed (pre-trained)

1This case corresponds to the last layer of a CNN.

14

representations. An illustration of the different schemes is given in Figure 2.1. In Figure 2.2, we
illustrate semantic-features extracted from a CNN and highlight its differences compared to other
CNN-features (that will be described in the next section).

Most recent and effective works on semantic features [115, 252, 21] used LP-β kernel combiner [80]
on many features to design the global image representation and they learned non-linear classifiers
for each concept, which induces an important computational complexity. More recently, [81] pro-
posed a lighter computationally scheme, based on linear classifiers. To reach similar or better per-
formances they relied on more powerful global representations (i.e., mid-level CNN features) on the
one hand, and linear classifiers on the other hand. Moreover, they mostly increased significantly the
number C of concept-detectors considered. Since [81] is one of the most efficient semantic-features
from the literature and because of the two reasons mentioned in the previous paragraph, we describe
their method more precisely. More precisely, in [81], the semantic-representation is built using Im-
ageNet [53] concepts that have at least 100 associated images, resulting in 17, 462 concept-detectors
(thus C = 17, 462). Note that the ImageNet concepts used are at the highest semantic-level, (i.e.,
objects or scenes) thus, the semantic-representation will only contain high-level semantic detectors.
Note also that, in this Thesis, we only considered the high-level detectors to be comparable to state-
of-the-art methods, but low or mid-level detectors could be used in the representation [191, 91] –
generally called attributes (e.g., is it furry?, does it have a tail?, can it breathe underwater?, is it
carnivorous?, is it slow moving?, etc.) and used for zero-shot learning [191, 30] –, as long as anno-
tated data at that level is available. To learn the detectors, Ginsca et al [81] use images representing
the concept as positive samples and images from a diversified class for negative ones. This last con-
tains images of ImageNet-concepts not considered to build the semantic representation. They used
a ratio of 1/100 between positive and negative samples to learn the detectors, this ratio having been
determined empirically as a good trade-off between the resulting performance and the computational
complexity. Each concept-detector ςrawc (.) is then a L2-regularized linear Support Vector Machine
(SVM). Finally, each output obtained from the pre-trained classifiers (computed on new images) is
normalized by a sigmoid function (hence, 0 < ςrawc (x) < 1). In their work, as well as in [112],
they showed that the performances in retrieval and in video classification are significantly improved
when the raw semantic-feature vector is sparsified for new images. To do so, they force to zero most
of the dimensions and retain only a small number d of the largest ones. Formally, the semantic-
representation with a “fixed” level d of sparsification (fixed to d for all images) is expressed as:

ςdc (x) =

{
ςrawc (x) if ςrawc (x) ∈ Hd(ζ

raw(x))

0 otherwise,
(2.1)

where Hd(A) is a subset of size d containing the largest values of the set A ⊂ R. Once the semantic
feature vector has been sparsified with a fixed level it is noted ζd(x) = [ςd1 (x), . . . , ςdC(x)]. This
approach has been originally introduced as a “fast encoding” method to force Bag-of-Visual-Word
to be sparse [269]. Moreover, it results into a much smaller memory footprint since (assuming score
and index are both coded on 4 bytes) the raw semantic-feature ζraw occupies 4 × C bytes while the
sparsified one ζd occupies only 8× d bytes (with d� C).

2.1.3 CNN-Features with Learned with Implicit Supervision

An alternative to the use of hand-crafted visual features is to learn the representation directly from
the pixels. Early works in this direction [256, 175, 140, 182, 137, 138, 139, 84] were limited to few

15

Figure 2.1: Illustration of the different schemes of semantic features. Given an input image (a),
we first get an image representation (c) through a features-extractor (b) then we predict the output
of a pre-trained bank of classifiers. We illustrate the jointly trained classifiers on top (d) and the
independent ones at bottom (e). Best view in color.

range of domains, in particular due to the lack of available data. Following theoretical advances [100]
as well as the availability of massive amount of multimedia content and computing capabilities, the
CNNs allowed to provide state-of-the-art representations for many visual and multimodal tasks.

One of the most important reasons behind the success of CNNs is their ability to learn rich discrim-
inating features (convolutional and unit-filters). The common scenario to obtain such performing
features is to solve a discriminative problem, that consists to separate categories from one another.
By solving this discriminative problem, representations are learned at all the layers of the network,
and the set of features in one particular layer corresponds to the so called CNN-features. However, it
is relatively rare in practice to train an entire CNN from scratch because too few data are available to
estimate the millions of parameters for most practical vision problems. Instead, it is more common
to use a CNN learn on the ILSVRC dataset (1.2 million images labeled among 1, 000 categories) and
use it as feature extractor for the problem of interest, in accordance with the transfer learning scheme
as detailed in Section 2.1.5.

A trained CNN truncated at any of its internal layer can thus be considered as a pre-trained detector
that, when applied to images, provides CNN-features. Regarding the fact that the internal layers of
CNN are learned in an implicit supervised manner, it is due to the fact that each data is annotated, but
in contrast to the neurons of the last layers, those of the internal are not enforced to fire on a certain
category. Simply said, each neuron of the internal layers contribute to the task of recognizing the
global set of categories, but it is completely free on the pattern (and thus the category) it will learn to
fire on. In that sense, it is learned with implicit supervision.

Formally, let us consider an image Iτi of a target-task Tτ , and a pre-trained network model NΘ, with
parameters Θ. A D-dimensional representation Ri,τ=ΦK(Iτi) = {φK1 (Iτi), · · · , φKD(Iτi)} is extracted
from image Iτi with the CNN modelNΘ truncated at layer K. Here, each φ can be seen as a mid-level
detector (i.e., detect object-parts, like faces, hands, wheels, etc.) if K is high, and as a low-level
detector (that detects edges, color-blobs or even textures) if it is is low. Each φ is followed by a
ReLU activation-function thus it outputs a zero-value if its value is negative and the value itself if it is
positive. While the ReLU was not introduced to this purpose, its behavior aims to result in a sparsified
representation, which is quite similar to the sparsification process in the context of semantic features.
Figure 2.2 illustrates the different representations that can be extracted from the layers of CNNs and
highlights their differences.

Recently, Zeiler et Fergus [291] showed that the abstraction of features increases with the depth in the
CNN and Yosinski and its colleagues [285] put in evidence that early layers of CNNs contain generic

16

Figure 2.2: Illustration of the different learnable image representations that can be extracted from an
image (raw data) through a pre-trained CNN. We can extract representations at different semantic-
levels, namely very low-level (a), low-level (b), mid-level (c) and high-level (d). More precisely, in
the bottom, we illustrated a scale that gives the semantic-level of detectors of each representation, and
we displayed in red squares an example of classifiers that are contained in the representations of dif-
ferent levels (i.e., each square shows four-patches that highly activate the actual classifier as depicted
in Section 2.3.2). We also highlighted the fact that, the last layer of the CNN (that contains high-level
detectors) also contains a semantic connotation, which thus outputs high-level semantic representa-
tion. Note also that, between very low and high-level features, there is a continuum, meaning that no
strict semantic-level could be identified, but here we only considered those commonly identified in
the literature. Best view in color.

features while last layers contain specific features, resulting in two important good practices when
practicing transfer-learning, that relate to the “distance” between the target-task and the source-task
(ILSVRC in most cases). If the target-task is far from the source-task (i.e., images and/or labels of
the target task are very different compared to those of the source-task), we should use features from
the early layers of a pre-trained CNN and inversely, if the target-task is close to the source one, we
should use last layers. The exact definition of the “distance” between two datasets is nevertheless an
open question and, to the best of our knowledge, no method allows to determine it a priori. Thus, the
choice of the layers to use to represent the target-data usually results from the a posteriori measure of
performance on a validation set.

2.1.4 Multimodal Features

Either semantic features and CNN-features aim at mapping pixels to semantic concepts through var-
ious process. Another approach to this purpose is to extract features from each of these modalities
then to learn a common space to both of them, in which they are directly comparable.

Early works on joint representation of textual and visual representation relied on topic models, in
particular probabilistic latent semantic analysis and latent Dirichlet allocation [25, 171, 203, 207, 74]
or cross representation of bag of words and bag of visual words [298]. Another class of approaches
was proposed by Hardoon, who relied on the Canonical Correlation Analysis (CCA) and its kernelized

17

version (KCCA) to maximize the correlation between the projections of both modalities [95]. In
the following, several types of extension [86, 85, 45, 128, 253, 254, 255] have been proposed to
this seminal work. In particular, Gong et al. [85] proposed to add to the commonly used CCA, a
third view that reflects the “semantic classes” derived from the ground-truth or the keywords used to
download the images. They also proposed to derive this third view from unsupervised clustering of
the tags to avoid the use of ground truth. In the vein of reflecting semantics, [45] proposed to build
semantic features into the common space, that is to say to create a signature where each dimension is
a given semantic concept that is estimated by a learned binary classifier [252]. Contrary to ours, these
concepts are neither meta nor abstract. However, one could image to apply the approach of [21] to
get meta-concepts in the common space. Still, a major difference with our work is that each concept
is obtained by supervised classification, while in our case, the abstract concepts deeply result from
an unsupervised approach. Back to CCA, extensions to a deep learning framework have also been
proposed [5, 279]. However, as pointed out in [154], a major drawback of the CCA approach it
non-scalability to large amounts of data.

An alternative to CCA is to learn a joint embedding space using SGD with a ranking loss. Weston et
al. [274] and Frome et al. [77] were one of the first attempt to learn linear mapping functions from
visual and textual features to the common multimodal space, with a single-directional ranking loss
as objective function. More precisely, the single-directional ranking objective consists in reconciling,
for each image, its associated caption, and driving away all non-associated captions. Compared to the
CCA approach, this deep learning approach and especially the methods based on ranking loss easily
scale to large amounts of data with stochastic optimization in training. As a more powerful objective
function, a few other works have proposed a bi-directional ranking loss that, in addition to ensuring
that correct captions for each training image get ranked above incorrect ones, also ensures that for
each sentence, the image described by that sentence gets ranked above images described by other
sentences [123, 122, 127, 231].

Another very active line of research to learn multimodal representation is to rely on deep learning and
for instance, techniques such as deep Boltzmann machines [233], autoencoders [179], LSTMs [56],
recurrent neural networks [161, 261] and simple MLPs [40, 58, 67, 271, 270]. Methods based on
deep neural networks learn nonlinear mapping functions and thus are able, in principle, to provide
greater representational power than methods based on linear projections [77, 274, 86, 128]. From all
the approaches (i.e., CCA, linear mappings and non-linear mappings), the methods that provide the
best results are those based on non-linear mappings through simple MLPs. Within these methods,
we can identify three groups: (i) asymmetrical methods that consist to perform the mapping in one
direction only (i.e., from image features to text features [77, 33, 246] or from text features to visual
ones [40, 58]); (ii) symmetrical methods that bi-directionally maps the features of one modality to
those of the other modality [123, 122, 127, 231]; and (iii) symmetrical methods that preserves some
semantics into the learned multimodal representation [271, 270, 67, 222]. Note that the first group of
methods uses a simple MSE loss to learn the mapping functions, while the second group relies on a
bi-directional ranking loss, and in the last more recent works, a multi-task objective is considered. In
that case, the mapping is learned to solve both a bi-directional ranking loss (or MSE loss for [67]) and
an additional loss that enforces the preservation of some semantics in multimodal representations. In
particular, for the additional loss, Wang et al. [271, 270] uses the multiple textual captions associated
to each image (through a ranking loss), Eisenschtat et al. [67] enforces a certain cycle-consistency, that
is to say, from multimodal features, the initial unimodal should be correctly reconstructed (through
a MSE loss), and Salvador et al. [222, 236] uses semantic categories (through a classification with
softmax loss).

18

2.1.5 Transfer-Learning

Most learned representations (including Semantic, CNN and Multimodal) lies in a transfer learning
scheme. While the concept of transfer-learning [16, 284, 133, 192] was introduced in the context of
machine learning in the early 2000’s, we mainly focus here on the approaches in the context of deep-
learning that were introduced in 2014, by many works independently [1, 11, 114, 34, 57, 186, 187,
209, 291, 202]. In addition, they showed that CNNs work very well on several target datasets, even
if they have not been trained on the same images and/or categories than those of the source-dataset.
This latter makes them quite “universal”, as discussed in details in section 2.2.3.

Transfer-Learning roughly consist in taking a machine-learning algorithm and make predictions on
the future data using a statistical model that was trained on previously collected labeled or unlabeled
training data. A more formal definition is given below.

Definition 1
Given a source domain DS and learning task TS , a target domain DT and learning task TT , transfer-
learning aims to help improve the learning of a target-representation extractor ΦT as well as a target-
predictive function fT in DT using the knowledge acquired on a source representation-extractor ΦS

learned using a source-predictive function fS in DS and TS , where DS 6=DT , or TS 6=TT .

In a context of deep-learning, the idea is to first use a large annotated auxiliary source-task 2 (e.g., Im-
ageNet classification), to learn the first layers of a neural-network (the source-representation extractor
ΦS) as well as the last layer of the network (the source-predictive function fS), which is specific to the
source-task and not directly reusable for any other task, thus removed. The first layers of the network
can then be used on a small target-task, directly, as a representation-extractor (i.e., ΦT = ΦT), instead
of training extractor directly on the target domain. This latter provides a representation for each data
of the target-task, that is used to train the target-predictive function fT – could be any predictor (SVM,
perceptron, detector, etc.). Two scenarios of transfer-learning can be encountered in the context of
deep learning. Indeed, we can either train only the target predictive-function fT on top of the fixed
pre-trained representation-extractor (this is the standard transfer) or jointly train the target and source
predictive-functions (fS and fT), which corresponds to fine-tuning. In both cases, only the data of the
target-task is available and used to train the predictive-functions. In practice, the classical procedure is
to remove the last layer of the pre-trained network, which was specific to the initial task, which is thus
not reusable. Next, we append a new predictor specific to the target-task (e.g., randomly initialized
layer if perceptron) with the desired number of output units for the target task. Finally, the weights
of all the network (if fine-tuning) or only the predictor (if standard transfer) are learned with classical
learning strategies on the target loss function. Generally, the learning-strategy is slightly modified
since the weights are updated with a smaller learning-rate, to avoid catastrophic forgetting [285]. An
illustration of the transfer-learning scheme is given in Fig. 2.3.

In a transfer-learning scheme, since neural networks need many annotated data to be trained without
overfitting, the source-task is generally much larger than the target-task. In practice, it is relatively rare
to have a dataset of sufficient size to train the millions of parameters of a neural network for a given
problem of interest. Obtaining such annotated data is a costly process, not only to collect data but also
to annotate them, in particular when such annotation require a particular expertise (medical domain
for example, but also for advanced manufacturing, aerial images, astronomy...). Of course, if many

2For simplicity, we will use the term task to state for both a dataset and a task.

19

Figure 2.3: Illustration of the transfer-learning scheme. Gray blocks on top, correspond to the element
learned on the source-domain, while blue ones correspond to elements learned on the target-domain.
On the target-task, the source features-extractor ΦS as well as the source predictive function fS are
learned On the source-domain. On the target-task, only the data of the target-domain are available
thus the source-predictor in not reusable and is thus discarded (colored in white), then only the trained
source features-extractor ΦS is used and a target-predictor fT is independently (standard transfer) of
jointly (fine-tuning) trained on top of it. Best view in color.

annotated data are available for the task of interest, there is no need to work in a transfer-learning
scheme, and the network should be trained directly on the task of interest.

2.2 Universality of Representations

As mentioned in the introduction, the main goal of this Thesis is to increase the universality of repre-
sentations. Hence, here, we define universality concretely as well as some concepts related to it (Sec-
tion 2.2.1); then we give our point-of-view on the main directions to increase universality in learned
representations – semantic-representations (Section 2.2.2), CNN-representation (Section 2.2.3) and
multimodal-representations (Section 2.2.4) – and present the few attempts in the literature that indi-
rectly went towards that goal. Finally, since the universality of representations is highly related to the
categories used to train them, we discuss the importance of the name of categories in Section 2.2.5.

2.2.1 Universality Definitions

In this section we especially define some concepts necessary to universality. In particular, we start
by defining “universal representations”, then we provide the main criteria that should be respected by
a method to be qualified as an “universalizing method” (i.e., a method that increases universality of
data representations) and finally we define its relation to semantics.

Definition 1. A universal model is a model that is able to represent in a high-level, data from different
nature (i.e., different visual domains, different semantic domains and different modalities), while at
the same time, being able to solve different tasks (e.g., object recognition, detection, parts segmen-

20

Figure 2.4: Illustration of the definition of a universal model, representation and task-solving.

tations, etc.). The first aspect is what we call universal representations, while the second is called
universal task-solving.

An illustration of the definitions of universal model, representation and task-solving is given in Fig-
ure 2.4. It should be noted that, reaching pure universality seems unfeasible in practice, at least today.
Indeed, we do not have all the data required, neither algorithms that could handle such huge amount
of data and we can even not list all the possible tasks of the universe.

As mentioned in the introduction, in this Thesis, we are especially interested by universal representa-
tions. And, a priori, no representation is purely universal (because we are not able to highly represent
data of all modalities, visual domains and semantic domains). But learned representations contain a
certain level of universality, because they have been widely used to solve many tasks, and obtained
satisfying results. Thus as stated in the introduction our goal, is: starting from a reference represen-
tation with a certain level of universality (for which we know its complete learning process, that is,
the training-dataset, the network-architecture, the learning-strategy, etc.), learn representations with a
higher level of universality. Examples of such reference representations are thus penultimate layers of
the well-know deep neural architectures (AlexNet [132], VGG [228], Inception [237], etc.) trained on
large datasets as ImageNet [53] or Places [297] and which have been widely used by the community
with success on many diverse tasks in the context of transfer-learning. This latter, leads us to the
concept of universalizing methods that we will define after the next remark. An important aspect of
our goal lies in the fact that universality is not quantifiable and thus, it can only be evaluated through
human judgment. This point is problematic, because relying on human judgment to evaluate univer-
sality is clearly not scalable. But note that our goal considers a reference representation, and tries
to increase its universality, thus the only human judgment is applied on the reference representation,
and once this last is obtained, we can automatically evaluate the increase of universality (this point is
more discussed in Section 4.2).

In the literature, several works tackle the problem of increasing the universality of representations,
defining it according to two aspects: (1) the resulting representation obtains better performances on a
set of target-tasks than the reference signature; (2) the resulting representation has more interpretable
dimensions than the reference representation. Each of these two aspects worth to be precisely defined,
as proposed in the definitions below.

Definition 2. A representation RA is more universal than a representation RB when its aggregated
performances over a set of T target-tasks {τ1, . . . , τT} are superior.

21

Regarding the aggregation of performances, a detailed discussion is provided in Section 4.2. In [295],
Zhou et al. consider every individual convolutional unit of a CNN and evaluate their contribution to
semantically segment an image according to each element of a set of concepts. This approach can
be extended to consider the contribution of an encoding unit on a subset of concepts by defining a
function R that associates an encoding unit φi to a D-dimensional binary vector that is 1 at dimension
j if and only if the j − th concept activates the encoding unit.

Definition 3. Let us consider two representation-extractors ΦA and ΦB, with each of them containing
a set of n detectors Φ = {φA/Bi }i=1...n. The features-extractor ΦA is more semantic than ΦB if∑D

j=1

∑n
i=1Rj(φ

A
i) >

∑D
j=1

∑n
i=1Rj(φ

B
i).

As expressed in the introduction of this Thesis, our point-of-view for the ways to build universalizing
methods is that it exists three main directions: learning a representation-extractor that, compared to
the reference representation, results into a representation that (i) contains more discriminative detec-
tors; (ii) contains individual detectors of better quality; and (iii) contains more semantic detectors,
i.e., detectors that can be associated with a semantic interpretation or meaning (as in definition 4).

More precisely, for the first point, if one increases the amount of detectors, it will result in a represen-
tation that is able to detect more concepts, and thus, to cover a larger range of recognizable concepts.
In that sense, going toward the first direction increases the global scope of action of the represen-
tation, and in consequence increases the amount of potential users, which by definition, increases
universality of the whole representation. Regarding the second direction, it consists in increasing the
discriminability and robustness of each detector of the representation. This aims at locally increasing
the scope of action of the representation (at the detector level), since it aims at firing on more different
instances of a concept (i.e., detects more instances of the concept through the recognition of more
point-of-views, illumination settings, modalities, etc. if the concept is semantic, and other kind of un-
known configuration if the concept is not semantic). This latter indirectly increases the universality of
the whole representation. For instance, let us consider a representation that contains one car-detector
that highly activates only when it sees wheels and consider another case when the car-detector fires
when it sees wheels and car-windows. Hence, the second car-detector will be much more discrimi-
native (in detecting cars) than the first one because of its ability to detect a new occlusion view (e.g.,
when wheels can not be detected but windows can). Indeed, while the first car-detector was only
successfully usable by the users who always see the car-wheels, it is now also successfully usable by
those who may only see the car-windows and thus, in that sense, this way of improvement indirectly
increases the universality of the representation. Finally, regarding the last point, it aims at alleviat-
ing the lack of interpretability of the representations learned with the deep-learning approach (a well
known issue for representation obtained with internal layers of deep neural networks [291, 286]). We
believe that adding semantics to these learned representations, in line with [18, 87]) is a good direction
to improve the universality of obtained representation, in comparison with a reference one. Indeed,
the resulting representation, as more interpretable, will be potentially more usable in a wider variety
of applications, especially those that need interpretable decisions (which will much more the case
with the introduction of the General Data Protection Regulation (GDRP)3). Note that, the first two di-
rections aim at increasing universality through an increase of the performance of the representation on
a set of target-tasks, while the last one aims to increase its Human interpretability. In this Thesis, we
studied universalizing methods for three kind of representations, namely, semantic-features learned

3The European Parliament introduces, the GDRP, a series of measures laying down the legal framework for the pro-
tection of personal data within the European Union. It is about strengthening the rights of EU citizens and giving them
more control over their personal data. In particular, users will have more information about how their data are processed.
Information which must also be formulated in a clear and precise manner in the spirit of transparency.

22

with explicit supervision (described in Section 2.1.2); CNN-Features learned with implicit supervision
(described in Sec. 2.1.3) and Multimodal-features learned on top of unimodal CNN-representations
(described in Section 2.1.4). Thus, in the following sections, we discuss the works related to our
contributions for these three kind of representations.

2.2.2 Universality of Semantic-Features

As said in the description of semantic features (Sec. 2.1.2), they were first introduced [115, 252] with
an amount of 200 object-detectors, then [22] increased this amount to 1, 500 which was followed by
an increase to 15, 000 by [21] and then to even 17, 462 and 30, 000 detectors in [81]. All these works
increased the amount of detectors in the representation compared to state-of-the-art ones (that can be
seen as reference representations), and thus indirectly proposed universalizing methods that go in the
direction (i) of Section 2.2. In parallel to this mainstream (to increase amount of detectors), some
of these works [21, 81, 112] also improved the lower-level (compared to the desired concept-level)
representation used to describe images before training the set of classifiers. More precisely, [21] used
more low-level features which results in better image descriptions and [81, 112] used CNN-features
which results in even better semantic descriptions. Indeed, the use of better lower-level features aims
to have more discriminative features (i.e., fires more on images of the positive category and less on
images of negative ones) to learn the bank of classifiers that forms the semantic representation. This
latter aims at facilitating the learning of each individual classifier of the semantic representations, and
thus focuses the training on hardest concepts, which makes them more performing. In summary, both
of these works indirectly tackled the problem of increasing the universality of semantic representa-
tions by trying to make each individual classifier able to handle more configurations of the concepts,
and thus increasing the local scope of action of the final representation (i.e., goes toward direction (ii)
mentioned in Section 2.2).

Since increasing the second attempt in the literature to increase universality of semantic-features
(through the increase of the discriminability of the lower-level representations), is a problem spe-
cific to CNN-features, this aspect will discuss be discussed in the next subsection. Thus, here we
especially focus on the first attempt that consists in increasing the amount of detectors. Indeed, we
have mentioned that increasing the amount of detectors mainly increases the performances of the
representation in many target-tasks, making it a universalizing method. However, a major drawback
emerges, when trying to go towards this direction. Indeed, a representation containing a large amount
of different detectors, will necessarily output, when applied on a new image, a large amount of small
values, because simple a couple of concepts will be present in the image. We empirically observed
that the presence of these small values introduces noise in the final semantic representation. This
is problematic when learning the target-tasks estimators, since it has to consider them, making its
learning harder. To fix this drawback, [81, 112] proposed to rely on the top-k sparsity process [269]
(as depicted in Section 2.1.2) that consists to keep the top-K maximum values of the representation,
withK fixed arbitrarily. This aims to considerably increase the performances on different target-tasks
since it reduces all the noise in the final semantic-features. In that sense, the top-k sparsity process
could be considered as a part of the universalizing method that consists to increase the set of different
detectors. In this Thesis, we highlighted two drawbacks of this sparsity process, and proposed two
contributions to fix each drawback. Both contributions will be detailed in Chapter 3.

23

2.2.3 Universality of CNN-Features

CNN-based representations are efficient both in end-to-end learning and in transfer-learning, making
them good candidates for reference universal representations. Moreover, while not specifically de-
signed towards to improve the universality of such representations, many works [2, 11, 101, 120, 132,
166, 176, 190, 275, 291, 297, 280, 262, 264, 297, 33, 109, 246] could be considered as universalizing
methods for CNN-features. The general idea to improve the universality is to diversify and increase
the feature detectors. Two families of approaches can be considered. The fist approach consist in
modifying the problem on which a network is learned. The second approach relies on ensemble
model, that is to say on learning several networks on different problems. In chapter 4 we will propose
an unified view of these approaches, using the notion of Discriminative Problem Variation and Source
Problem Variation (SPV, detailed in Section 4.1.2.1).

One Net Approaches
The methods of this family [11, 23, 120, 132, 166, 210, 246, 33, 109] usually add new categories and
their annotated images to the initial problem in order to diversify it. Three kinds of categories are
added: specific [11, 23, 210, 297] (e.g. rottweiler), generic [132, 166, 246] (e.g. dog) and noisy [262,
264, 120]. In some cases, the categories added contain data from multiple domains [23, 210]. These
methods slightly increases the capacity of the network by adding parameters specific to each domain.
In all cases, this approach can be quite powerful to increase the universality, but at a high cost since
it requires many additive data and corresponding annotations. Another limitation of the methods that
add categories of a different types than those of the source-task (e.g., adding generic categories to the
initial specific ones [132, 166, 246] lies in their learning methodology. Indeed, they often train jointly
the network on the generic and specific data, resulting into a mix of generic and specific features in
the intermediate layers. Moreover, the joint learning and especially the minimization of a softmax
loss function makes the generic and specific categories mutually exclusive, which violates the actual
semantics. At last, all the methods of this approach are based on a single iteration of the SPV and on
the training of only one network. These observations have motivated our contribution named MulDiP-
Net (Chapter 4) that is based on SPV by grouping (zero-cost or low-cost process), assumes that a clear
separation between the different types of features is desirable (respect of the real-world semantics)
and that introduces a set of source problems obtained by variation instead of a single one and an
ensemble of networks on this set of source problems (improvement of the capacity and knowledge to
acquire).

An alternative to the addition of categories is to group several of them. The categories can be grouped
hierarchically [109] or using clustering [33].

EM Approach
The methods of the second approach [2, 101, 176, 190, 275, 280] give an answer to the limitation
highlighted in the previous section. All the works in this approach use an ensemble-model on different
source problems and a sequential training procedure. They train a network on an initial problem (that
contains specific or generic categories) and they “fine-tune” it on another problem or on a set of small
problems. As a consequence, even if the scope of the new representation is increased by this process,
all the features learned on the new problems are biased toward those of the model previously learned
on the initial problem. Thus, due to their sequential learning procedure, these approaches do not
combine different type of knowledge (specific and generic categories) but only consider one of them,
that of the last problem used for training. A consequence of the latter point is that, they need many
models (i.e., more than 10) to get significant diversity in the set of features, which is very costly. The
MulDiP-Net method, described in details in Chapter 4 provide an answer to this limitation by carrying

24

independent network training (one network per problem).

From the point-of-view of the strategy used to vary the source problem, all the methods [2, 101, 190,
280] from this approach re-labels specific categories into non-semantic generic ones, that is to say
categories that do not exist in the real world) [33] and capture the common properties among many
object classes independently of an actual common semantic. These generic categories are built using
hierarchical clustering on low/mid-level features (obtained from a network trained on the initial SP)
of images among the initial set of categories. As a consequence, these methods are dependent to the
visual low/mid-level features that can lead to irrelevant categories when low/mid-level features fail
to capture the dissimilarity between different categories. We will see in Chapter 4 that for the sake
of universality, it could be preferable to rely the grouping process on explicit human categorization
expertise in order to reflect complex relations between categories.

2.2.4 Universality of Multimodal-Features

Universality is not limited to visual representations. Indeed, in the context of universality, the future
problems to solve are unknown, and they may come with data of any modality (i.e., visual, tex-
tual, sound, etc.). Thus, learning a representation to perceive the world through multiple senses [10]
(e.g., seeing, hearing, and reading), rather than only through vision, clearly goes towards our goal of
universality. In practice, the most common and efficient way [95, 231, 77, 10, 270] to learn multi-
modal representations is to start with unimodal representations (e.g., visual and textual) and to add a
multimodal block on top of unimodal representations that learns to align them. More precisely, the
multimodal block learns an embedding space where unimodal features of aligned data (i.e., data from
multiple modalities represent the same physical world), projected in the multimodal space, are close
to each other, and inversely, multimodal features of non-aligned data are far from each other. With
the latter approach, we hope to learn multimodal detectors that combine unimodal detectors of the
same semantics (i.e., multimodal detectors fire on a concept in a modality-agnostic) and disentangle
unimodal detectors of different semantics. Back to the universality, let recall that it lies in a transfer-
learning scheme, where the representation is learned on a certain problem at an initial time, then used,
to represent the data in different problems, at a different time. This being said, in the multimodal com-
munity, generally, only bi-modalities are considered (e.g., vision and text, vision and sound, text and
sound, etc.) and end-to-end learning is considered (i.e., learning and evaluating the representational
power of their multimodal representation on the same problem and same visual domain). While by
definition, the more modalities we consider, the more universality we get, in this work (Chapter 5),
we simply followed the literature for the nature and amount of modalities. However, rather than
working on one unique problem, we put ourselves in a transfer-learning scheme to go toward our goal
of universality. To the best of our knowledge, it exists only a couple of works [149, 10] that eval-
uated the transferability of multimodal representations in a transfer-learning scheme. Indeed, [149]
trained their multimodal representation on one domain (MSCOCO dataset) and evaluate it on another
one (Flickr30k dataset), while [10] trained their multimodal representation using only image-sound
and image-text pairs, but evaluated the transferability on sound-text retrieval. While in the former,
the transferability is done on the multimodal domain, in the latter, it is done on the task with missing
aligned data during the training. Nevertheless, in both cases, the authors showed that the performances
were lower than directly learning on the target-problem, but still performing, since the in-the-wild sit-
uations (i.e., universality) are challenging. In contrast, in the context of universality, we want to be
highly transferable on both, different domains and missing aligned data during the training. While
the last point is promising and could highly increase the capability of the learned representations, in

25

this Thesis, we especially focused on the former point.

An important aspect in universality through the learning of multimodal representations is that, we
should care to not hurt the representation power of mono-modalities. In fact, on the former case, the
universality is increased, but on the latter one, it decreases. Thanks that, generally the multimodal
representations are built on top of unimodal features (visual, textual, sound), thus does not hurt the
representational power of mono-modalities, which is highly desirable. Thus, in the context of uni-
versality, it is non-desirable to fine-tune the unimodal representations in parallel to the multimodal
one (like in [222, 72]) since, if learned on specialized domain, or general domain but with few anno-
tated data, we could specialize even the unimodal representations, that has been already learned to be
universal and thus hurt their universality.

Finally, while not extensively discussed, it should be mentioned that the problem of universal repre-
sentation has seen a recent growing interest in the NLP community. Indeed, the works of Conneau
et al. [42, 44, 43, 124] are pioneering in the problem of universality. Roughly, their goal is to find
the best source-task and learning algorithm for learning the most universal representation. The work
of Nie et al. [180] rather starts with non-annotated data and consists in finding “tricks” to get anno-
tations. Subramanian et al. [235] made one step forward, by using multiple source-tasks, and thus
proposed to find the best set of source-tasks as well as the best multi-task learning algorithm. In
contrast to all these works, our goal consists to start with some annotated data and try to automat-
ically get more annotations in order to diversify the source-problem, and thus learn more universal
representations. Notice that, our contributions are not limited to visual and multimodal representa-
tions and could easily applied to build more universal textual ones. Another important aspect of all
the works of universality in the NLP community is the evaluation protocol [41]. Indeed, while in
the vision community, only end-to-end learning [23, 210] and fine-tuning [130, 211] (i.e., modify-
ing the representation on the target-problem after training it on the source-problem) schemes were
considered for evaluating universality, in NLP, it was always performed in a transfer-learning without
modifying the representation on the target-problem, but rather by using simple predictors on top of
the representation. Let recall that as stated in [244], compared to end-to-end learning and fine-tuning,
such transfer-learning scheme (w/o modifying the representation) has a better matching with cogni-
tive studies on the visual brain [8] – that highlights the ability of humans to develop a universal and
powerful internal representation of images in the early years of their development and re-use it later
in life for solving any kind of problems. To the best of our knowledge, we are the first from the vision
and multimodal communities to evaluate universality of representations in such a scheme.

2.2.5 Category-Names and Universality

Recently many works [54, 163, 188, 189] highlighted the importance of considering the words used
to name the categories in the field of computer vision and proposed to take inspiration from cognitive
studies that give some insights regarding the Human-categorization process [118, 214]. While the
main goal of these works was especially to output concepts mostly used by humans rather than more
specific ones, we think that the question of how to name categories is also related to the semantic
encoded in the learned representations and thus universality.

Learned-representations are obtained by learning a neural-network on a training-dataset, that is formed
of a set of instances organized according a set of different categories (that we call discriminative prob-
lem in the following). During the creation of the training-dataset, multiple annotators are asked to
describe each instance according to a certain level of description. Indeed, datasets contain categories

26

at different levels of specificity, that is to say, different level of annotators-expertise. For instance,
ILSVRC [216] contains fine-grained categories (i.e., very specific categories obtained by experts),
Pascal VOC [71] contains basic-level categories (general categories obtained by persons that use the
most common human language) and ImageNet [53] contains categories at several levels (i.e., generic,
basic, specific, etc.). The name of a category is given according to a human judgment, thus it is sub-
jective. Generally, the exact choice of the word used is far from being neutral, as a large literature has
shown it, both in Psychology [118, 214] and Computer Vision [54, 163, 188, 189]. More precisely,
they showed the importance to consider three main levels of categories that are commonly used in the
Human-categorization process:

• Basic-level concepts are the terms at which most people tend naturally to categorize objects,
usually neither the most specific nor the most general available category but the one with the
most distinctive attributes of the concept.

• Superordinate concepts are categories placed at the top of a semantic hierarchy and thus display
a high degree of class inclusion and a high degree of generality. They include basic-level and
subordinate concepts.

• Subordinate concepts are found at the bottom of a semantic hierarchy and display a low degree
of class inclusion and generality. As hyponyms of basic-level concepts, subordinate categories
are highly specific.

In summary, during the creation of a dataset, the discriminative-problem (DP) is the result of the
way we decided to name instances and categories. As illustrated in Figure 2.5, the way we name
categories, could lead to different discriminative-problems. However, datasets are associated to one
discriminative-problem only. Thus, we can consider that a dataset is incomplete since it does not
consider the other discriminative-problems (that would reflects other point-of-views of the instances).
However, it is important to note that the semantic encoded in neural-networks highly depend on
the dataset used to learn them. Indeed, learning to discriminate between {lemon, banana} lead to
different features than solving {lemon, strawberry}. This point was confirmed by [297] that showed
that object-detectors emerge when learning to discriminate between scene categories (i.e., a network
trained on a scene-based DP learns different features than one trained on an object-based DP). This
latter confirms the importance of the discriminative problem in the resulting features. Thus, the
way we name categories has direct consequences on the learned representations. Unfortunately, as
detailed in Section 2.2.3 a few works proposed to consider the discriminative-problem in the problem
of learning representations, while it is highly related to universality.

2.3 Interpretability

In Section 2.2, we claimed that increasing interpretability of learned representation, increases uni-
versality. However, a first step to interpretability is to qualify and quantify what has been learned
on each individual feature that forms the representation, that is to say, associate a concept to each
learned detector. Thus, in this section, we will first highlight the main difficulties to interpret neural
networks (Section 2.3.1), then present the different techniques in the literature that leads to associate a

27

Figure 2.5: Illustration of the significant difference that can result with different discriminative prob-
lems obtained by different subjective annotators. In (A), we have four annotators – (a): lambda
annotator, (b): bird-expert, (c): car-expert and (d): bird and car-expert. Each annotator has to label
the images in (B) according to his(her) expertise (and thus, according to his(her) vocabulary). In
(C), we report the resulting discriminative problem (DP) from each subjective annotator. We clearly
see that in each case, we have very different DPs, and this could clearly lead to very different set of
features after solving the DP through a CNN. Best view in color.

concept to each detector. Indeed, two approaches emerge, those that considers a concept as extension,
and thus associates each detector to multiple visual instances (Section 2.3.2), and the recent ones that
considers a concept as intention, and thus associates each detector to a semantic concept described
through language (Section 2.3.3).

2.3.1 Interpretability and Neural-Networks

A informal definition of interpretability has been introduced by Alfred Tarski in 1953: “Assume T and
S are formal theories. Slightly simplified, T is said to be interpretable in S if and only if the language
of T can be translated into the language of S in such a way that S proves the translation of every
theorem of T. Of course, there are some natural conditions on admissible translations here, such as
the necessity for a translation to preserve the logical structure of formulas”. Thus, to make neural-
networks interpretable to Humans, we need to translate their “language” into the language of humans.
Thus, a first step is to consider the individual learned features (i.e., convolutional-filters, neurons)
of neural-networks as the basis of their “language” and find associations (i.e., translation) with the
semantic-concepts, that are considered as the basis of the human language. Thus, for simplicity, we
will use the terms first step towards interpretability to state for the association of semantic-concepts
and learned detectors. Note that, this first step towards interpretability is highly related to universality
and corresponds to the third direction to it (2.2), that is, increasing the semantics of a representation.

While the domain of semantics (and thus semantic-concepts) have been actively investigated by the
community (e.g., many available resources organized in the form of ontologies), it is less true for the

28

Figure 2.6: Illustration (from [132]) of the 96 filters (of spatial size 11 × 11) learned at the first
convolutional layer (conv1) with the AlexNet architecture on the ILSVRC dataset. It contains edge
and color-blob filters. Best view in color.

“language” of neural-networks. Indeed, the question of what features have been learned in neural-
networks? is very difficult to answer. In particular, the main difficulty comes from the fact that neural
networks are a stack of layers (e.g., fully-connected, convolutional, pooling, activation, normalization
and fully-connected) learned with implicit supervision, thus investigating into the understanding of
what has been learned on the intermediate layers requires making sense of non-linear computations
performed by millions of learned parameters. More precisely, fully-connected and convolutional
layers are respectively formed by a set of individual neurons (that are represented by single values)
and filters (that are represented by 3D-tensors of size WF×HF×DF). For the filters, they can be
directly visualized their depth is D¡4, since they correspond to gray images (if D=2) or RGB images
(if D=3). However, in almost all convolutional layers of CNNs, the depth of the tensor-filter is D>3,
thus the filters can be visualized as multi-spectral images, which are non-understandable by humans
and thus not-easily interpretable. Regarding neurons, the same problem is encountered, since they
output only single values that are clearly not interpretable by humans.

Nevertheless, in the actual form of CNNs, we can still visualize some elements to understand what
has been learned: (i) filters at the first convolutional-layer (conv1) for all the architectures and (ii)
feature-maps of all filters at all layers for all architectures. More precisely, filters of conv1 can be
visualized because they have a depth of 3 and can thus be seen as RGB images. In Figure 2.6, we
illustrated the 96 filters learned at conv1 in the AlexNet architecture. In this figure we clearly observe
that the CNN has learned edges and color-blob filters. It is a good step for the understanding of
CNNs, since it aims us to visualize and interpret the features learned. However, this visualization can
not be performed for other layers. Indeed, for other layers, only feature maps can be visualized. And,
feature-maps are visualizable since they correspond to gray images. However, a downside to visualize
them is that in addition to be less interpretable, it can quickly become fastidious since each feature
map is associated to one filter for one image, only. Indeed, each layer contain hundreds of filters,
that reacts very differently according the images, thus many different images should be analyzed to
interpret only one filter. Theses drawbacks are illustrated on Figure 2.7.

In summary, neural-networks are hard to interpret with simple techniques, thus it can be seen that
there is a necessity to provide more advanced techniques, which is the scope of the next section.

29

Figure 2.7: Illustration of the feature-maps (d) and (e) respectively obtained from the convolution of
two filters (b) and (c) – from the 96 filters of conv1 of AlexNet illustrated in Figure 2.6 – with all
spatial locations of an input image (a). By comparing Figure 2.6 and this one, we can easily claim that
visualizing filters is much interpretable than visualizing feature-maps. Moreover, we also highlight
that each feature maps is assigned to one filter but to one image only, which can become quickly
fastidious if we want to interpret the features that outputs these feature maps. Best view in color.

2.3.2 Extension-Based Detector-Concept Association

During the last five years, a few works [18, 156, 227, 291, 286, 296, 295] have prompted investigation
into the meanings of the learned features on intermediate layers of neural-networks. As said above,
we grouped the works into two approaches: (i) those that considers a concept as extension, and
thus associates each detector to multiple visual instances; and (ii) those that considers a concept as
intention, and thus associates each detector to a semantic concept described through language. In this
section we will especially describe the works in the first approach.

A first satisfying attempt was the work of Girshick et al. [82], in which they proposed to find for each
convolutional filter of a CNN, the local regions (from images of a large database) that highly activate
them. However, [82] was initially a contribution that consisted of an object detection method based
on CNNs (i.e., R-CNN). Hence, they only applied this technique on some features of the last pooling
layer (pool5) of the AlexNet architecture. Moreover, their visualization was to highlight (through
white-border windows), the local region in the images that highly activates the conv5 features (af-
ter the pooling layer). An illustration of their visualizations (from their original paper) is given in
Figure 2.8. A few months later, this technique was extended by [291] (won the best ECCV paper)
that applied it on all the features at all the layers of AlexNet. They also proposed a slightly more
visualizable version, i.e., they displayed the top-nine max-patches (rather than windows highlighting
the max-region in the max-images) and in three by three blocks (rather than all maximums in the same
line). In the following, we call this technique Top-k max-patches. An illustration of their visualiza-
tions is given in Figure 2.9. This more visualizable version was then commonly used [143, 286, 296]
to visually highlight the semantics learned by features of a CNN.

Since this top-k max-patches technique is the basis of almost all others (and since we also used it

30

Figure 2.8: Illustration of the visualizations reported in [82]. They displayed, a set of 96 images,
where each line represents the max-16 images that highly activate a filter. In each max-image, they
highlighted (in a white window) the region that highly activate the actual filter. In their paper, they
only visualized 6 filters of the last pooling layer (pool − 5) of AlexNet, which thus corresponds to
filters of the las convolutional layer (conv − 5). Best view in color.

in one of our work (Chapter 5)), we describe it more precisely. Let consider a set of N images
I = {I1, · · · , IN} and the jth filter F (l)

j of layer l of a CNN. The top-k max-patches technique,
consists to, first extract from the whole set of images I, a set of M patches per image – i.e., local
regions per image. We will use the notation Rj

i to denote the ith patch extracted from the jth image
Ij of set I. The set of all extracted patches will be denoted P I = {R1

1, · · · , R1
M , · · · , RN

1 , · · · , RN
M}.

This set P I is of size M × N since it contains M regions per image for a set of N images. In the
literature, these patches (local regions) are called “receptive fields” and their spatial size depends on
the size of the filter F (l)

j as well as the eventual operations computed by the previous layers. Hence, the
maximum amount of patches that can be extracted per image depends on (i) the size of the filter F (l)

j ;
(ii) the eventual operations computed by the previous layers; and (iii) the size of the input image, thus
here, we will just suppose that this number is the same for all images and it corresponds to the number
that we denoted M . This being said, the second step of the top-k max-patches technique consists to
get the highestK patches {P Imax,1, · · · , P Imax,K} that satisfies, for a filter F (l)

j , the following equation:

P Imax,k = arg max
PIk
i

(PIki ∗ F
(l)
j), (2.2)

where, Ik = I \ {P Imax,1, · · · , P Imax,k−1} is the set of patches that does not contain the previously
obtained max-patches (for the actual filter F (l)

j) and ∗ is the convolution operator. Note that, while
not performed in [291], the same technique could be performed for neurons as done in [286]. Indeed,
the principle remain the same, except that no local patches are considered but only the full images,
because neurons have a receptive field of the size of the image.

This technique was used to represent the learned features of AlexNet and aims to highlight very
interesting properties of CNNs which bring, to the community, a better understanding of them. More
precisely, in the work of [291], it has been highlighted that CNNs (at least, the AlexNet architecture),
learn a hierarchy of features, that is to say, in conv1 the filters represent edge and color-blob patches,

31

Figure 2.9: Illustration of the visualizations reported in [291]. They displayed, five blocks of visu-
alizations, with each block corresponding to one layer of the CNN (AlexNet). In each block they
displayed many blocks of three by three patches, with each of the blocks corresponding to one filter
of that layer. For clarity reasons, they only displayed a few set of blocks (i.e., one block contains nine-
patches that highly activate one filter) per layer. We can see that, the more we go deeper, the more the
filters highly activate on entities of high abstraction (e.g., edge-detectors at conv1, texture-detectors
at conv − 2 and object-part detectors at conv5.). Best view in color.

in conv2 and conv3 texture-detectors have been learned, in conv4 there are more complex textures,
in conv5, there are object-part detectors and finally in the last layer fc8, there are complete object-
detectors. Simply said, the more we go deeper in a CNN, the more its features detect entities with
higher abstraction.

After the successful results of these visualization techniques, some more advanced methods have been
suggested in the literature. More precisely, a backpropagation-based approach has been investigated.
It consists to use variants of backpropagation to identify or generate salient image/patch-features [156,
227, 291]. Note that, the gradient-based approach has been initiated by [69], in 2009 (i.e., three years
before the breakthrough of deep-learning). This visualization technique brings some insights to the
deep-learning field but not as much as the top-k max-patches technique [82, 291], that was seen (at
that time) as a breakthrough in the field of deep-learning. Another interesting method was proposed
by Zhou et al. [296]. Indeed, while all other methods used the theoretical receptive field (RF) of each
convolutional layer, they proposed to rather focus on the empirical size of the RFs, and showed that it
is surprisingly much smaller than the theoretical one. In practice, to estimate the learned RF of each
unit in each layer, they proposed a data-driven approach on top of the top-k max-patches technique.
Indeed, for each top-k image, they replicate each image many times (5000 at all spatial locations)
with small random patches, which results in 5000 occluded images per original image. Then all these
occluded images are feed into the same network and record the change in activation as compared to
using the original image. If there is a large discrepancy, the given patch is important and vice versa.
This allows them to build a discrepancy map for each image, and highlight more precisely the region
that provokes the activation of the filter. An illustration is given on Figure 2.10. Otherwise, Yosinski et
al. [286] highlighted that some very discriminative detectors (i.e., text, face or even t-shirt detectors)
that were not asked to be learned (since they do not correspond to the labels of the training-database
ILSVRC), were surprisingly learned by the network.

In summary, these visualization techniques leads to interpret learned detectors of neural networks and
highlights amazing properties of them. However, all these works considers the concepts as extension,

32

Figure 2.10: Illustration of the visualizations reported in [296]. For each layer, the display the top-4
images obtained (for a certain unit filter) with their “Bubble-vizualisation” method. On top, those
learned on the Place [297] dataset and at bottom those learned on ImageNet [217]. Best view in color.

and thus aim at associating the individual learned detector to multiple instances (e.g., top-k images or
more), which can be less interpretable than associating them to semantic-concepts. This latter, consist
in considering concepts as intention and is discussed in the next section.

2.3.3 Intention-Based Detector-Concept Association

Very recently, [18, 295] suggested a semantic-based approach (called “Network-Dissection”) to di-
rectly and automatically match features (here, convolutional filters and neurons) of internal layers of
CNNs with labeled interpretations (i.e., categories from the most common colors, textures, materials,
object-parts, objects and scenes). They applied their technique on state-of-the-art network architec-
tures to investigate their effects on interpretability (at least, with their definition of interpretability).
Indeed, such an approach seems quite promising because it is able to characterize a whole complex
network with a single bar chart which aims to interpret a network very quickly. In this bar chart,
each bar represents a layer, and each of them is separated through different colors, in which each
color represents the amount of features of a particular type (e.g., amount of texture-filters, amount of
object-part filters, amount of material-filters, etc.). An illustration of their bar chart is given in Fig-
ure 2.12. Moreover, among the bar chart, their method is able to associate to each individual detector a
certain element from a large bank of semantic-concepts (i.e., colors, textures, materials, object-parts,
objects and scenes). An illustration is given in Figure 2.11.

In summary, many visualization techniques have been introduced in the literature and each of them
has its own advantages and limitations. Anyway, putting them all together [18, 69, 82, 156, 227,
143, 286, 291] leads to a better understanding of CNNs by the highlight of important properties and
behaviors. More importantly, these works make neural-networks more interpretable than before. In
particular, the work of [18, 295] was a first attempt to the association of concepts-detectors with
an intention-based definition of concepts and should thus be considered as a reference work for the
interpretability of neural-networks.

33

Figure 2.11: Illustration of the visualizations reported in [18, 295] for the association of concepts
to each detectors learned. We can observe that each unit of a certain layer is associated to multiple
visual instances and more interestingly, to a single semantic-concept (e.g., house, dog, train, etc.).
They reported the results for multiple network-architectures. Best view in color.

Figure 2.12: Illustration of the visualizations reported in [18, 295]. They compare different archi-
tectures and training database CNNs (x-axis) through their amount of unique detectors (y-axis) in a
particular kind (object, part, scene material, texture and color). Each bar represents the last convolu-
tional layer of one network. Best view in color.

34

3

Improving Universality of Semantic
Representations using Structured

Sparsity

Contents
3.1 Constrained Local Semantic Features . 36

3.1.1 Introduction . 36

3.1.2 Proposed Method . 37

3.2 Diverse Concept-Level Semantic Features . 42
3.2.1 Introduction . 42

3.2.2 Proposed Method . 43

3.2.3 Experimental Results . 47

3.2.4 Settings . 48

3.2.5 In-Depth Analysis . 52

3.3 Conclusions . 60
3.3.1 Complementaries of the Two Contributions 60

3.3.2 Discussion About Semantic-Features . 61

S emantic-features are good candidates to learn more universal representations thanks to their abil-
ity to extent the representation without having access to the data used to build the previous fea-

tures. Indeed, increasing the amount of features was the most (indirectly) investigated way in the
literature to increase universality of the whole semantic representation. The state of the art showed
that applying a fixed level of sparsity to these semantic representations improves them significantly.
In this chapter, we highlight two major drawbacks of this approach and propose a specific solution to
each of them. The first contribution, that consists in computing an adaptive sparsity according to the
content of each image, is presented in Sec. 3.1 and the second contribution that consists in computing
a sparsity according to the human-categorization process is presented in Sec. 3.2. We summarize in
Table 3.1 the notations used in this Chapter.

35

Symbol Description
I Image
xI Mid-level representation extracted from an image I .
C Set of considered categories, C = {c1, ..., cC}.
C Dimensionality of the semantic representation, C = |C|.

ζ(xI) Semantic representation of an image I computed on its mid-level feature xI .
ζm(xI) Semantic representation with a sparsification of type m – i.e., if m = raw,

no sparsification; if m = d with d < C, the sparsification level is d;
if m = CBS the sparsification level depends on the image and
if m = DCL the sparsification depends on the concept-level.

ζmi (xI) A semantic representation, ith dimension of any semantic representation
of type m, (i.e., ∀m ∈ {raw, d,CBS,DCL}).

φmci (xI) Output of a visual binary classifier with a sparsification of type m
with m ∈ {raw, d,CBS,DCL}

φVci(xI) Output value of the visual detector of class ci and ith dimension of ζ(xI).
φSci(xI) Output value of the semantic detector of class ci.
Hd(A) Set of the d largest values of a set A of C values (A ⊂ RC).
maxζ Maximum value of any semantic feature, maxζ = arg max

φci

(ζraw(xI)).

H(xI) Entropy of the random variable of the semantic representation of an image I.
Γ(xI) Sparsification threshold for a semantic representation of an image I .
α Normalizing parameter for the computation of Γ(xI).
ς(ci) Subsumption function that outputs the set of concepts that are subsumed by ci.
H Semantic hierarchy (with “is-a” relations) with all nodes being concepts.
N Set of all concepts in a semantic hierarchy.
P Set of superordinate concepts from a whole set of C concepts in N .
BL Set of basic-level concepts from a whole set of C concepts in N
B Set of subordinate concepts from a whole set of C concepts in N
BK Set of most-salient subordinate concepts of an image I in N
Dd Target-dataset that contains d categories.
BLd Set of basic-level concepts of the target-dataset Dd.
Pd Set of superordinate concepts from a whole set of C concepts,

but adapted to the target-dataset Dd.
Bd Set of subordinate concepts from a whole set of C concepts,

but adapted to the target-dataset Dd.

Table 3.1: Notations used in Chapter 3 of this Thesis.

3.1 Constrained Local Semantic Features

3.1.1 Introduction

As described with details in Section 2.1.2, a semantic representation of image I is a C-dimensional
vector ζ(xI) = [ς1(xI), . . . , ςC(xI)] where each dimension ςc(xI) is the output (i.e., probability of
presence) of a pre-trained classifier of the concept c applied on xI, a mid-level representation of
image I . Semantic representations usually exploit all classifier outputs of the set of considered cate-

36

gories C [252], leading to a dense representation of images. However, [81, 112] showed that forcing
the lowest values to zero improves the performance of these representations in image retrieval. Such
a sparsification process is also interesting for image classification, since the compactness of the rep-
resentations improves the computational efficiency at testing time. However, the setting of this exact
amount of sparsity remains an open problem.

We propose a method to adapt the level of sparsity of these semantic representations according to the
actual content of each image. We consider that a given concept can be retained only if we are confident
enough on its detection and if it has a significant contribution in the amount of information carried by
the semantic features. From these hypotheses, we derive a method named “Content-Based Sparsity”
(CBS) that automatically determines an appropriate level of sparsity for each image independently,
taking into account its actual visual content. CBS is presented in details in Sec. 3.1.2.1.

Secondly, we also address the problem of analyzing the content of the images at a local scale for se-
mantic features. Former works such as Object Bank [115] encoded the spatial location of objects using
a pyramid representation. More precisely they concatenated the base classifier outputs computed at
three different scales. Such an approach is feasible when one uses a small number of detectors (200
in [115]) but becomes intractable when tens of thousand detectors are used [81, 21]. We propose
an alternative solution, named “Constrained Local Semantic Features” (CLSF), that is inspired by a
popular scheme in the domain of bag-of-features [92, 135] and CNNs [34, 96], namely pooling of
local regions. While not new in itself, it is, to the best of our knowledge, the first attempt to use it in
the context of semantic features. An advantage in comparison to the concatenation-based approaches
is that the pooling does not change the size of the representation. Moreover, the use of a pooling in
the following of our CBS scheme is a convenient way to focus only on important information. In
fact, while, in a global scheme, CBS has the ability to sparsify the semantic representation regarding
the content of each image, in a local scheme, it has the ability to neglect non-informative regions
and consider highly informative ones, which is a desirable property, since it avoids to introduce noisy
information in the final representation. CLSF is presented in details in Sec. 3.1.2.2.

We validate our work (in Sec. 3.2.3) in the context of mono-modal and multi-modal documents. First,
we focus on images only and conduct experiments on four publicly available benchmarks, focusing on
a scene classification task with the MIT Indoor benchmark and multi-class object classification with
Pascal VOC 2007, Pascal VOC 2012 and Nus-Wide Object datasets. Results show that the proposed
CLSF approach achieves state-of-the-art performances on three benchmarks (VOC 2007, Nus-Wide
Object and MIT Indoor) and obtains competitive results on Pascal VOC 2012 compared to the best
approaches of the literature.

3.1.2 Proposed Method

3.1.2.1 Content-Based Sparsity

If one retains a fixed number of concepts in a semantic representation, it can lead to an incomplete
description for an image representing a lot of objects (Fig. 3.1, left image). In the same vein, this
description is likely to be over-complete for images that contain too few objects (Fig. 3.1, right im-
age). Thus, in this section, we propose a new sparsification strategy for semantic representations that
is based on two hypotheses regarding the sparsity-level, (i) it should be adapted to the number of
objects contained in the image and (ii) it should also depend on the confidence one has on the concept

37

Figure 3.1: Illustration of the CBS method and of the interest to adapt the sparsity-level of semantic
representations to the content of each image. Two different images are presented here, the left one
contains a lot of objects while the right one contains much less. On top of the images, we illustrate
their associated semantic features with gray bars representing the activation of the concepts on the
image. Concepts selected by fixed sparsity-level (with a level d = 4) are marked with a red cross and
those selected by our CBS method are marked with a blue cross. We clearly observe that the fixed
sparsity-level scheme selects noisy-concepts (n.c) for the right image and misses useful concepts
(road and building) for the left one. More properly, the proposed CBS scheme adapts the number of
selected concepts and keeps an adequate large number for the left image and a lower one for the right
image. Best view in color.

detection itself, reflecting its potential quality. These hypotheses are illustrated on Figure 3.2 in the
context of our proposal. It represents four images and their “semantic feature profile” that is their
semantic features with the values sorted in decreasing order. Such a profile allows to better visualize
the relative values of a semantic representation.

The first hypothesis insures that images containing lot of objects (left image of Fig. 3.1) have a
semantic representation with more non-zero values than that of images with few objects (right image
of Fig. 3.1). The second one insures to keep only visual concept detection with high quality. For
instance, for a low confidence on concept detection (bottom of Fig. 3.2), only few concepts would
probably be relevant and should be retained. At the opposite, when the confidence on detection is
high (top-right of Fig. 3.2), one can assume that a larger number of concepts would be beneficial to
represent the image and thus we should retain a large number of them. Sparse coding of features has
been a lot investigated in the literature, but it is usually posed as a desirable property in itself. Our
approach is new in the sense that sparsification is a consequence of an adaptation of the semantic
representation to the (assumed) interesting properties of the actual content of the each image.

When the two hypotheses are combined, one can consider that four semantic feature profiles remain.
An illustration of the profiles is depicted in Figure 3.2. The profiles on the left correspond to images
with few visual concepts. They are typically sparse profiles, characterized by a small number of
dominating values with high confidence. On the contrary, the right hand side of the figure exhibits
flatter distributed profiles, resulting from the presence of many visual concepts in the image. In
addition, the value of the largest concept (the most left hand value of each profile in Figure 3.2)
is a piece of information with regards to the confidence that can be attributed to the quality of the
detection. The confidence is high in top profiles (due to the presence of well-recognizable objects)

38

Figure 3.2: Illustration of the four prototypical semantic representation profiles, from which each
configuration illustrates an image with its associated raw semantic representation. Note that the di-
mensions φrawc (x) are sorted by decreasing values. The top profiles illustrate high confidence detection
while the bottom ones low confidence ones. The left graphics correspond to the schemes containing
few dominant concepts, while the right ones, depict schemes with a lot of dominant concepts.

and is low in bottom ones (where objects are occluded or in the middle of a cluttered background). If
the two hypotheses above are considered, we should retain an adequate large number of concepts only
for the top-right profile of Figure 3.2, when there are many dominant concepts and we are confident
on their detection, while the other three cases should lead to retain few concepts only.

Let ζraw(xI) = [φrawc1
(xI), . . . , φrawcC

(xI)] be the raw semantic feature. With a fixed level of sparsity
(Equation (2.1)), our hypotheses are not taken into account. To do so, we propose to adapt sparsity to
image content using the following thresholding scheme:

φCBSc (x) =

{
φrawci

(x) if φrawci
(xI) ≥ Γ(xI)

0 otherwise,
(3.1)

where Γ(.) is a threshold that depends on the semantic feature profile of each image.

Each dimension of φrawci
(xI) is a piece of information related to the content of the image. The raw

semantic signature can thus be considered as a source of information on the image semantic content.
The Shannon entropy being the average amount of information generated by a source, it reflects the
quantity of information conveyed by the raw semantic feature. We normalize ζraw to consider it as a
random variable, then for an image I from which a mid-level feature xI was extracted:

H(ζraw(xI)) =
C∑
i=1

φrawci
(xI)∑C

j=1 φ
raw
cj

(xI)
log2

(∑C
j=1 φ

raw
cj

(xI)

φrawci
(xI)

)
. (3.2)

39

In that context,
φrawci

(xI)∑C
j=1 φ

raw
cj

(xI)
is the probability that concept ci is identified in I . Hence, the normalized

semantic feature is the probability mass function of a discrete random variable whose values reflect the
presence of object/concepts into the image. As a consequence, Equation (3.2) expresses the Shannon
entropy of this source of information. The entropy is low for distributed profiles and high when
the number of dominant concepts is small. Thus, the threshold Γ(.) should decrease with respect to
H(xI).

To take into account the detection confidence, we consider the value of the largest semantic dimension
of the profile, noted maxζ = arg max

φci

(ζraw(xI)), as the proportion of concepts to retain among the

C available. Let us note that since the values are the outputs of binary classifiers normalized by a
sigmoid, they are normalized in [0, 1]. For instance, if a profile is almost flat with the maximum
confidence value around 0.5, we keep half of them and force the others to zero. With an almost
flat profile and a confidence around 0.75 we retain the three quarters of them. In accordance to our
hypothesis, the number of dimensions retained increases with the confidence on the detection. Hence,
the threshold Γ(.) should increase with respect to maxζ ×C.

Finally, the threshold can thus be estimated by:

Γ(ζraw(xI)) = α×
maxζraw(xI)×C
H(ζraw(xI))

, (3.3)

where H(ζraw(xI)) is computed according to Equation (3.2), α ∈ [0, 1] is a normalizing parameter
that can be determined by cross-validation, C is the total number of visual concepts that are con-
sidered in the semantic representation and the “confidence parameter” maxζraw(xI) is the largest of
them. To better understand the variation of the threshold of Equation (3.3) regarding the entropy and
the confidence, an illustration is depicted in Figure 3.3 for the four prototypical semantic profiles
(presented in Figure 3.2).

3.1.2.2 Constrained Local Semantic Features

Recognizing objects that are present in small locations of an image (which is mostly the case in real-
world images) is very hard when using mid-level features extracted from a CNN [34, 209]. This
phenomenon is more accentuated with semantic-features. However, it is well established that extract-
ing information from local regions and adding them to those of the global image, improves drastically
the final performances on classification benchmarks [34, 228, 209].

Thus, in this section, we exploit local regions in the context of semantic features, and propose to
combine this process with the CBS method (Section 3.1.2) in order to better reflect the semantics
at a local scale. Consider a set of N regions {Ri}Ii=1...N that have been identified into an image
I . From each region, we extract a mid-level feature xRi

then compute the corresponding semantic
representation ζdRi (xRi

) with a level of sparsity dRi
. Then, all these local semantic representations

are pooled to get the final representation of the image:

ζ({xRi
}i=1...N) = P

i=1...N
(ζdRi (xRi

)), (3.4)

where P can be any pooling operator (max or sum) that operates on individual components (dimen-
sions) of semantic representations of image regions. This local scheme can be applied to a semantic

40

Figure 3.3: Illustration of the threshold computed by Equation (3.3) on the four different profiles
of Figure 3.2. Each profile (on the left) corresponding to a particular combination of entropy and
confidence, is associated to a number, and is ranged in the threshold axes (on the right). Best view in
color.

Figure 3.4: Illustration of our Constrained Local Semantic Features (CLSF) compared to common
one (S.O.T.A). One input image (a) and its local regions (b) are presented here. On top of each image
(input and local), we illustrate its associated semantic representation with gray bars representing the
activation of the concepts in that image. Concepts selected in each image by a fixed-level scheme are
marked with a red cross and those selected by CBS are marked with a blue cross. After the pooling
operation, we obtain two final features (c) and (d) that have selected different concepts. We clearly
observe that the representations of the fixed-level sparsity on local regions selected a lot of noisy
concepts (n.c). It remains to the consideration of all the regions (informative or not) with the same
intensity, which is sub-optimal. In contrast, our CLSF has selected concepts regarding the content of
each region (through CBS) and thus selected only relevant concepts per region resulting in a more
relevant output representation (d). Best view in color.

feature with a fixed sparsification-level [81] for all the regions (dRi
fixed ∀i ∈ [1, N]), but it re-

sults into the assignment of the same number of visual concepts to all regions. Such an approach is
sub-optimal since different regions in complex real-world images would contain very heterogeneous
information (e.g, some regions contain a lot of information while other may contain much less). To

41

determine which ones should be put into relief, we would like to assign a weight to each region. Actu-
ally, it is exactly what CBS does when it computes the level of sparsity dRi

used in Equation (3.4) on
each regions before the pooling. It automatically introduces a constraint at a local scale, that serves as
a weight reflecting the level of information of the region. It results into our main contribution namely
“Constrained Local Semantic Features” (CLSF), formulated by:

ζ({xRi
}i=1...N) = P

i=1...N
(ζCBS(xRi

)). (3.5)

The sparsification of each region is thus computed by the proposed content-based sparsity defined by
Equations (3.1) and (3.3), resulting in the assignment of a sparsification-level dRi

for each regionRi.
An illustration of our constrained local scheme compared to the common one is depicted in Figure 3.4.

The performance of the proposed constrained local scheme is quite correlated to the used region-
detector – that determines the regions Ri. In [245], we proposed a simple strategy, inspired by
SPP [96], consisting in extracting the full image as regionR0 and choosing followingRi>0 according
to regular grid at a smaller scale. The rectangular regions overlap such that, even if an object is cut,
a more significant part will be present in at least one region (than in the case of SPP with contiguous
regions). As an extension to our previous work [245], here, we also evaluate the robustness of our
method to different region-detectors of the literature.

3.2 Diverse Concept-Level Semantic Features

3.2.1 Introduction

Most semantic representations in the literature [22, 81, 112, 115, 252] consider visual concepts inde-
pendently from each other whereas they are often linked together by some (semantic) relationships
(i.e., hyponymy, hypernymy, exclusion, etc.). An exception is the work of Bergamo and Torresani [21]
that introduces “meta-classes” to address this aspect. Those meta-classes are “abstract” categories
(i.e., do not really exist in the real-world) that capture common properties among many object classes.
They are built using spectral clustering on low-level features of images among a set of categories. The
restrictive assumption of this method is the dependence of the meta-class learning to the visual low-
level features. For instance, it leads to irrelevant meta-classes when low-level features fail to capture
the dissimilarity between different categories, making this method a “bottom-up” scheme.

The classical formulation of semantic features exploits all classifier outputs [21, 22, 115, 252], but as
described in the previous secttion (3.1.2), forcing the semantic representation to be sparse (by setting
the lowest values to zero) can be beneficial both in terms of scalability and performance [81, 112].
Nevertheless, semantic representations with a large set of concept detectors often contain a high
number of visually similar concepts to describe the same object. For instance, the right image of
Figure 3.5 would be predicted by using a semantic feature as a palm cockatoo, but also a cockatoo,
a parrot, a bird, a vertebrate, and so on, inducing redundant information in the final representation.
As far as a human is concerned, he would categorized this image as a bird, an animal and maybe a
palm cockatoo, if the human is a bird-expert. In fact, cognitive studies such as those of Rosch [214]
and Kosslyn [118] showed that a human tends to categorize an object through three categorical-levels
(i) basic-level, (ii) superordinate, and (iii) subordinate. As depicted in Sec. 2.2.5, they are the most
important concept types used to categorize objects.

42

In this contribution, we take into account the relations between concepts using human existing knowl-
edge, such as semantic hierarchies (e.g., WordNet [168]), which makes our approach a “top-down”
scheme. More precisely, our main contribution consists in identifying three types of concepts into an
existing hierarchy, according to their categorical level, then processes them differently to design the
semantic representation. It is nevertheless not easy to determine to which categorical-level a concept
belongs to. Hence, we propose a method to identify the three groups in practice, for a given super-
vised classification problem. The proposed semantic representation is named Diverse Concept-Level
features and is denoted D-CL.

Compared to bottom-up approaches, an advantage of the proposed top-down scheme appears when
the concept detector fails at the subordinate level (e.g. the concepts cockatoo and parakeet are highly
activated), which is often the case since the category is finer thus harder to identify. In that case, our
descriptor at least captures basic-level and superordinate concepts (e.g. bird and animal), making the
full representation more robust for classification problems. Moreover, the proposed representation
contains only useful concepts (from the three categorical levels), which avoids redundant information
that disturbs the image classification. The whole method is described in details in Sec. 3.2.2.

We validate the proposed D-CL representation (in Sec. 3.2.3), in a multi-object classification task
through Pascal VOC 2007, Pascal VOC 2012 and Nus-Wide Object. The experiments show that the
proposed approach obtains better results than seven state-of-the-art semantic representations.

3.2.2 Proposed Method

3.2.2.1 Diverse Concept-Level Features

We recall that a semantic representation is a C-dimensional vector ζ(xI) = [ζ1(xI), . . . , ζC(xI)]
extracted from an image I , itself described by a mid-level feature xI . The feature xI could be any
image descriptor such as Bag-of-Word or Fisher Kernel [197] features, but also mid-level features
such as that obtained from a fully-connected layer of a convolutional neural network. Each dimension
ζi(xI) of the semantic representation is the output of a classifier for the concept ci evaluated on xI .

While the concepts ci are potentially linked together by some semantic relationships, most of works
consider them independently [22, 81, 112, 115, 252]. A notable exception is the work of Bergamo
and Torresani [21] that takes into account relations between categories through a “bottom-up” scheme.
However, their method can lead to irrelevant identification of relations when the low/mid-level fea-
tures used fail to capture the dissimilarity between different categories. To cope with such a limitation,
we propose to rely on existing human knowledge regarding the relations between concepts. Such a
knowledge is, for instance, reflected into existing hierarchies such as WordNet [168] that organizes a
large set of concepts according to “is-a” relationships, that is to say by defining hyponyms and hyper-
nyms. An advantage of our approach is to remove the dependences to the basic visual descriptor and
to introduce human-based information within the process of image representation design.

All the concepts considered in semantic features are named according to existing categories. Once
again, the name of a category is given according to a human judgment, and the exact choice of the
word used is far from being neutral, as a large literature has shown it, both in Psychology [118, 214]
and Computer Vision [54, 163, 189]. More precisely, they showed the importance to differentiate
several levels of categories:

43

Figure 3.5: Illustration of concepts that our D-CL representation would predict, for two different
images. It select concepts from different categorical levels of a semantic hierarchy, i.e., superordinate,
basic-level and subordinate concepts.

Figure 3.6: We propose a semantic representation that computes the concepts presence differently
according to their categorical level. For an input image (a) with multiple objects, state-of-the-art
semantic features (b) would output the concepts illustrated in black and miss useful concepts, such
as person and bicycle. In contrast, the proposed scheme (c) captures properties of the image that
are useful for categorization, e.g. superordinate (brown), basic-level (gray) and subordinate (blue)
concepts, making the representation more relevant. Best viewed in color.

• Basic-level concepts are the terms at which most people tend naturally to categorize objects,
usually neither the most specific nor the most general available category but the one with the
most distinctive attributes of the concept.

• Superordinate concepts are categories placed at the top of a semantic hierarchy and thus dis-
plays a high degree of class inclusion and a high degree of generality. They include basic-level
and subordinate concepts.

• Subordinate concepts are found at the bottom of a semantic hierarchy and display a low degree
of class inclusion and generality. As hyponyms of basic-level concepts, subordinate categories
are highly specific.

44

At the core of our proposal to design a feature representation, concepts are processed differently
according to their categorical level. This asymmetrical process is based on a cognitive study proposed
by [118] where they conclude that, concepts are processed differently by humans, i.e., it is purely
perceptual for the basic-level and subordinate concepts, while it is inferred using stored semantic
information, for superordinate concepts. In our scheme, basic-level and subordinate concepts are
computed through a visual process, while superordinate concepts are processed semantically using
the hyponym relations between concepts into hierarchies. Figure 3.5 illustrates for two input images,
the three types of concepts that would be retained by our scheme.

More precisely, for an input image I , the probability of a basic-level or a subordinate concept is the
output of a binary classifier (φVi (xI)) for the concept ci evaluated on the mid-level feature xI , further
normalized by a sigmoid function such that 0 < φVci(·) < 1. The binary classifiers, that we name visual
classifiers in the following, have been learned using images of the concept ci as positive samples and
images of a diversified class as negative samples. Each concept classification model φVci(·) is obtained
with L2-regularized linear SVM, but other linear models could be used. Regarding the process of
basic-level and subordinate concepts, even if it is similar, a particular difference is that, all basic-level
concepts are selected in the final representation, while for subordinate concepts, we select only the
most salients. This particular process for subordinate concepts avoids redundancy of information, due
to the fact pointed in [214] that there is more concepts at a subordinate level than at the basic-level.

Concepts (ci) at the highest categorical level (superordinate) are computed, for an input image,
through a semantic classifier. It is an inference of concepts that have at least one hyponym rela-
tion with the superordinate concept (ci). We thus define the subsumption function that aims to output
the set of concepts having hyponym relations with an input concept. We further, define the semantic
classifiers that are used to compute superordinate concepts.

Definition 1. A subsumption function ς(·) takes as input a concept ci and a semantic hierarchy H
with hyponymy relations and outputs a set Ci of concepts that are subsumed by the concept ci, i.e.,
the concepts that have an hyponymy relation with the concept ci in the semantic hierarchyH.

Definition 2. Considering xI ∈ RN a N-dimensional mid-level representation extracted from an
image I . A semantic classifier is an operator that predicts the probability of presence of a con-
cept ci in the image through a semantic inference of purely visual output classifiers: φSci(xI , Ci) =
max(φVC1(xI), · · · , φVCM (xI)), where Ci is the set of concepts subsumed by concept ci, M = card(Ci)
and φV (·) is the output values given by visual classifiers.

Finally, the proposed “Diverse Concept-Level” (D-CL) representation computes superordinate con-
cepts through a semantic classifier and all other concepts, i.e. basic-levels and subordinates, using
visual classifier. It also selects all basic-level and superordinate concepts and retains only the most
salient subordinate concepts. Formally, let us denote N the set of all concepts associated to a seman-
tic hierarchy, BL the set of all basic-level concepts, P the set of superordinate concepts, B the set of
subordinate concepts and BK the set of the K most salient subordinate concepts for each input image.
Note that, N = P ∪ BL ∪ B. Each dimension ζDCL

i (xI) of the D-CL representation ζDCL(xI) is a
concept detector computed through:

45

Figure 3.7: Illustration of the asymmetric process in our representation. Superordinate concepts are
processed semantically through semantic classifiers, while basic-level and subordinate concepts are
visually processed through binary classifiers. Stars and zeros represent output values ζi(·) of each
concept of the D-CL representation ζ(·). Note that, concepts are grouped by categorical levels, but
any order could be obtained in a real scheme.

ζDCL
i (xI) =

φSci(xI , ς(ci)), if ci ∈ P
φVci(xI), if ci ∈ BL ∪ BK

0 if ci ∈ B \ BK
(3.6)

where ς(·) is the subsumption function, φVci(·) the visual classifier, φSci(·) the semantic classifier and
K is a parameter corresponding to the number of subordinate concepts retained in the representation,
that can be set by cross-validation. An illustration of the asymmetric process according to the type of
concepts is presented in Figure 3.7.

3.2.2.2 Identifying Concept Groups in Practice

In this section, we detail how to identify the three groups of concepts (i.e., basic-level, superordinate
and subordinate), in practice, for a given supervised classification problem.

As depicted in Equation (3.6), the D-CL representation is computed by activating all the basic-level
concepts, all the superordinate concepts, the K most salient subordinate concepts and by deactivating
all others. Let ζDCL(xI) be the D-CL representation of a mid-level representation xI extracted for an
image I contained in a targeted dataset. Let Dd be the set of d categories of the targeted dataset.

While basic-level concepts are not available at a large scale, we propose to identify, in an off-line
phase, the set of basic-level concepts (BL) selected in our D-CL representation by matching it with
the set of targeted dataset categories Dd. This latter, is based on the assumption that broader-datasets
mostly contain categories at the basic-level. Specifically, all targeted dataset categories di are matched
with a concept ci fromN to generate a set of basic-level concepts adapted to the dataset BLd. In fact,
this matching has the advantage to make our D-CL representation adaptable to the application context.
Regarding the sets of superordinate P and most salient subordinate BK concepts, they are therefore
automatically selected through the subsumption function ς(·) that takes as input concepts from BLd
and a semantic hierarchyH with “is-a” relations. Formally, the Equation (3.6) becomes:

ζDCL
i (xI) =

φSci(xI , ς(ci)), if ci ∈ Pd

φVci(xI), if ci ∈ BLd ∪ BK

0 if ci ∈ B \ BK
(3.7)

where BLd and Pd are, respectively, the set of basic-level and superordinate concepts adapted to the

46

Figure 3.8: Illustration of the concept groups identification (c) in a practical case, for an input image
(a) contained in a dataset collection. The proposed concept groups identification selects (1) in an off-
line phase (dashed arrow), the concepts of the target dataset categories (Dd) as a portion (BLd) of all
basic-level concepts (BL), (2) the part (Pd) of its superordinate concepts (P) and in a final step (3) the
most salient (BK) subordinate concepts (B). For steps (2) and (3), a semantic hierarchy (WordNet) is
used to compute the hyponymy relations. This latter results in the final D-CL representation (b), to an
activation of diverse concept levels (i.e., superordinate, basic-level and subordinate) and a deactivation
of all other concepts.

targeted dataset Dd. Selecting a portion of the whole concepts, and setting others to zero is closely
related to the sparsification process that sets to zero the lowest output values and keeps activated only
the other concepts. The key novelty of our work is the adaptability of the concept selection to the
input images. Contrary to former work, the sparsity is adapted to each image, according to its actual
content, and relative to the problem of interest.

Our D-CL feature is illustrated in Figure 3.8. It is able to capture from an image containing multiple
objects, all the basic-level concepts (colored in dark green) adapted to the target dataset, all its super-
ordinate concepts (colored in dark red) and the most salient subordinate ones (colored in dark blue).
It results in a final representation capturing the most informative concepts for a target collection of
images.

3.2.3 Experimental Results

In this section we compare our two contributions to each other and we also compare them to the
state-of-the-art methods. More precisely, we first describe (in Sec. 3.2.4) the baseline methods used
for comparison and we precise the datasets on which we perform the comparisons, then, we give the
results of all the methods (ours, baselines and state-of-the-art methods) in image classification (in
Sec. 3.2.4.1) and image retrieval (in Sec. 3.2.4.2). Finally, we discuss (in Sec. 3.3.1) the impact of
each contribution and the differences between them. We also mention their possible complementaries
and provide the most natural way to combine them.

47

3.2.4 Settings

Since both contributions deal with semantic representations, we will mainly compare them to semantic-
based methods of the literature. However, since they are build on top of CNN features, we will also
conduct a comparison to CNN-based features. The following items describe the different baseline
methods used for comparison:

• VGG [228] corresponds to the penultimate fully-connected layer (fc7) extracted from a CNN
pre-trained on ILSVRC [216] (1.2 million images labeled among 1, 000 categories). It results
in a 4, 096 dimensional vector.

• VGG [fc8] corresponds to the extraction of the last layer (fc8) of the pre-trained VGG model.
Since each dimension is associated to a semantic connotation, the representation corresponds
to a semantic representation built on top of the fc7 layer with 1, 000 concept-detectors. The
dimensionality of the vector is 1, 000.

• Semfeat [81] is a semantic-feature trained on top of CNN features (fc7) extracted from the
Caffe network [114]. For fair comparisons, we rebuilt it using the fc7 layer of VGG as basic
features. As in the original work, we use 17, 462 concept-detectors corresponding to classifiers
trained on categories of ImageNet that contain at least 100 images. As in their work, a fixed
sparsification is modeled here.

• Classemes+ is our own implementation of Classemes [252]. While in the original work they
use many hand-crafted features, here we use the fc7 VGG features. This latter, insures a fair
comparison with the different methods. To correctly replicate their methodology, we do not
apply any sparsification.

• Meta-Class [21] is one of the prior semantic representation. It corresponds to the output prob-
abilities of 15, 232 concept-detectors. The representation of images consists of five low-level
features concatenated after the appliance of a spatial pyramid histogram with 13 pyramid levels.
Since the number of concepts is closely similar to other methods and the code is available1, we
use it as it is released.

To extend the comparison, we also report released scores by other semantic-based approaches in the
literature (ObjectBank [115], Picodes [22] and Classemes [252]).

Since our CLSF method models locality and all the baselines does not, we added two baseline methods
that model local information. More precisely, we added VGG+FT+Local and Semfeat+Local that are
both described in details in the two following items:

• VGG+FT+Local [34, 228] corresponds exactly to the work of [34] with the VGG architec-
ture [228]. Hence, it is a VGG network fine-tuned on each target-dataset with data-augmentation
(10 crops per image). On the train and test phases of the target-datasets, each image is aug-
mented 10 times (center crop, four corners and the flip of each of them) and represented by the
fine-tuned fc7 features. A pooling operation is applied to merge the local features.

1http://vlg.cs.dartmouth.edu/projects/metaclass/metaclass/Home.html

48

• Semfeat+Local corresponds to the best semantic features (Semfeat) for which we added the
modelization of local information. Since, in the literature, there is no efficient use of local
information in the context of semantic features, we modeled it with the proposed local scheme
(presented in Sec. 3.1.2.2).

Note that, while all comparison CNN-based features (i.e., VGG, VGG[fc8], VGG+FT+Local, [34,
186, 273, 228]) are learned on training images labeled among 1, 000 categories, the semantic-based
ones (including our proposal based on them) considered in these experiments are learned on 17, 000
categories. Thus CNN and semantic-based features are not directly comparable. However, it should
be noted that, the CNNs could hardly benefit from large available annotated data since it is often quite
difficult to get the convergence with so many categories. Above all, adding a new concept in a CNN
is more difficult since it requires to retrain all the model. On the contrary with semantic features, we
are not limited by the number of categories and, more importantly, it can be learned in an incremental
way (without re-training all other detectors), which is highly desirable to tend toward universality.

Regarding the evaluation of the different methods, it is carried in a transfer-learning scheme with
four publicly available datasets used as target-tasks. More precisely, we used Pascal VOC 2007 [71],
Pascal VOC 2012 [70], Nus-Wide Object (N-W Ob.) [38] and MIT Indoor 67 (MIT-67) [205]. We
perform image classification and retrieval and we precise in their associated sections which datasets
and evaluation-metrics we used. In all cases, for reproducibility and comparability reasons, our eval-
uation is conducted with standard experimental protocols that are described for all the datasets in
Table 4.2.

3.2.4.1 Image Classification Results

In this section we evaluate our both contributions on some of the datasets presented above in an image
classification task. As stated in the introduction of the Thesis, the goal here is to evaluate the increase
of universality compared to a reference method, and more precisely here the comparison is carried
with different image representations (including a reference one, namely Semfeat [81]) in a transfer-
learning scheme. This latter consists to train a representation on a large auxiliary dataset and re-use it
as image representation on many relatively small target-datasets. Hence, images of the target-datasets
are represented by pre-learned image representations of the different methods. Each category of the
target-dataset is learned with a one-versus-all SVM. A cross-validation process is used to estimate
the SVM cost parameter and the α parameter of Equation (3.3). Some reasons of these choices are
mentioned in the introduction of the Thesis.

Since our CLSF method models image locality, it is unfair to compare it with CBS and D-CL. Hence,
we perform two comparison experiments: (i) comparison of all semantic representations that do not
model locality and (ii) comparison of methods that model the locality aspect. For the first experiment,
we compared our CBS and D-CL methods to all semantic representations presented above. For the
second experiment, in addition to the baseline methods, we also compare our method (CLSF) with
the best state-of-the-art ones.

The results for the global-based semantic-feature methods (first experiment) are presented in Ta-
ble 3.2. Our both representations (CBS and D-CL) significantly outperform all the other semantic
representations on the three datasets. The two methods are also significantly better than the reference
Semfeat method (that models a top-K sparsity) which clearly highlights the interest of our structured
sparsity. Moreover, compared to all the baselines, the improvements of the proposed CBS and D-CL

49

Method Nus-Wide Object Pascal VOC 2007 Pascal VOC 2012
(20%) (45%) (30%)

ObjectBank [115] n.a 45.2* n.a
Classemes [252] n.a 43.8* n.a
Classemes+ [252] 70.3 82.4 81.7
Picodes [22] n.a 43.7* n.a
Meta-Class [21] 36.5 48.4 (53.2*) 49.3
VGG-16 (fc8) [228] 67.3 77.4 77.2
Semfeat [81] 74.7 82.8 81.7
CBS (ours) n/a 85.1 83.0
D-CL (ours) 76.0 85.1 83.0

Table 3.2: Comparison of overall performances (mean Average Precision in %) of seven semantic
representation baseline methods with our both methods (CBS and D-CL) that are highlighted in bold.
The evaluation is carried on three datasets: Nus-Wide Object, Pascal VOC 2007 and Pascal VOC
2012. We mention, for each dataset (between brackets), the rate of images in the dataset labeled with
multiple categories. Results marked with * are those reported in the original papers.

methods, are much better on Pascal VOC 2007 than on Pascal VOC 2012 which are themselves better
than on Nus-Wide Object. This result is aligned with the expectation since Pascal VOC 2007 contains
a larger part (45%) of images labeled by multiple categories, compared to Pascal VOC 2012 and Nus-
Wide Object, that contain only 30% and 20%, respectively. Regarding this, the performances of our
methods increase with the level of co-occurrence objects in the dataset. In summary, this experiment
demonstrates that the association of our structured-sparsity with large semantic representation (i.e.,
that contains a huge amount of object-detectors; 17,462 here), aims to take better advantage of the
largeness of the representation than with a top-k sparsity [81].

The results for the second experiment (local-based methods) are presented in Table 3.3. Roughly,
our method achieves better results compared to baseline methods and competitive results compared
to the best state-of-the-art methods. More precisely, CLSF performs better than the VGG base-
line [228] and all semantic representations that do not model local information. Moreover, it also
significantly outperforms the methods that comparably model the locality aspect (VGG+FT+Local
and Semfeat+Local). Note that, the fact that CLSF is better than Semfeat+Local clearly highlights
the impact of the CBS method when applied on local regions. Compared to the best state-of-the-art
methods, in the context of object recognition, we observe that the methods of Simonyan et al. [228]
and Duran et al. [63] achieve very competitive results compared to ours. However, it is important to
consider that in their methods, a large amount (i.e., 64 for [63] and 250 for [228]) of local regions is
extracted per image, while in our scheme, we only extract 6 regions per image. In the next paragraph,
we discuss in more details the cost of the top-performing methods of the literature. The success of
our method is due to the efficient combination of the three proposed contributions (CBS + Local Se-
mantic + FTDG). Notice that our FTDG contribution roughly corresponds to a CNN-features better
than VGG features and is presented in more details in the next chapter. An evaluation of the impact
of each component of our proposal is conducted in Sec. 3.2.5.

It is important to note that, our results are not the best ones of the literature, since many works
reported slightly better results. However, they use costly computational methods. In the following,
we roughly compare the computational cost of their methods with ours. Indeed, in [228], they use
a multi-scale pyramid pooling with five scales, that consists to extract 50 crops per scale, which

50

Method VOC 2007 VOC 2012 N-W Object MIT 67
mAP (in%) mAP (in%) mAP (in%) Acc. (in%)

C
N

N
Oquab et al. [209] 77.7† n/a n/a n/a
Chatfield et al. [34] 82.4† 83.2† n/a n/a
Wei et al. [273] 81.5† 81.7† n/a n/a
Zhou et al. [297] n/a n/a n/a 70.8*‡

VGG [228] 86.1 84.5 71.3 65.8
VGG+FT+Local [34, 228] 86.8 86.0 75.9 69.9
Simonyan et al. [228] 89.7†* 89.3†* n/a n/a
Duran et al. [63] 90.2 88.5 n/a n/a

Se
m

an
tic

VGG [fc8] [228] 77.4 77.2 67.3 48.7
Meta-Class [21] 48.4 (53.2†) 49.3 36.5 35.7 (44.6†)
Classemes+ [252] 82.4 81.7 70.3 58.9
Semfeat [81] 82.8 81.7 74.7 61.5
Semfeat+Local 85.3 85.4 65.4 68.7
CLSF (ours) 90.4 88.6 76.6 74.1

Table 3.3: Comparison of our method (denoted CLSF) with baselines (highlighted in bold) and state-
of-the-art methods on four datasets (including three object recognition datasets and one scene classi-
fication dataset). We separate CNN-based methods (top) and semantic-based ones (bottom). Scores
marked with * were achieved using a large amount of crops per image (250 for [228] and 64 for [63]).
Those marked with † are scores released in the original papers and those marked with ‡ were achieved
using a CNN trained on 3 million scenes.

results in the extraction of 250 crops per image, which is very costly. Moreover, they represent
each crop by pooling the fc7 features extracted from two CNNs, one of 16 layers and one of 19. In
contrast, we obtained 88.6 on VOC 2012 (versus 89.3 for [228]) using only six regions per image
and an architecture of 16 layers, while we get better results on VOC 2007 (90.4 versus 89.7). Very
recently, Yang et al. [281] achieves 92.0 and 90.6 in VOC-07 and VOC-12, respectively. However,
they use the selective search algorithm [257] to extract 1, 500 regions-per-image. More restrictively,
they use bounding box annotations during the learning phase, which makes it clearly incomparable
to our approach. Less restrictively, Duran et al. [63] proposed a new deep-learning method that
incorporates top instance and negative evidence insights using image labels only. They obtained
top performances on many datasets (including 90.2 on VOC-07 and 88.5 on VOC-12). However,
they represent images with the features obtained after the fine-tuning (on each target-dataset) of a
CNN pre-trained on ILSVRC. They also model local information for their positive/negative instances
selection by using a multi-scale scheme (8 scales) and 8 local regions per scale (4 positives and 4
negatives), resulting in 64 extractions per image. On our side, our proposal obtains slightly better
results with much less cost computations on target-datasets, i.e., transferring the pre-trained CNN
features without fine-tuning and by modeling the local information with only five regions-per-image.

Regarding the results in scene recognition (last column of Table 3.3), our method has a similar behav-
ior than in object recognition, that is to say, it outperforms all the baselines and the best state-of-the-art
methods. The most competitive result is that of Zhou et al. [297] (70.8) with an Hybrid-CNN, cor-
responding to the combination of two CNNs, one learned for object recognition on the 1.2 million
images of ILSVRC, and another learned for scene recognition on 3.5 million images labeled among
1, 183 scene categories. In contrast, our approach obtains significantly better results (74.1) while we
use only one CNN model that has been trained on objects. Note that, while Duran et al. [63] also

51

report results on MIT 67, here we do not compare our results to theirs since the MIT 67 dataset do
not provide an official train/test split and they do not use the same as us. In fact, with the on-line code
of VGG-16, they achieve an accuracy of 69.9 on their split while we obtain (with the same on-line
code) 65.8 on our split, proving that they use an easier split than the one we use. In summary, the
proposed method obtains very competitive results on Pascal VOC 2012 and achieves state-of-the-
art performances on three benchmarks (Pascal VOC 2007, Nus-Wide Object and MIT Indoor 67) of
image classification, pushing it to one of the best performing approaches of the literature.

3.2.4.2 Image Retrieval Results

In this section we compare the CLSF contribution with the best baseline methods in a context of image
retrieval. Note that, D-CL is not considered in this comparison because the actual method to find the
concept-groups uses the categories of the target-dataset and this is not applicable on the task of image
retrieval (since it is not supposed to contain categories). So, the evaluation in the context of image
retrieval is carried on three datasets and we adopt Average Precision at top K (AP@K) retrieved
results. The final evaluation metric is the mAP@K that corresponds to the average of the AP@K over
all the queries. K ∈ {1, 2, · · · , 100} for VOC-07 and N-W Ob. and K ∈ {1, 2, · · · , 80} for MIT 67,
since only 80 positive-images are available per query. We use cosine similarity to compare the image
representations.

Figures 3.9 gives mAP@K curves for our method, the best semantic representations of the literature
(Classemes+ and Semfeat) and the best CNN-based features (VGG) on VOC-07, MIT-67 and N-
W Ob., respectively. In contrast to image classification, it is in image retrieval context that we can
observe the interest of semantic features, both, on the computational complexity (much lower than
with CNN features) and on the performances that are slightly better than with CNN features. In
addition to have the low computational complexity, the proposed semantic representation significantly
outperforms all the methods (CNN and semantic based).

Semfeat forces a fixed level of sparsification that, consequently, deletes useful concepts and Classemes+
keeps all the dimensions of the representation, that remains to consider noisy concepts in the final fea-
ture. In contrast to these methods, ours applies an effective cooperation of local representations and a
CBS that deletes non-informative concepts on the final features, which explains the above phenomena
of performance.

3.2.5 In-Depth Analysis

Analysis of Constrained Local Semantic Features

In this section, we describe the implementation details of our method, then we conduct three experi-
ments that highlight some insights of our method. More specifically, we evaluate the impact of each
component of our method, then we systematically evaluate the correlation between the semantic rep-
resentations and the mid-level ones used to build them and finally, we conduct an experiment that
shows the robustness of our approach to the chosen region-detector.

52

Figure 3.9: Results (mAP@K) of the proposed CLSF method on image retrieval through Pascal
VOC 2007 (left), MIT Indoor 67 (middle) and Nus-Wide Object (right) datasets. Our method is
compared to the two best semantic-based methods and the best CNN-feature of the literature, e.g.,
Classemes+ [252] and Semfeat [81] for semantic-based methods and VGG [228] (in dashed line) for
CNN-feature. Best view in color.

3.2.5.1 Implementation details

Semantic representation learning: To build our semantic representations, we followed the imple-
mentation of [81]. More precisely, the semantic representation is built using ImageNet [53] concepts
that have at least 100 associated images, resulting in C = 17, 462 concept-detectors. When learning
the classifiers φrawci

(xI), we use images representing the concept as positive samples and images from
a diversified class as negative ones. This negative set contains images of ImageNet-concepts not con-
sidered to build the semantic representation (i.e. the concepts are not in C). We used a ratio of 1/100
between positive and negative samples to learn the detectors, this ratio having been determined em-
pirically as a good compromise between the resulting performance and the computational complexity.
To learn each concept-detector φrawci

, we use L2-regularized linear SVM.

CNN-Features: The proposed method can be applied to a semantic signature built on top of any
mid-level representations. However, the quality of the semantic representation directly depends on
that of the mid-level ones used. We thus created semantic representations on top of a competitive
mid-level CNN representation released in the literature, namely VGG-Net [228]. More precisely, the
CNN representation used corresponds to the extraction of the penultimate fully-connected layer (fc7
layer) from a CNN learned on ILSVRC 2012 dataset [216] (containing 1.2 million images labeled
among 1, 000 output categories), which results in 4, 096 dimensional vectors.

Region-Detectors: Here, we proposed a simple strategy inspired by SPP [96], consisting to extract
the full image as region R0 and choose following Ri>0 according to a regular grid (four corners and
the center) at a smaller scale (2/3 of the size of the original image). The rectangular regions overlap,
such that even if an object is cut, a more significant part will be present in at least one region (than in
the case of SPP with contiguous regions).

3.2.5.2 Impact of Each Component of Our Method

In this section, we evaluate the impact of each component of the proposed approach and compare
it to the best semantic baseline (i.e, Semfeat [81]). To do so, we first isolate each component of
our approach and evaluate the performances of each of them and their different combinations. More

53

Method CBS SPP FTDG VOC-07 MIT-67

Semfeat [81] 7 7 7 82.8 61.1
CSF 3 85.1 63.6
LSF 3 85.3 68.7
SF-FTDG 3 88.1 71.7
CLSF 3 3 88.2 71.6
CLSF-FTDG (CLSF+) 3 3 3 90.4 74.1

Table 3.4: Evaluation of the contribution of each component of the proposed approach through Pascal
VOC 2007 (VOC-07) and MIT Indoor (MIT-67) datasets. The first row corresponds to the baseline
(i.e., best semantic representation of the literature [81] that models the sparsification in a fixed manner
and does not consider local information). The three next rows show the results of each individual
contribution and the two last rows correspond to the different fusion schemes of the contributions.
Note that, since FTDG is a method to improve CNN-features, it is presented in the next chapter.

specifically, our proposal contains three elements that correspond to the content-based sparsity (CBS),
the local scheme for semantic features (SPP) and the diversified mid-level representation used for
the building of semantic features (FTDG). Since this latter is a contribution in the context of CNN-
features, it is presented in Section C.1.1 of the Appendix, but it roughly corresponds to a better
mid-level representation than those used to build semantic representations.

The Semfeat baseline corresponds to the case where none of the three components is used (line 1 of
Tab. 3.4). Selecting each of them independently results in: (i) a constrained semantic representation
(CSF) when we select CBS, (l. 2 of Tab. 3.4) (ii) a local semantic representation (LSF) when we
select SPP (l. 3 of Tab. 3.4) and (iii) a semantic representation based on a diversified mid-level feature
(SF-FTDG) when we select FTDG (l. 4 of Tab. 3.4). Fusing the different components, results in:
a constrained local semantic feature (CLSF) when we fuse CBS and SPP (line 5 of Tab. 3.4) and
a constrained local semantic features based on a diversified mid-level features (CLSF+) when we
combine CBS, SPP and FTDG (last line of Tab. 3.4).

The results are presented in Table 3.4. The first line corresponds to the baseline method, the three next
lines represent the methods that consist of the selection of each component individually and finally
the last two lines represent the different fusion schemes. We can clearly see that each individual
component is better than Semfeat. More precisely, the content-based sparsity (CBS) obtains 85.1
and 63.6 while the fixed sparsity modeled in Semfeat obtains 82.8 and 61.1, making it much better.
The proposed local scheme (LSF) as well as the diversified mid-level representation used to build
semantic representations (SF-FTDG) considerably improve the performances compared to Semfeat.
Regarding the different fusion schemes, the proposed CLSF obtains 88.2 and 71.6 on VOC07 and
MIT67 and when we compare it to the LSF method (that obtains 85.1 and 63.6, resp.) we observe that
the proposed local scheme associated to CBS is clearly better than the one associated with the fixed
sparsity [81]. We also observe that the improvement given by the proposed CBS in a local scheme is
slightly better than in a global scheme – i.e, CLSF is 3 points better than LSF while CSF is only 2.4
points better than Semfeat – making the CBS much interesting in a local scheme. Adding the FTDG
contribution to CLSF (CLSF-FTDG) still improves the performances (compared to CLSF), indicating
that using a better mid-level representation combines well with our proposal.

This ablation study shows that each of the proposed contributions brings an improvement over Sem-

54

Method
Pascal VOC 2007

mAP (in %)
Overfeat [224] Caffe [114] VGG [228] FTDG (ours)

CNN [fc7] 72.0 76.3 86.1 88.9
CNN [fc8] 71.2 75.0 77.4 88.2
Classemes+ [252] 72.2 72.4 82.4 88.2
Semfeat [81] 73.6 76.0 82.8 88.1
CLSF (ours) 78.4 80.5 88.2 90.4

Table 3.5: Evaluation of the impact of CNN features (Overfeat, Caffe, VGG and FTDG) used to
build semantic representations (Classemes, Semfeat and CLSF) on a transfer-learning scheme over
the VOC 07 dataset.

feat. By combining all the contributions, we obtain a jump in performance. These results show the
complementarity natures of the different contributions.

3.2.5.3 CNN Features Sensitivity

To our knowledge, it has never been directly showed that mid-level features used to learn the base
classifiers impact the performances of semantic features. In this section we perform this empirical
demonstration. More precisely, we compare the performances (on Pascal VOC 2007) of the semantic
representations based on the different CNN architectures (Overfeat [224], Caffe [114], VGG [228]
and VGG-FTG). Overfeat and Caffe have a similar architecture since both of them are a derivative of
the reference AlexNet network [132]. The VGG group [228] proposed a more performing network
that differs from the former ones by its depth that contains 16 layers, instead of 8. FTDG is described
in Section C.1.1, but it roughly corresponds to the penultimate layer extracted from a VGG network
learned on a large and diverse set of categories. For all features, we use the same implementation
details as depicted in section 3.2.5.1.

Results reported in Table 3.5 show that semantic representation performances are directly related to
the quality of CNN features. For all the semantic methods, best performance is obtained with FTDG
followed by VGG, Caffe and Overfeat. In addition, the comparison of the semantic features based on
FTDG and those based on VGG means that the transferability of the CNN features directly impacts
those of the semantic features. Equally important, the proposed semantic representations get more
performance than all others, regardless the CNN representations used to build them. Moreover, since
other CNN features are easy to plug into the proposed pipeline, it will be easy to make it evolve in
order to take advantage of progress in deep learning architecture design. This latter analysis greatly
validates the robustness of the proposed semantic representation to the different CNN features used
to build it.

3.2.5.4 Region Detector Robustness

An important part of our method is the strategy to choose which local regions (which location, which
size, which form, etc.) to extract from each image. In fact, for the CLSF method (described in
Sec. 3.1.2.2), we employed a fixed grid inspired by SPP all over the paper in order to demonstrate the
constrained locality property of the proposed CBS method in a local scheme. Here, we evaluate the

55

Region Detector #Regions per Image Pascal VOC 2007
(average) mAP (in %)

EdgeBox-100 [55] 100 87.7
EdgeBox-10 [55] 10 88.3
USOD [293] 1.29 88.3
USOD* (custom) 1.29 90.0
SimpleGrid 6 90.4
SimpleGrid + USOD* 7.29 90.6

Table 3.6: Evaluation of the effects of the region detector used in the CLSF+ method on Pascal
VOC 2007 dataset. Second column indicates the average (over the whole dataset) number of regions
extracted per image, while the last column presents the obtained results.

sensitivity of our method (through the VOC07 dataset) to the following region-detectors:
- SimpleGrid is a scheme inspired by SPP [96] where the full image is taken and 5 local regions
are extracted according to regular grid at smaller scale (2/3 of the full image). Unlike SPM, we use
overlapping rectangular regions to reduce the risk of cutting the objects represented in the image,
resulting in six extractions per image.
- EdgeBox [55] is an algorithm for generating object bounding box proposals based on edges. We
used it as it is released and set the parameters α to 0.65 and β to 0.55. The number of regions per
image is also a parameter, thus we tested for 10 and 100 regions.
- USOD [293] is a very recent method of unconstrained object detection using CNNs. This method
has the desirable property to detect very small objects and outputs a content-based number of salient
regions. We used the online code with default parameters and it remains to an average of 1.29 regions
per image.
- USOD* is our customization of USOD. Regions that have one side smaller than 224 pixels, are
extended until we get 224 pixels (similar to add context) on the smallest side. The highest side is set
using the height/width ratio of the initial extracted region.
- SimpleGrid+USOD* is the combination of regions extracted from the SimpleGrid and the cus-
tomized USOD schemes. In practice, it remains to an average of 7.29 regions extracted per image.
This combination has the desirable property to extract big objects through the SimpleGrid scheme
and small objects with the USOD* algorithm.

Results of our approach using each region detector are presented in Table 3.6. First, EdgeBox is quite
bad compared to other detectors, especially when we take 100 boxes. This is due to the fact that 100
regions per image is high and thus, it certainly contains a lot of noisy information. But our method
does not highly distort the results (−0.6 point compared to EdgeBox-10). This is mainly due to the
CBS part of our method that desirably neglects regions without relevant information. On the contrary,
with USOD or EdgeBox with a small number of regions, CLSF+ obtains 88.3 which is lower than the
results of USOD* or SimpleGrid (respectively 90.0 and 90.4).

First, USOD* gives better results than USOD because of the pixelization limit of this latter. In fact,
USOD tends to extract very small regions but when they are passed through the CNN for mid-level
feature extraction, the regions are re-sized to 224× 224 (CNN constraint), which highly pixelizes the
images. The proposed customization USOD* extracts bigger regions through the consideration of the
context when USOD outputs small ones. Second, SimpleGrid gives high results compared to other
region detectors. This is mainly due to the small and weakly-overlapping regions taken from the whole
image which cover all the content of the image. But it still has a limitation which is the possibility to
extract regions without information and thus disturbing the final representation. However, thanks to

56

the CBS module in our method, we neglect these noisy regions and do not consider them in the final
representation.

Finally, this experiment globally shows that our method is quite robust to the bad region-detectors,
since it does not highly distort the performances and reacts in a good way with good region-detector
algorithms.

Analysis of Diverse Concept Level Semantic Features

We describe the implementation details of our method, then we conduct two experiments that high-
light some insights of it. More specifically, we first conduct an experiment that shows the interest of
the proposed semantic classifiers (for the superordinate concepts) compared to the traditional visual
classifiers, then we systematically evaluate the correlation between the concept-groups selected and
the performance of the final semantic representation.

3.2.5.5 Implementation details

D-CL learning: To build our base semantic feature, we follow the implementation of Ginsca et
al. [81]. Indeed, we used ImageNet [53] to learn the different semantic classifiers. We especially
use a subset of ImageNet that contains 17, 462 concepts. It has been obtained from the set of 22, 000
concepts of ImageNet after the selection of only the categories that contain more than 100 images.
Hence, each individual concept detector is then learned using images representing the concept ci as
positive samples, and images from a diversified class as negative samples. Note that, the concepts can
be placed at any categorical-level of a semantic hierarchy, making our method applicable on top of
any semantic representation.

CNN feature: Semantic representations (including the proposed D-CL), are built on top of any low-
level or mid-level features (CNN). However, the quality of the D-CL representation will directly
depends on the low/mid-level feature used. We thus created semantic features on top of a competitive
mid-level representation released in the literature, namely VGG-Net [228]. It is extracted from the
last fully-connected layer (layer 16) of a Convolutional Neural Networks (CNN) learned on ILSVRC
2012 dataset [216] (containing 1.2 million images labeled among 1, 000 output categories), resulting
in 4, 096 dimensional vectors. Note that, for a fair comparison, the same mid-level representation is
used to build Classemes+ [252] and Semfeat [81]. For our study, fine tuning of the CNN may result
into an improvement of the results at the cost of significant computational cost and the possible use
of additive data. Such a specific optimization of the CNN has not been considered in our experiment,
to insure their reproducibility with the available CNN models.

Concept Groups Identification: As depicted in Sec. 3.2.2.2, the set of basic-level concepts (BLd
in Equation (3.7)) is matched with the set of targeted dataset categories, for each dataset. Since all
the concepts of ImageNet are organized in accordance to the WordNet [168] hierarchy, we use it
as input to the subsumption function φ(·) to select the corresponding superordinate concepts (Pd in
Equation (3.7)). Specifically, only the first and the fourth level of the WordNet hierarchy are used.
This avoids redundancy of semantically close superordinate concepts. In fact, those levels contain
the most popular superordinate concepts employed in cognitive experiments [118, 214, 248]. For the
set of the K most salient subordinate concepts (BK), the parameter K of Equation (3.7), is cross-
validated on each training dataset using the usual train/val split.

57

Superordinate Basic-level concepts Visual Semantic (↑)
concepts mAP (in %) mAP (in %)

Animal bird - cow - dog - horse - sheep 92.9 97.7 (+4.8)

Elec. equip. tv monitor 52.1 72.6 (+20.5)

Furniture chair - sofa - table 70.0 74.9 (+4.9)

Person person 77.2 85.7 (+8.5)

Plant potted plant 26.5 40.5 (+14.0)

Vehicle airplane - bike - boat - bus - car -
mbike - train

93.4 96.9 (+3.5)

Vessel bottle 18.7 31.4 (+12.7)

mAP 61.5 71.4 (+9.9)

Table 3.7: Evaluating purely visual binary classifiers (denoted as “Visual”) and our proposed semantic
classifiers (denoted as “Semantic”) for superordinate concepts (first column) of Pascal VOC 07 dataset
classes (second column). The improvements of semantic classifiers over visual classifiers are shown
in parentheses. Note that, the class person of Pascal VOC 2007 is already at the highest level in the
WordNet hierarchy.

3.2.5.6 Accuracy of Semantic Classifiers

In this section, we assess the effectiveness of the proposed semantic classifier (φS(·) of Equation 3.6),
and compare it with purely visual classifiers, i.e., binary classifiers (φV (·) of Equation 3.6) on generic
concepts (i.e. concepts that have at least one hypernym relation with another concept).

This analytic study is an analogy to the experiment conducted by the cognitive works of Stephan
Kosslyn [118]. More precisely, they wanted to provide a converging evidence that superordinate con-
cepts are semantically processed by humans, rather than by a visual perception processing. Thus, to
respect the analogy with [118], we evaluate the proposed semantic classifier and the visual classifiers
on superordinate concepts only.

Regarding our experiment, the selection of superordinate concepts imposes, in the Equation 3.7 of the
proposed D-CL representation, to set to zero all the basic-level and subordinate concepts (φVi (x) = 0,
∀ci ∈ BLd ∪ BK). Thereby, the experiment has been conducted on the context of multi-class object
classification through the Pascal VOC 07 dataset. All the images of the dataset have been re-labeled
at superordinate level, e.g. all images labeled as bird, dog, cow, horse or sheep are now labeled as
animal, all images labeled as chair, sofa or table are now labeled as furniture, etc (see first and sec-
ond column of Table 3.7 for the re-labeling of other classes). Hence, we learn each superordinate
class of the dataset by a one-vs-all SVM classifier. The cost parameter of the SVM classifier is op-
timized through cross-validation on the training dataset, using the usual train/val split. Performance
results of both classifiers are reported in Table 3.7 using average precision (AP in %) for each class
and mean Average Precision (mAP in %) over all classes in the last row. The second column of the
table corresponds to the basic-level categories of the dataset and the first column corresponds to the
list of selected superordinate concepts in our D-CL feature. The average precision of each superor-
dinate concept computed through binary classifiers (denoted as Visual) and the proposed semantic
classifier (denoted as Semantic), are presented in the last two columns, respectively. Remarkably, the

58

Concept Groups
Selection

P BL B BK mAP

Superordinate 3 44.4%

Basic-level 3 76.1%

Subordinate 3 82.1%

K-Subordinate 3 78.9%

Fusion 1 3 3 3 82.7%

Fusion 2 (D-CL) 3 3 3 85.1%

Table 3.8: Evaluation of the contribution of different concept groups selection (check-mark = selected
group) in the proposed semantic feature on Pascal VOC 2007 dataset.

proposed semantic classifier clearly outperforms binary classifiers (purely visual) for all the superor-
dinate concepts. From this study, we conclude that the superordinate concepts are better recognized
by D-CL, due to its ability to compensate low within-category resemblance of generic concepts. The
most surprising aspect of this experiment is that it shows, as concluded by the analogical cognitive ex-
periment of Stephan Kosslyn [118], that semantic process is most adapted than purely visual process
for superordinate concepts.

3.2.5.7 Concept Groups Selection Sensitivity

We now evaluate the contribution of the concepts from different groups (i.e. categorical levels) on
a multi-object classification task (Pascal VOC 2007). To this end, we need to isolate each group of
concepts in the D-CL representation by selecting them individually and setting other groups to zero.
It results in four special cases of the D-CL representation (Equation 3.7), (i) selecting only superor-
dinate concepts (∀ci ∈ Pd ∪ B, φ(ci) = 0) denoted as “Superordinate”, (ii) selecting only basic-level
concepts (∀ci ∈ Pd ∪B, φ(ci) = 0) denoted as “Basic-level” (iii) selecting only subordinate concepts
(∀ci ∈ Pd∪BLd, φ(ci) = 0), denoted as “Subordinate” and (iv) selecting only theK most salient sub-
ordinate concepts (∀ci ∈ BK), denoted as “K-Subordinate”. We also evaluate the contribution when
selecting all the concept groups in the representation (∀ci ∈ Pd ∪ BLd ∪ B, φ(ci) 6= 0 in Eq. 3.7),
e.g., superordinate, basic-level and subordinate concepts, denoted as “Fusion 1”. Finally, we report
the results obtained by the proposed D-CL concept groups selection (as depicted in Sec. 3.2.2.2), cor-
responding to the selection of, all the superordinate and basic-level concepts and the K most salient
subordinate concepts. It is also a fusion of other groups of concepts that we denote as D-CL. Results
are reported in Table 3.8. For each concept group selection, a check-mark represents the concept
groups that had been selected in the final representation. The last column gives the mAP obtained for
the different concept selections. Note that, the K parameter of Equation 3.7 has been cross-validated
for the “K-Subordinate” and “D-CL” concept group selections.

Obviously, selecting only superordinate concepts (P) leads to very bad results, compared to basic-
level concepts only (BL), which are their-self lower than subordinate concepts only (B). Selecting
only the K most salient subordinate concepts (BK) obtains lower performances than selecting them
all. Surprisingly, for the fusion, it is better with the selection of the K most salient concepts (the
proposed D-CL) than with the selection of all subordinate concepts (Fusion 2). This experiment
shows that the proposed D-CL selection gives a most effective semantic representation.

59

3.3 Conclusions

In this chapter, we introduced two novel methods of sparsification for semantic representations. Both
methods aim at decreasing the noise generated by the large set of detectors in semantic represen-
tations. In contrast to existing works, which perform sparsification for novel images regardless the
image content, both methods perform a structured sparsification based on the image content. More
precisely, the Content-Based Sparsity (CBS) consists of an adaptive sparsity according the image
and/or the local region content that is modeled through the entropy and the confidence of the output
classifiers. The second contribution named Diverse Concept-Level (D-CL) consists of the exploita-
tion of human knowledge (such as categorical-level categories modeled in semantic hierarchies), to
identify groups of concepts, to consider (when not considered) some particular concept in the final
representation. This latter, processes the groups of visual concepts differently from each other, accord-
ing to their categorical-level belonging. Simply said, our schemes tend to output only the informative
concepts (through the structured sparsity) in the final semantic representation.

The evaluation of the two methods is carried out for classification and retrieval tasks and is compared
to the state-of-the-art semantic representation methods. Both proposed methods outperform existing
semantic representations.

This work direction aims at better handling the increase of the amount of detectors and thus con-
tributes to increase the universality of semantic-features.

3.3.1 Complementaries of the Two Contributions

CBS and D-CL methods contribute to increase the universality of semantic-features, since they both
perform a structured sparsity that aims at considerably decreasing the noise (i.e., noisy object acti-
vations that the semantic features output when computed on images) introduced by the large amount
of detectors. Hence, this latter aims to take full advantage of the largeness of the amount of detec-
tors, which thus, pushes our two methods to quite important methods for the approach that consist
to enlarge the amount of detectors for increasing the universality of semantic-features built on top of
CNN-features with a bank of independent SVM classifiers.

The two methods have similar performances on the target-datasets used for evaluation. However,
they are quite different and have different advantages and disadvantages. The advantage of the CBS
method lies in its ability to automatically compute, for a given image, the right amount of object
activations to keep in the representation. However, by construction, CBS always outputs the top
detections of the semantic features and ignores all other activations. For example, it is important
to consider that generic detectors (detectors of dog, car, bird, etc.) output much lower values than
specific ones (detectors of rottweiler, malinois, german shepherd, etc.) because of the intra-class
variance property of their categories. Indeed, the dog category contains dogs from several breeds and
thus contains diverse images, that thus results in a much higher intra-class variance than the breed
of dog category, which contains only images of that breed of dog. As said in Sec. 2.2.5, different
intra-class variances cause different behaviors on the learning-algorithm and thus different classifiers.
In that case, the resulting behavior is that specific detectors output much higher values than generic
ones. Thus, when we apply a top-k sparsity (fixed or adaptive), we empirically observed that it always
selects the specific ones. This is an important drawback in the context of multi-object classification,
since it generally selects the concepts of the largest objects in the image and misses all those of the

60

smaller objects around it. The D-CL method fixes this drawback since by construction it always
considers the generic concepts. Moreover, the generic concepts are also boosted, which fixes the non-
desirable behavior of the classifiers that output low values for generic concept-detectors. However, D-
CL adopts a fixed sparsity scheme, which thus has all the drawbacks of the fixed top-k sparsity method.
Hence, in order to take full advantages of both methods, in the future, we plan to combine them
through the most natural way that consists to apply an adaptive sparsity to the well structured sparsity
of D-CL. Moreover, an other drawback of D-CL is its dependence to the identification technique of
the concept-groups. Thus, we need to investigate how to automatize this selection of concept-groups,
as we automatized the selection of the “good” concepts in the CBS scheme. In any case, we have two
adaptive sparsification methods, according to different criteria and not necessarily compatible, so it is
not obvious to combine them naively.

3.3.2 Discussion About Semantic-Features

CBS and D-CL methods are two universalizing methods in the sense that they take full advantage
of the largeness of the amount of detectors both from its quantitative and qualitative part. Indeed,
considering a large denoised set of detectors gives the ability to the resulting representation to cover
efficiently a wide variety of targeted domains. Moreover the two approaches also improve the uni-
versality of the representation by adding more relevant semantics to the obtained representation but
on different aspect of semantics (implicit versus explicit or extensional versus intentional). The CBS
method, by taking into account the content of images, leads to representations that are more tailored
to tackle the perceptual specificity of the targeted domains, i.e., its implicit semantics or extensional
definition of concepts. On the other side, the D-CL method, by adding explicit semantics on human
categorization, i.e. the different kinds of categorization levels, improves the ability of the obtained
representations to tackle the terminological specificity of the targeted domains, i.e., its explicit se-
mantics or intensional definition of concepts. Thus, here, we propose some directions that should
be investigated in the context of semantic representations to increase their universality. We will also
explain why, in this Thesis, we did not focused on the improvement of the universality of semantic-
features but rather that of CNN-features.

The actual semantic representations already contain a huge amount of detectors (17, 462 in our im-
plementation and almost 80, 000 in [81]) and to design them, we already consider a large number
of categories among those usually available in the benchmarks of the literature. This latter, aims
to cover a very wide range of different data. As mentioned before, the most obvious way to learn
more universal semantic representations is to increase their amount of detectors. However, to im-
prove them in this direction, collecting more annotated data (i.e., images and categories) is needed
and can be very costly. A less costly way to increase the amount of data is to get subcategories from
each category, through clustering. However, in an unsupervised scheme, to stay in a semantic con-
text, we should associate a semantic connotation to each cluster that could be difficult. Nevertheless,
annotating only the closest image to the centroid of each cluster is still much less costly than getting
sub-categories through human annotations. More generally, the latter direction consists in better (and
semi-automatically) structuring the available annotated data. This idea is, by the way, one of the core
idea of our next contribution (Chapter 4). The other obvious direction to increase universality of se-
mantic features is to improve the discriminatory power of each individual detector. To do so, we see
two ways, (i) better classifiers – this would suggest to build better learning estimators – and (ii) better
lower-level representations – learn the classifiers on top of more universal representations. This latter
point actually corresponds to the increase of universality of CNN-based representations and will be

61

discussed in details in the next chapter.

Above all we identified some limitations in using semantic features in order to reach our goal of
building universal representations. Semantic representations built with the implementation of Ginsca
et al. [81] – i.e., trained with a bank of independent classifiers on top of a fixed representation –,
give worse transfer performance than those obtained from the last layer of a pre-trained CNN – i.e.,
trained with a bank of dependent classifiers, on top of many trainable representations2. From this,
one may infer that either a set of dependent classifiers is better than a set of independent ones, or
a set of classifiers trained on top of learned representations is better than a set of classifiers learned
on top of fixed representations. This reveals that finding solutions to teach CNNs to solve very large
classification tasks (i.e., with a very large bank of classifiers at the last layer) may be better than
trying to improve the implementation of semantic representations chosen in this Thesis. However,
a more problematic fact is that, semantic representations can only be learned in a supervised way
(i.e., with classifiers trained to predict a given category). Indeed, while this was not directly observed
empirically, it seems that features learned with explicit supervision are not better in terms of transfer
performance than those resulting from implicit supervision (e.g., internal layers of CNNs are more
transferable than the last one [285]). To conclude, features learned with implicit supervision seems
to provide better transferability power than those learned with explicit supervision, thus we will now
focus on the investigation of building representations through the internal layers of CNNs rather than
through semantic features (i.e., last layer of a CNN or an auxiliary bank of classifiers learned on top
of the penultimate layer).

2Note that, in the actual version, one-versus-all learning strategy is considered but a way to avoid this problem could be
to use samples of other categories as negative examples, or even a perceptron rather than multiple independent classifiers.

62

4

Improving Universality using
Discriminative-Problem Variation

Contents
4.1 Multi Discriminative-Problem Networks . 64

4.1.1 Introduction . 64

4.1.2 Proposed Method . 65

4.2 Evaluation of Universalizing Methods . 74
4.3 Experimental Results . 76

4.3.1 Learned Features Analysis . 76

4.3.2 Comparison to State-Of-The-Art Methods 81

4.3.3 In-Depth Analysis . 86

4.4 Conclusions . 92

I n this chapter, we present the core contribution of the thesis, that is a new approach to learn more
universal representations – especially more universal CNN-based representations. The approach

starts from a given reference representation – a set of features learned with a standard learning strat-
egy and a network architecture on an initial discriminative problem – and consists of three modules:
(i) the application of the proposed principle of “Discriminative Problem Variation” (denoted DPV)
to obtain new problems at near-zero cost; (ii) the training of new features on the obtained discrim-
inative problems; and (iii) the combination of the learned features that results into a representation
that is more universal than the original one. Simply said, our approach consists in training multiple
networks on different problems obtained through the principle of discriminative problem variation.
We thus name it “Multi Discriminative-Problem Network” (MulDiP-Net). In this Thesis, we provide
a proof of concept of the approach, with justified choices for each step. We proposed an original con-
tribution for the first and third steps of the approach, as well as a complete experimental protocol and
evaluation-metric to evaluate and thus compare universalizing methods. In Section 4.1, we present
in details our approach (i.e., MulDiP-Net), then in Section 4.2, we describe the general evaluation
protocol for universalizing methods and finally in Section 4.3, we report the experimental results of
our approach in a transfer-learning scheme.

63

Figure 4.1: A universal representation is a set of features learned on a source-task, that leads to
high performances when it is used on a large set of target-tasks (transfer-learning). Let us suppose
a universal representation RA (light gray circle) obtained by a reference method (A) that consists in
training a network (set of features ΦA on a source-problem (bottom gray blob in set of source-tasks)
according to a classical learning methodology. When it is transfered on a large set of target-tasks, it
leads to a high average performance PA on it. Our proposed approach consists in building a more
universal representation RC (orange circle) by: normalizing and combining the features ΦA with
features ΦB obtained from a network trained on the output of a discriminative-problem variation
(SPV) – i.e., starting from an initial source-problem (gray blob), variates it to get a new one (red
blob). Since our method (C) is more universal than (A), it has a higher ranking score according to the
Borda Count metric, that we propose for evaluating the increase of universality (described in sec. 4.2).

4.1 Multi Discriminative-Problem Networks

4.1.1 Introduction

While it is known that learning neural networks with more data (categories and/or images per cate-
gory) leads to representations that have better performances on a set of target-datasets (in a transfer-
learning scenario) – see Table C.1 in Appendix –, it is clearly limited by its cost in terms of adding
annotated data. It would thus be advantageous to get more universal representations with the same
amount of data (annotated images). To reach this goal, two aspects could be considered: improving
the learning approach or improving the data on which it is applied (referred in the previous chapter
as problem of better structuring the available annotated data). The first point has been extensively
explored. In particular, many works proposed better optimization algorithms [126, 99], network ar-
chitectures (deeper, wider) [289, 237, 97], activation functions [277], regularization [232], normal-
ization [110], and much more. Most of these works use the ILSVRC (or the Place305) datasets to
learn the CNNs. On the other side, improvements of the structure of the data have been less explored.
Indeed, a couple of works proposed to increase the set of input data [166, 11] or solve a scene recog-
nition task instead of objects [297]. More frequently, data-augmentation is used but such an approach
is limited in terms of possible realistic variations with regards to those meet in real conditions. In
this Thesis, we think that working on data could be as interesting as a better learning approach, and
has the advantage to be an orthogonal contribution to this last. If one considers two discriminative
problems (DP-A and DP-B) such that DP-A discriminates green-lemon, yellow-lemon, yellow-apple
and green-apple and DB-P discriminates lemon from green, there is a high chance that the resulting
learned features differ significantly. If one combines the both sets of filters, it will thus obtain a much

64

richer set, able to discriminate more classes. The key remark is that for this particular example, if
DP-A is fully available with its annotated images, obtaining DP-B does not require a costly process.
It is possible to use the same images and simply re-annotate each category, that is much cheaper than
annotating all the images for DP-B. The approach we propose is based on this principle and explores
such a re-annotating process to obtain more features at a near zero-cost, leading to a more universal
representation able to adequately represents various concepts. An illustration of our approach is given
in Figure 4.1.

4.1.2 Proposed Method

We formalize the source problem variation (SPV) in Section 4.1.2.1 with a particular emphasis on
the SPV by grouping of specific categories. Once a CNN has been learned on several discriminative
problems, the resulting representations have to be combined. Concatenation is a simple approach
that already gives interesting results, but at the cost of using a larger vector to represent the images.
Hence, we propose a method that we named Focused Self-Fine Tuning (FSFT), which consists in
retraining a set of parameters with a smaller set by focusing the learning on them, rather than on all
the parameters of the network (Section 4.1.2.5). When all our contributions are combined, it results
in MulDiP-Net that provides more universal representations of comparable or smaller size than the
original one (Section 4.1.2.6). An illustration of the MulDiP-Net method is given in Figure 4.5.

Above the proposal itself and the demonstration of its performance in transfer learning (Section 4.3),
we also put into relief some hints to explain the performance improvements (Section 4.3.1). As ex-
plained above, the richer set of features allows a better representation for a larger set of discriminative
problems. With MulDiP-Net, the representation contains features that capture common properties
among generic categories making it more robust for problems relative to this category.

4.1.2.1 SPV: Source-Problem Variation

A source problem, DSk = {(xki , yki)}i=J1,NkK, consists in a set of Nk couples (xki , y
k
i) where xki is a

training image and yki ∈ Yk = {ck1, . . . , ckCk
} its associated label among Ck categories. By solving

this source problem (denoted SP in the following), the CNN learns features to discriminate the images
of the categories of the SP. For instance, if we consider a network that solves a SP containing images
of lemons and green-apples, the network learns different features than those obtained when it solves
a SP containing images of lemons and strawberries. Hence, changing the SP to be solved by a CNN
can lead to a change in the set of features learned by the network. Motivated by this observation, we
propose the principle of Source Problem Variation (SPV) that is formalized by a variation function
ϑk0(·) that transforms an initial source problem D0 into a new one Dk,k>0. Such a function has the
following form:

ϑk0 : {RSI × {0, 1}C0}N0 → {RSI × {0, 1}Ck}Nk (4.1)
D0 7→ Dk = {(xki , yki)}i=J1,NkK,

with the following constraints:{
∀i ∈ J1, NkK, ∀j ∈ J1, N0K,∃(xki , yki), xki 6= x0

j or yki 6= y0
j

∀i ∈ J1, NkK, ∀j ∈ J1, N0K,∃(xki , yki), xki = x0
j or yki = y0

j

(4.2)

65

where SI = W × H × D is the size of images (i.e., width W , height H and depth D = 3 for RGB
images), (xki , y

k
i) is an element of the new SP Dk, with each training image xki labeled according to

the label-set Yk = {ck1, . . . , ckCk
} containing Ck categories. The first constraint imposes that at least

one element of D0 has changed in Dk and the second constraint warrants that at least one label or
one image of D0 has to be in Dk. With these constraints, taking a dataset completely different to the
initial one is not a SPV and in contrast, changing all the data (images and labels) without keeping any
element from the initial SP is also not a SPV.

In practice, the variations can be of any kind and on any of the elements of D0 (i.e., on the set of
images {x0

i }i∈J1,N0K and/or on the set of labels {y0
i }i∈J1,N0K). We propose to consider three kinds

of variations of the SP: variations that consist in adding some elements (images or categories) in
the new SP, variations that consist in splitting the original SP into different smaller problems and
finally variations based on grouping. This principle, although not explicitly described as a SPV has
been applied in the literature. For instance, variations on the image set while preserving the set of
categories have been proposed in [98, 224]; variations by adding have been used by [23, 210] (by
adding data labeled among specific categories) and [166, 246] (by adding data labeled among generic
categories); variations by splitting the set of categories has been performed in [101, 2, 280, 11, 275]
and finally, variations by grouping of categories have been explored in [33, 109, 66].

An illustration of some common SPVs, including the SPV by grouping that we are particularly in-
terested in, is given in Figure 4.3. The SPV formalism can be used for different goals, including
diversifying the available features with SPV by grouping as explained in the next section. In any case,
the considered SPV only concerns the training data and is thus independent of the method used to
learn the CNN as well as its architecture.

4.1.2.2 SPV Based on Grouping

The use of SPV by adding has been explored in the literature but has the drawback to require additive
annotated data. Thus, we propose to rely on SPV by grouping, that learned from the same data. Source
Problem Variation (SPV) based on grouping has the advantage to alleviate drawbacks of those based
on adding and splitting (of a whole set of categories, to get multiple label-sets, i.e., discriminative-
problems). Indeed, compared to adding SPV – which needs more annotated data that is costly to
obtain – grouping SPV does not need more annotated data. Moreover, compared to splitting SPV
– which decreases the performances of the networks, since it decreases considerably the amount of
training data –, grouping SPV maintains exactly the same amount of images. Several approaches
can be imagined to group categories, including a simple random grouping or a bottom-up clustering
grouping as explored by Bergamo et al. [21] in the context of semantic features. We propose to rely on
an external a priori knowledge on human categorization in order to learn features that better reflect it.
Indeed, most of the categorization problems we are interested in, aim at identifying some categories
that make sense for humans (need of interpretability), thus we assume that injecting such knowledge
in the learning process should be able to lead to results that better match the (human) user needs. This
semantic knowledge is generally represented in the form of hierarchies. Here, we thus focus on the
categorical levels [118, 214, 248] that consist in a hierarchy of categories mostly used by Humans to
categorize objects.

Let us consider a semantic hierarchy with hyponymy relations (i.e., a set of categories organized
according to “is-a” relations). An example of such a hierarchy is WordNet, on which are mapped the
categories of ImageNet [53]. Formally, this is a directed acyclic graph H = (V , E) consisting of a

66

Figure 4.2: Detailed illustration of our MulDiP-Net method. Let consider an initial source problem
(SP) DS0 consisting in a set of couples of images and their associated labels (x0

i , y
0
i). MulDiP-Net

consists in three phases: (i) variation of the initial SP into new ones (D and ϑ blocks); (ii) training
networks on the obtained set of SPs (φ, Ψ and L blocks) ; and (iii) combination of the features
extracted from each trained network in order to form a more universal representation (remaining
blocks). More precisely, the first phase is a source problem variation (SPV) (ϑk0) applied on the initial
SP DS0 , which outputs a new SP DSk,k>0. After applying K SPV functions, we get a set of K+1 SPs
containing the new SPs and the initial one. The second phase consists in the learning of multiple
networks on the set of K+1 SPs. More precisely, we train one network per SP, resulting in a set of
K+1 networks {Nk}k=J0,KK. Indeed, each network Nk – that is a composition of a features-extractor
φk and a classifier Ψk – is trained by minimizing the loss function Lk computed using the output of
the predictor Ψk and the ground-truth of the SP DSk . Then, the third phase consists in the extraction
of universal representation Ri,τ from images Iτi of a target-task Tτ . More precisely, it passes the
images Iτi into the trained networks and get features (through the extractors φk) that are independently
normalized (Z) and fused (F) in order to output the final representation Ri,τ .

set V of nodes and directed edges E ⊆ V × V . Each node v ∈ V is a label and (vi, vj) ∈ E is a
hierarchy-edge indicating that label vi subsumes label vj . Let us also consider a source-problem DS0
containing N0 images labeled among C0 specific categories belonging to CS0 = {c0

1, c
0
2, . . . , c

0
C0
}, such

that C0 ⊂ V .

We now consider a categorical-level defined according to human cognition. Let us note BcatL a set
of categories that belong to a categorical-level L (i.e, subordinate level for L=0, basic for L=1 and
superordinate for L=2). It is important to note that the categories of BcatL do not correspond to a given
level of the hierarchyH. Hence, we consider that all ccatLi ∈ BcatL are mapped to some nodes ofH. To
group the categories of CS0 into G generic categories. This latter is equivalent to get the partitioning
of CS0 into G subsets i.e., CS0 =

⋃G
i=1 Gi. To do so, we define a partitioning function according to a

categorical-level BcatL as:

PcatL : V → 2C
S
0 (4.3)

ccatLi 7→ CS0 ∩DH
(
ccatLi

)
,

where DH(ccatLi) is the set of all descendant nodes of the categories ccatLi according to H. Using this
function, we obtain G generic categories, with G� C0.

67

We can now define our re-labeling function relative to a given categorical-level BcatL by:

RBcatL
: 2C

S
0 → BcatL (4.4)

Ci 7→ BcatL ∩ AV (LCAH (Ci)) ,

where LCAH (Ci) is the lowest common ancestor of all the categories in the set Ci andAV(ci) returns
the set of all the ancestors of the category ci. Formally, AV(ci) = {δjH(ci)}∞j=1, with δH(·) being a
deductive function that associates to a category vi of V its direct ancestor, that is to say, the category
directly above vi according to H and δnH(·) its corresponding iterated function (i.e δH(·) composed
with itself n times and for which we assume that the image of the root node ofH is itself).

Simply said, while Eq. (4.3) partitions the set of specific categories into “arbitrary” generic categories
(those of WordNet), Eq. (4.4) re-labels them according to the categorical-level BcatL . Also impor-
tant, images are also automatically re-labeled according the same process as the initial categories
they belong. The SPV by grouping ϑG is illustrated in Figure 4.4, showing the combination of the
partitioning and re-labeling functions.

The same process can be applied to re-label categories belonging to hierarchical-levels BhL of H,
assuming that descendants of leaf-nodes are themselves (i.e., DH(c0

i) = c0
i) and that if a leaf-node

is at a certain hierarchical-level BhL with L 6= 0, its least common ancestor is itself (i.e., if c0
i ∈

BhL, LCA(c0
i) = c0

i). The SPV by grouping can not only be applied on semantic hierarchies but also
on hierarchies constructed based on data, through clustering. In MulDIP-Net, we thus can consider
three three types of grouping SPV, the first having our preference and the two other being considered
as baselines: (i) Categorical grouping; (ii) Hierarchical grouping; and (iii) Clustering grouping. This
latter results in a final set of SPs denoted DΩ containing the initial SP as well as the resulting SPs of
the three SPV by grouping.

4.1.2.3 MulDiP-Net Training

Let us consider a set of source problems DSΩ = {DS0 ,DS1 , · · · ,DSω}, with DS0 being the initial SP and
Dk>0, being the ω SPs obtained from ω different SPVs functions applied on the initial SP. MulDiP-
Net consists in training one network per source problem, including the initial SP. Let us note that each
SP can be learn with a different CNN or with different learning settings since our method does not
depend on this aspect. In the following, we will nevertheless use the same CNN for all the SPs, in
order to avoid this source of variation for their study.

Specifically, we use common CNN architectures (AlexNet [132], VGG [228] and DarkNet [212]) and
follow a standard learning procedure that consists in a random initialization of the weights (Gaussian
distribution), a softmax loss-function after the last layer, and asynchronous SGD to optimize it. Using
the softmax loss-function, the posterior probability of an image xki given a category ckj for the source-
problem DSk∈J0,ωK is thus:

pkij =
exp(Ψj

k(x
k
i))∑Ck

n=1 exp(Ψn
k(xki))

, (4.5)

where Ψj
k(x

k
i) is the jth dimension of the output of the last fully-connected layer of the network and

the dimensionality of Ψk(·) is equal to the number of categories in the set of categories Ck (i.e., Ck).
Thus, assuming that the ground-truth probability for image xki and class ckj at SP DSk is defined as pkij ,

68

Figure 4.3: Illustration of the three kinds of source problem variations (SPVs): Splitting, Adding
and Grouping. An initial source problem (SP) DS0 is illustrated in (A). See the legend on top of the
figure for a description of each graphical element. (B) represents the output of the SPV by splitting
(ϑS) which results in two diminished sets of training-data (each of them contains less images and
categories) compared to the initial SP DS0 – i.e., Ni < N0 and |Ci| < |C0|, with i ∈ {1.1, 1.2}). In
contrast, as illustrated in (C), aSPV by adding (ϑA) results in an increased set of training data (more
images and categories), compared to DS0 (i.e., N2 > N0 and |C2| > |C0|)). The last example is our
SPV by grouping (ϑG), illustrated in (D). It results in the same amount of training-data (same set of
images but labeled according different but less numerous categories), compared to DS0 (i.e., {x3

i } =
{x0

i }, ∀i and |C3| < |C0|). Best view in color.

the cost function is:

Lk(Θ) = − 1

Nk

Nk∑
i=1

Ck∑
j=1

pkij log(pkij), (4.6)

where, Nk and Ck are respectively the amount of training images and amount of categories in the
SP DSk and Θ is the whole set of learnable parameters of network Nk. Note that, each cost function
Lk(Θ) is minimized independently. Moreover, since the SPV functions are based on grouping, all the
SPs contain the same images as the initial SP (i.e., {xki } = {x0

i },∀i ∈ J1, NkK and ∀i, N0 = Nk) and
thus each cost function is minimized on the same set of training images, but with different labels. At
convergence, we obtain a set N ∗Ω = {N ∗0 , . . . ,N ∗ω} of ω+1 trained networks.

4.1.2.4 MulDiP-Net Representation

Let us consider a MulDiP-Net (i.e., a set N ∗Ω = {N ∗0 , . . . ,N ∗ω} of ω+1 trained networks) and an
image Iτi of a target-task Tτ . The process of extraction of the representation RΩ

i,τ from an image
Iτi , through the MulDiP-Net, consists in two steps: (i) extraction of the features of the image from
each subnetwork N ∗k of MulDiP-Net and (ii) dimensionality reduction, independent normalization
and combination of these features into a more relevant representation. Let φKk (·) be the feature vector
extracted from the Kth layer of the kth learned network. It is thus a scoring function of the image Iτi
that produces a vector of activations (if K is a fully-connected layer) or a tensor of activations (if K
is a convolutional layer). In the latter case, the tensor is flattened to get a vector. The MulDiP-Net

69

Figure 4.4: Detailed illustration of our SPV by grouping. Given a set of specific categories (leaf
nodes of the hierarchy in white diamonds) and a set of generic categories (here c1

i) at a certain level
(here categorical denoted BcatL), our SPV by grouping ϑG consists in three steps: (1) computation of
all descendants of c1

i according to the hierarchy H, (2) computation of the descendants that belong
to the initial set of categories, producing a group G0

j , and (3) re-labeling of the categories (as well
as their images) of the latter group into the categories of BcatL . The first two points correspond to
Equation (4.3), while the last one corresponds to Equation (4.4).

representation for the query image Iτi is thus:

RΩ
i,τ = Fk∈J0,ωK

(
Z
(
S
(
φKk (Iτi)

)))
, (4.7)

where F is a fusion operator of ω+1 input vectors, Z is a normalization function, and S is an operator
that reduces the representation dimension. In practice for the fusion, normalization and dimension-
ality reduction functions, we respectively used the concatenation (

⊕
k∈J0,ωK), the L∞ norm and a

proposed learning-based dimensionality-reduction method called FSFT (see Section 4.1.2.5).

We aim at combining features separately trained on specific and generic labels to boost the perfor-
mances, assuming they are complementary. However, we noticed that features that were learned on
specific data tend to produce higher values than those learned on generic data. Thus, naively concate-
nating these sub-representations would bias the final representation toward the dominating features
(i.e. learned on specific data) which would result into a loss of the expected benefit. For this reason,
the normalization step is crucial, because it homogenizes the scales of the sub-representations. The
same problem of dominating values has been observed in [148, 272], and a normalization process was
also used.

Regarding the fusion function, we could use a pooling (average or maximum) instead of the concate-
nation. However, by construction, it forces the output of many neurons values to be summarized by
one value. Such behavior is problematic when the pooling is applied to neurons that correspond to
semantically different patterns. For example, let us imagine two representations having the first di-
mension being a neuron highly activating on cars and another firing on apples, and let us consider an
input image containing an apple on top of a car. The pooled representation will be non-discriminative
for cars and apples, because the pooled neuron is activated when the input images contain apples, cars
or both. In contrast, the concatenation fusion preserves all the information of the sub-representations
in the final one. For the dimensionality-reduction part, we detail the proposed FSFT method in Sec-
tion 4.1.2.6.

70

Figure 4.5: The MulDiP-Net method consists in three modules: (i) source problem variation by
grouping (yellow arrow on source-tasks) that aims to get a new dataset (red blob on source-tasks)
which contain the same images as the initial source-problem (SP) (gray blob on source-tasks), but
with generic labels; (ii) training of multiple networks, in particular, one on the initial SP (NA) and
one on the new SPs (hereNB only); and (iii) combine the features-extractors A and B to form the new
extractor C (yellow block that covers A and B). Indeed, for this last point, each features-extractor is
independently normalized to prevent the abusive behaviour of one from absorbing that of the others.
Moreover, each features-extractor (A and B) is re-trained on its initial SPs (i.e., gray SP for NA and
red SP for NB), through the proposed FSFT method (blue arrows). The final features-extractor C
aims to get a more universal representation RC than each of its components (RA and RB), at the
same amount of features and with the same annotated data.

In practice, whenNΩ contains the models obtained from the initial SP as well as three different group-
ing SPVs (categorical, hierarchical and clustering-based), Equation (4.7) reduces, independently nor-
malizes and concatenates four representations to get the MulDiP-Net representation. Figure 4.2 illus-
trates the training of MulDiP-Net as well as the extraction of the final representation.

4.1.2.5 Focused Self Fine-Tuning (FSFT)

We propose a new universalizing method that we named Focused Self Fine-Tuning (FSFT). It is based
on the principle of re-training pre-trained neural networks on the same initial problem. Contrary to
previous works, it thus does not need more data [11, 166, 246], nor a network with a larger capac-
ity [228, 2, 272, 243]. It is closely related to the work of [285] which proposes an extensive study of
the effect of different self-training methods. In particular, they studied two methods: (i) Frozen re-
training (that we named Frozen Self-Training, noted FrST) and (ii) fine-tuning (that we named Self
Fine-Tuning, noted SFT). Both methods re-train a pre-trained initial Network initNet on the same
problem. The weights of initNet are split into two subsets, those of the first L layers θa1 and those
of its last layers θa2 , thus Θa = (θa1 , θ

a
2). The methods consist in learning new weights (θb1, θ

b
2) with

the following process: (i) the first layers are initialized with the weights of initNet and the last layers
are initialized randomly (ii) the weights are re-trained – FrST trains only θb2 and frozes θb1, while SFT
fine-tunes θb1 and fully trains θb2, with the same learning-rate. Their extensive study leads to some
interesting conclusions that motivates our approach. In particular, they showed that FrST hurts the
performances of initNet due to fragile co-adapted features on successive layers in the initNet that
suggests that the co-adaptation could not be relearned by the upper layers alone. On the contrary,
SFT slightly increases the performance due to its ability to recover the co-adapted features that were
trained by the initNet. Hence, it is important to preserve some knowledge acquired during the learning
of the initNet but one should avoid to only focus the training on the last layers. As a consequence, Fo-
cused Self Fine-Tuning (FSFT) is an hybrid approach of these both. As in [285], the weights learned
on initNet are split into two subsets, initialized differently and jointly minimized. The main difference
is that we use different learning rates for both sets. An illustration is given in Figure 4.6.

71

Figure 4.6: Illustration of Focused Self Fine-Tunning (FSFT). A first training phase is performed
on a source-database, by minimizing a classical loss-function L (stream (a) colored in light gray).
FSFT first discards its last set of layers (θa2 and Ψa) and replace them by new ones (θb2 and Ψb) that
are randomly initialized. The first layers of stream (a) and the new last layers (that replace those
discarded), form the stream (b). FSFT then consists to re-train the weights of the initial network
(i.e., stream (a)) on the same source-database (with the same loss-function L to minimize). More
precisely, FSFT initializes the weights of its first layers θb1 (light gray block surrounded in black) with
those of the initial network (i.e., θb1=θa1 at initialization), and the remaining last layers are initialized
randomly. Then, FSFT trains the weights of the last layers θb2 (white blocks surrounded in black),
while re-training those of the first layers (θb1) but α-times slower. In particular, the weights of the first
layers θb1 are weakly updated during training, compared to those of the last layers – i.e., θb2 are trained
with a learning-rate η2 that is higher than the learning-rate of θb1 (i.e., η1 = α × η2, with α ∈]0, 1[).
Best view in color.

More formally, let us consider a source training database DS containing N annotated data and a
network N trained on DS to learn its weights θa1 (L first layers) and θa2 (remaining last layers). FSFT
consists in re-training N by minimizing the same loss-function L as initNet and the same training
database DS :

arg min
Θb

L
(

Ψb
(
φ(x,Θb)

)
; y
)
,with Θb = (θb1, θ

b
2)), (4.8)

where, x and y respectively correspond to the learning images and their associated labels, Ψb(φ(x,Θb))
is the predicted probability vector for the features φ(x,Θb) of images x, and θb1 are initialized with
the weights of the first layers of the initNet (i.e., θb1=θa1) and those of the last ones θb2 are initial-
ized randomly. Then, the individual weights wbij ∈ θbj (with j ∈ {1, 2}) are updated with different
learning-rates:

wbij ← wbij − ηj
∂L
∂wbij

,∀wbij ∈ θbj , (4.9)

where, ηj is the learning-rate. We set η1 = α× η2, with α ∈ [0, 1] a parameter that can be determined
by cross-validation. Hence, FSFT preserves some knowledge acquired during the learning of the
initNet (by initializing the weights of its first layers, with those of initNet) and partially focuses the
training on the last layers (by fully training the last layers, while authorizing, through the factor α,
some slight changes of the first ones).

4.1.2.6 FSFT to improve MulDiP-Net

The FSFT method can be used in the MulDiP-Net method for dimensionality and parameters reduc-
tion. In MulDiP-Net the more source-problems we consider, the more universal representation we
get. However, a concatenation fusion results in increasing the dimension of the final representation

72

Property Avg RG VDC BC aNRG mNRG

Coherent aggregation 3 3 3 3 3

Merit bonus 3 3 3

Penalty for damage 3 3 3 3

Independent to outliers 3 3

Increasing & decreasing metrics 3 3 3

Independent to reference method 3 3

Independent to many methods 3 3 3 3 3

Consistent with time 3 3 3 3 3

Table 4.1: Comparison of different metrics (the Avg baseline, RG [235], VDC [210] and the three
proposed in this Thesis, namely BC, aNRG and mNRG) according the different properties needed to
define a good evaluation metric.

linearly with the number of SPs considered. MulDiP-Net being a kind of ensemble approach, it con-
tains ω+1 times more parameters than a standard network and it contributes to obtain a more universal
representation. There is nevertheless a need to find a trade-off between effectiveness and efficiency
and the FSFT method can help to it. Roughly, our method consists in applying a slightly modified
version FSFT to each subnetwork of MulDiP-Net, such that it results into a representation that is both
more compact while leading to similar or better performance in transfer learning.

More formally, let us consider a feature extractor φk trained on a SP noted DSk , and another feature
extractor φ′

k obtained after the retraining of φ through a slightly modified version of the FSFT method.
Indeed, instead of retraining φ with exactly the same original architecture, we reduce the dimension
of the last layers on which FSFT will focus its training. It thus also decreases the amount of param-
eters of the final MulDiP-Net model, in particular because most of the usual CNN parameters are
contained in the fully connected layers. For instance, AlexNet contains 62.3 millions parameters with
3.7 millions in the convolutional layers and 58.6 millions in the FC ones, meaning that around 94% of
the parameters are contained in the FC layers. To reduce the dimension, given a set of ω+1 networks,
we set each sub-representation φ′

k to be of size dn/(ω+ 1)e, with n the dimension of the original sub-
representation φk. Regarding the performance improvement, it can be surprising because we expect
to boost the performances by considerably reducing the dimensionality of the representation. Indeed,
this is possible because of the effectiveness of the FSFT method compared to the standard learning
procedure and thus we can suggest that a compact version of it will still be more performing (even
by a weak gain) than the standard version. Furthermore, MulDiP-Net will follow the latter process
by the combination of multiple compact representations that independently contribute weakly. At the
end, the new MulDiP-Net+FSFT method contains much lower amount of parameters and outputs a
much smaller representation than the classical MulDiP-Net method, while being more performing.

73

4.2 Evaluation of Universalizing Methods

Evaluating the ability of a method to learn universal representations or more precisely to learn more
universal representations is a difficult problem that, to our knowledge, has not been much tackled in
the literature. Let first recall that our problem of universality is motivated by the cognitive study of
Atkinson [8] and especially its main claim, that is to say, the ability of humans to develop a universal
and powerful internal representation of images in the early years of their development and re-use it
(almost) “as is” later in life for solving any kind of problems. Inspired by the latter work, authors
of [23, 210, 211] evaluated the universality of representations by their ability to cover, simultane-
ously, a large range of visual domains like objects, faces, animals, etc. More precisely, the evaluation
scheme of [23, 210] does not completely match with the work of Atkinson since learning and testing
are conducted on the same problem and only the visual domain differs. However, in [8], the terms “re-
used later in life” mean that a representation is universal if it works well on many number of problems
encountered latter in life, and in particular, on different problems than those used to develop (learn)
the representation. Hence, in this Thesis, we propose to consider the case where the training problem
is different than the testing one. A natural technical scheme for such condition is the transfer-learning
scheme, where the source-task is used to learn the universal representation (analogically corresponds
to the universal and powerful internal representation developed in the early years of the development)
and the target-tasks are used to evaluate it (analogically corresponds to the problems solved by hu-
mans later in life). Moreover, to better match the claim of Atkinson (re-use the representation “as-is”),
we propose to not modify the representation on the target-tasks. Simply said, we do not fine-tune the
representation on each target-task, but rather learn a simple task-predictor on top of the representa-
tion. Nevertheless, since when humans develop their representations, they do not have access to the
problems they will solve in the future, the target-tasks used to evaluate universality are undetermined
when learning on the source-tasks. In summary, the substantial difference with the evaluation scheme
of [23, 210] and ours lies in the fact that, in contrast to them, we consider the aspect of re-using the
representation later in life on different problems. Simply said, our evaluation framework that lies in a
Transfer-Learning (TL) scheme is closer to [8] than theirs [23, 210, 211] that lies in an End-to-End
Learning. Note that, while such evaluation framework (transfer-learning on multiple target-tasks with-
out modifying the representation) is commonly used in the NLP community [44, 42, 41, 43, 180, 235]
for evaluating universality of representations, to the best of our knowledge, we are the first to propose
such scheme in the vision community, and more importantly to motivate and link it with the cognitive
study of Atkinson [8]. An illustration of the proposed evaluation scheme is given in Figure 4.7.

The last step to evaluate universality, consists in aggregating the scores of a method on multiple
target-tasks. One could naively aggregate the scores by averaging them. Given a set of T target-
tasks, the Average (Avg) universality score Uavg

i of a method Mi is: Uavg
i = 1

T

∑T
j=1 s

i
j , with sij

being the performance of the method Mi on the target-task Tj . However, a first problem is the
fact that metrics of all the target-tasks could be different (many will prefer to use measures such
as precision or recall, or an aggregative of both with a F-measure of average precision), and such
aggregation would be non-coherent. Hence a first requirement is a coherent aggregation. To alle-
viate such problem, Subramanian et al. [235] proposed to average the improvement over the scores
of a reference universal representation across the set of multiple target-tasks (named relative gain
(RG)): Uavg

i = 1
T

∑T
j=1 s

ref
j − sij , with srefj being the performance of a reference method Mref on

the target-task Tj . Such aggregation brings us to a coherent aggregation, but unfortunately depends
on the scores of a reference method that needs to be chosen and evaluated on all target-tasks before
evaluating universality. This pushes us to define a metric that is independent to a reference method.
Recently, Rebuffi et al. [210] went a bit far by identifying one additional criterion that should be also

74

Figure 4.7: Illustration of the proposed universality evaluation scheme. A universal representation
extractor (blue rectangle) is learned on one or many source-task(s) (blue blob). The extractor is used
to represent the data of a set of N undetermined (unknown during the training on the source-task)
target-tasks (gray blobs). For each target-task, a simple task-predictor (gray rectangles) is learned
on top of the representations (without modifying the representation). A function aggregates (black
rectangle) the performances of a method on the multiple target-tasks to evaluate universality (green
rectangle). Best view in color.

considered, that is, the universality evaluation metric should rewards proportionally with the score of
the reference method. More concretely, the metric should rewards more if the reference score is high
and less if it is low. We call such criterion merit bonus. Hence, they proposed a metric named Visual
Decathlon Challenge (VDC) that also consider this aspect. More precisely, the VDC universality
score is computed as follows: UV DC

i =
∑T

j=1 αjmax{0, Emax
j − Ej}γj , with Ej being the error rate

of the method Mi on the target-task Tj and Emax
j being the best reachable error rate on Tj , αj is fixed

for all Tj but his role is to normalize the methods by providing 1,000 point for a perfect ones, and
finally the γj (with γj > 1) is here to model the merit bonus aspect. Undoubtedly, the principle of
such a metric has an interest to the problem of universality evaluation, however, it is important to note
that the γ value is heuristically set to 2 in practice, and thus do not naturally model the merit bonus
aspect. More problematically, modeling the merit bonus by a power value (with necessarily γj > 1
since in the contrary it would do the inverse of merit bonus) forced the authors to put a max operator
to avoid negative values. The latter operator clearly avoid negative values and aims at modeling the
merit bonus, but a main drawback, that is to say, it avoids to perform penalty for damage scores which
is problematic. Indeed, a method can improve the performance over the reference method on some
target-tasks but could decrease it on other tasks. Thus, is it highly desirable to have a metric that
performs penalty for damage. Hence, in this Thesis we proposed the average normalized relative
gain (aNRG): UaNRG

i = 1
T

∑T
j=1(sj − srefj)/(smaxj − srefj), with smaxj and srefj being respectively

the best reachable and reference scores. A last important point is the fact that the metric should be
independent to outlier methods, in the sense that a method that is particularly suited to a given bench-
mark will gain a lot of points that could compensate an average performance on the others, which
is clearly non desirable on universality. While all the metrics (including our aNRG) do not handle
this aspect, we propose to replace the average operator by a median one, which results in the median

75

Normalized Relative Gain (mNRG): UmNRG
i = median

j∈J1,T K

∑T
j=1(sj − srefj)/(smaxj − srefj).

Finally, while not obviously better than the proposed mNRG, we propose an alternative metric based
on a voting method and on the ordinal scale, with each benchmark considered as an independent
voter. The first advantage of this metric is that each voter can use its own measure to estimate the
performance of the methods, depending on the need they focus on. In particular some benchmarks
can use “the higher is the better” measures (mean average precision, accuracy, F1-score, etc.) while
others can use “the lower is the better” (test error rate, equal error rate, median rank, etc.). The second
advantage is that it becomes insensitive to some outliers such as the exceptional fit of a method to a
particular benchmark. Moreover, we consider that reporting the number of times a method M1 is
better than a method M2 is a more reliable information than the average difference of scores (as
long as these score are actually comparable). It exists many ordinal voting systems to choose a best
candidate among several, according to several voters, but we adopt one of the simplest ones, namely
the Borda Count (BC). Formally, let us consider M methods to rank, relying on the information
provided by B benchmarks. Each method is then ranked according to each benchmark, resulting into
a rank rji with 1 ≤ i ≤ M and 1 ≤ j ≤ B. It is converted into a score M − rji that is itself averaged
to give the final score of the method: Si =

∑B
j=1M − r

j
i .

In summary, no metric is perfect, thus in Table 4.1 we highlight the advantages and drawbacks of
each of the metrics (those of the literature and those proposed in this Thesis), in which we see that
the proposed mNRG seems to the best one. Moreover, in Table 4.5 of the experiments we evaluate
different methods according the different metrics, in which we empirically highlight the problems of
some of them, which are alleviated by our best metric, namely mNRG.

4.3 Experimental Results

4.3.1 Learned Features Analysis

In this Section, we investigate whether each component of MulDiP-Net – i.e., each sub-network
trained on images labeled at a particular set of categorical-level labels – introduces some relevant
diversity in the final set of features. We first analyze the intermediate layers of the different pre-
trained sub-networks in order to show that each of them generates different features (Section 4.3.1.1).
However, since diversity does not mean relevance, we also analyze how relevant is this difference
(Section 4.3.1.2).

4.3.1.1 Do sub-networks of MulDiP-Net learn different features?

Two sub-networks are trained using the AlexNet network on the same training-images (ILSVRC*)
for two categorical-level labels, i.e., basic-level (containing generic categories) and subordinate-level
(containing specific categories), that we respectively denote by Net-G and Net-S. Following Li et
al. [143], we statistically compare the internal convolutional-filters of the two networks. Thus, we
first aggregate certain statistics of the activations within the networks. Given a pre-trained network
Net-n, we denote by the scalar random variable X (n)

l,i the activation values produced over a large set

76

Figure 4.8: Graph (a) reports the average of maximum correlation between convolutional-filters of
Net-G and Net-S (i.e, similarity between the two networks) according the layers. In (b), we plot the
average quantity of unique filters (i.e., that do not match with any filter of the other network) in the
two networks according the layers.

of samples1 by convolutional-filter i on layer l ∈ {conv1, · · · , conv5}. From this set of samples, we
collect for all filters, the average µ(n)

l,i , the standard deviation σ(n)
l,i and the “cross-network correlation”:

c
(n,m)
l,i,j = E[(X (n)

l,i − µ
(n)
l,i)(X (m)

l,j − µ
(m)
l,j)]/σ

(n)
l,i σ

(m)
l,j , (4.10)

corresponding to the correlation of the random variable of a filter of a network Net-n with the one of
another network Net-m at the same layer l. We thus obtain five asymmetric matrices per network, of
size 96×96 for conv1, 256×256 for conv2 and conv5 and 384×384 for conv3 and conv4. From these
matrices, we look for the filters of Net-S that match the most with those of Net-G (and inversely) to
show the similarity between the networks. To show the amount of unique filters generated in each
network, we look for the filters that do not have any matching filter in the other network. Regarding
the cross-network similarity, we compute the average of maximum cross-network correlation (e.g.,
the average of the maximum of each row and each column of the cross-network correlation matrices),
for each layer and display the results on the graph (a) of Figure 4.8. As in [143], for the amount of
unique filters, we compute the relative percentage of filters that do not match with any filter in the
other network – e.g., the maximum cross-correlation of that filter with all those of the other network
is above a low threshold of 0.5 – for all the layers and report the results on the graph (b) of Figure 4.8.

First of all, the high similarity (0.71) observed in conv1 confirms previous works [143, 285, 291]
showing that, whatever the training-database is, the first layers always generate very similar filters
(blob and Gabor-like filters). Second, at the other extremity (conv5), the cross-network similarity
is much lower (0.26) and the quantity of unique filters reached 100%, meaning that a very different
feature space has been generated by the two networks. Hence, these two criteria show that two
sub-networks of MulDiP-Net begin by generating many common filters but end by learning many
unique ones, even if the same training-images have been used. Equally important, graph (4.8b) shows
that we have a difference of 20% between the two sub-networks at conv1, clearly meaning that the
representational divergence of MulDiP-Net begins at the first layer and thus confirms the importance
of training the sub-networks independently without sharing any layer between them.

To enhance this study, we visualize some unique filters learned from each sub-network at all convolu-

1All the spatial positions (55×55 for conv1, 27×27 for conv2 and 13×13 for all others) of 2, 000 randomly selected
images from the ILSVRC* validation set.

77

Figure 4.9: Illustration of pairs of convolutional-filters with a high similarity score. Top part contains
the representation of filters (through the top-four image-patches that highly activate them) from conv1
and the bottom part, those from conv2. In each part, there are two blocks: one for the filters from Net-
S (left) and one for those from Net-G (right). For each network (each block), we show its filters on
top, the most similar ones from the other network on the bottom and their correlation score. We clearly
see that filters that are visually-similar have a high correlation score, meaning that the “correlation”
is a good similarity-metric to compare convolutional-filters.

Figure 4.10: Illustration of the top-4 patches that highly activate some unique convolutional-filters of
the conv5 layer. The top part reports unique filters learned from Net-S and the bottom part, unique
filters from Net-G. Best view in color.

tional layers. To do so, we follow the literature [82, 286, 291]. In particular, for each convolutional-
filter, we display, in a two by two block, the top-four image-patches (extracted from the large set
of ILSVRC* images) that highly activate them. Before discussing the top-patches that activate the
learned filters, it is important to assert that the results highlighted above (i.e., the sub-networks learn
different filters) is not due to a bad similarity-metric, thus it is crucial to show that the similarity-
metric we used (cross-network correlation [143] outputs a high score (here the maximum absolute
value is 1) for filters that are visually similar. Thus, we took the two pre-trained sub-networks (Net-S
and Net-G) and show the patches that highly activate some of the most similar convolutional-filters
between the two sub-networks (in term of correlation-metric). These similar filters are presented in
Figure 4.9. We only show the filters from conv1 and conv2 since, above conv2-layer the filters are not
very similar, thus it does not make sense to show them here. Indeed, from the results, we clearly ob-
serve that when the output value of the similarity-metric is high, the filters are highly visually-similar.
In conv2, the range of the correlation-scores is slightly below the range of values in conv1, but it is
still relatively high. In fact, we see that some structure-like (water, dotted, green-point, etc.) filters

78

are very visually-similar as predicted by the correlation-metric. This latter clearly shows the high
suitability of the correlation-metric to compare convolutional-filters. Thus in Figures 4.10 and 4.11,
we respectively show a small (conv5-filters) and large amount (from conv1 to conv5 filters) of unique
filters of each sub-network. In Figure 4.10, we clearly observe that Net-S has learned specific fil-
ters such as breed of objects (e.g., they highly activate only tennis-ball, hairy-cat, or even white-dog
patches) while in the Net-G, generic filters that are invariant to the breed of objects have been learned
(e.g., they highly activate cat, bird, or ball patches). Figure 4.11 that reports more visualizations of
unique filters, highlights the five following main points:

• the more we go deeper, the more the filters represent abstract object-parts;

• the two networks (Net-S and Net-G) generate very different filters;

• the more we go deeper, the more correlation-scores of the most similar filters are low. This
clearly means that the more we go deeper, the more the filters generated by one network are far
from those generated by the other network;

• the filters generated by Net-S are very specific at the deeper layers (conv4 and conv5), for
instance they contain very specific breeds of dogs, very specific breeds of rodent, very specific
breeds of birds;

• the filters generated by Net-G are quite generic at the deeper layers, for instance they contain
different breeds of dogs, different breeds of birds and different kinds of fruits.

The first point confirms what is already known [286, 291] and the others confirm what is highlighted
in the above paragraph – i.e., different filters are generated by different categorical-level networks.

In summary, this analysis shows that solving different discriminative problems (through different
categorical-level labels) with a CNN forces the generation of different convolutional-filters. This
latter, is quite surprising since the same training-images are used in the two discriminative problems.

4.3.1.2 Is the difference between each sub-network of MulDiP-Net relevant?

In the previous section, we have shown that each component of a MulDiP-Net generates different
features. However, difference does not mean relevance, thus, it is crucial to evaluate whether this
diversity in the set of learned features learned from each sub-network becomes relevant in the final set
of features that forms the MulDiP-Net representation. For evaluating the relevance of a descriptor, we
follow Peng et al. [195] and Herranz et al. [98] that estimate the relevance of a set of features by its
discriminability on a set of categories. Formally, we define the discriminability of a N -dimensional
representation Φ(x) = {φ1(x), · · · , φN(x)} with respect to a class bj belonging to a set of M classes
B = {b1, · · · , bM} as

D(Φ(x), bj) =
1

N

N∑
i=1

I(φi(x), bj), (4.11)

where I(φi(x), bj) is the mutual information of filter φi(x) and class bj . The filter φi(x) is a continuous
variable, thus, as in [195], we use a density estimation method (e.g., Parzen windows) to approximate
I(φi(x), bj).

79

Figure 4.11: Visualization of unique filters generated by Net-S (left) and Net-G (right) for the five
convolutional-layers of the AlexNet architecture. In each of the five blocks we represent on the top
part, the filters (through the top-four image-patches that highly activate them) from one network (Net-
S on the left and Net-G on the right) on one convolutional-layer and on the bottom part, their closest
filters from the other network. Between those filters, we indicate their correlation score. Simply said,
in each block (convolutional-layer), the three filters on the top-left and the three on the bottom-right
belong to Net-S and the three filters on the bottom-left and the three on the top-right belong to Net-G.

80

Figure 4.12: Comparison of the discriminability (ordered by decreasing values) of representations
generated by Net-G, Net-S and MulDiP-Net, on the categories of the NWO dataset.

In Figure 4.12, we plot the discriminability on the 31 categories of the Nus-Wide Object dataset of
the fc7 representations generated by three networks: (i) Net-G, (ii) Net-S, and (iii) MulDiP-Net.
Note that, the MulDiP-Net representation obtained by (iii) corresponds to the combination of those
obtained by the first two. From this graph, we observe that the representation generated by Net-S is
roughly more discriminating and thus different than the one learned by Net-G, confirming the results
of the previous section. More interestingly, the graph shows that their combination (MulDiP-Net),
is more discriminating (for all the categories) than each of them independently, meaning that the
difference between the features is highly relevant.

To resume, this analysis shows that CNNs are able to generate different features with the same
training-images by varying their categorical-level labels and this difference is highly relevant. This
means that the proposed MulDiP-Net method is going on the direction of our main goal, i.e., diversify
the set of features generated by CNNs in order to result in more universal representations.

4.3.2 Comparison to State-Of-The-Art Methods

In this section, we describe a transfer-learning protocol for the evaluation, the implementation details
of our method, and the datasets used for evaluation. We then compare our method to those of the
literature that can be used as universalizing methods.

4.3.2.1 Settings

Transfer-Learning Protocol

All methods are evaluated in a transfer-learning scheme, that contains three phases: (i) training on
the source-task, (ii) transferring to the target-task and (iii) evaluating the performances on the target
testing set. All the methods are trained with standard architectures (AlexNet [132] if not specified
and VGG [228] or DarkNet [212]). The source-tasks (ILSVRC and ILSVRC*) used to train the net-
works are presented in the next section. If not specified, we use ILSVRC*, because it is smaller

81

Datasets (1) (2) (3) (4) (5) (6)
ILSVRC∗ objects 483 7 569,000 48,299 Acc.
ILSVRC objects 1K 7 1.2M 50,000 Acc.
VOC07 objects 20 3 5,011 4,952 mAP
VOC12 objects 20 3 11,540 10,991 mAP
NWO objects 31 3 21,709 14,546 mAP
CA101 objects 102 7 3,060 3,022 Acc.
CA256 objects 257 7 15,420 15,187 Acc.
MIT67 scenes 67 7 5,360 1,340 Acc.
stACT actions 40 7 4,000 5,532 Acc.
CUB birds 200 7 5,994 5,794 Acc.
stCA cars 196 7 8,144 8,041 Acc.
FLO plants 102 7 1,020 6,149 Acc.

Table 4.2: Detailed descriptive of the different datasets used in this chapter. On top of the table, we
describe the source-datasets and on bottom, the target ones. For each dataset, we detail six character-
istics. Each column of the table corresponds to a certain characteristic: (1) domain of the images; (2)
amount of categories; (3) whether the dataset contains multiple categories per image (3) or no (7);
(4) amount of training examples; (5) amount of test examples; and (6) the standard evaluation metric
(Accuracy and mean Average Precision, respectively denoted by Acc. and mAP).

than ILSVRC, making the training process faster. For the second transfer phase, each image is rep-
resented by one layer of the pre-trained network and each class of the target-dataset is then learned
by a one-vs-all SVM classifier. The cost parameter of the SVM is optimized for each dataset through
cross-validation on the usual train/val splits. Note that, we could use fine-tuning for the transfer part,
however, as mentioned by [109], since fine-tuning modifies the representations, it leads to a bias that
hides the real ability of a method to increase universality. For the evaluation on the target-tasks, we
use the mean Average Precision (mAP) for multi-label datasets and Accuracy (Acc.) for mono-label
ones. Finally, the performances of the methods on all target-datasets are globally compared through
the Borda Count (BC) score (Section 4.2).

Source and Target-datasets For all the source and target-problems, we focus on a classification
task, with datasets containing many visual domains. For the source-problems, we use two subsets
of ImageNet [216]: ILSVRC and ILSVRC* that contains half of the former. Regarding the set of
target-tasks, we used the ten following popular benchmarks, including: five containing coarse cate-
gories – Pascal VOC 2007 (VOC07) [71], Pascal VOC 2012 (VOC12) [70], Caltech-101 (CA101)
[73], Caltech-256 (CA256) [93] and Nus-Wide Objects (NWO) [38]; three containing fine categories
– Stanford Cars (CARS) [131], CUB-200 Birds (CUB) [265] and Flowers-102 (FLO) [181]; one
containing scenes – MIT Indoor 67 (MIT67) [205]; and one containing actions – Stanford Actions
(stAC) [283]. While the main characteristics of all the datasets used in this Thesis are described in
Section A.3 of Appendix, we recapitulate, in Table 4.2, the characteristics of those used here. For
all the benchmarks, we follow standard protocols (i.e., common splits and evaluation-metrics). For
VOC12 and stCAR, we used the official evaluation-servers.

Implementation Details

For the SPV, we started with ILSVRC (and ILSVRC*) as initial source-problem and variated at
generic levels with three generic grouping methods: categorical, hierarchical and clustering. For

82

Subordinate Basic Superordinate

convertible - sport car car vehicle

helicopter - fighter plane aircraft vehicle

barber chair - rocking chair chair furniture

malinois - rottweiler dog animal

garfish - puffer - sturgeon fish animal

hammerhead - tiger shark shark animal

Table 4.3: Example of re-labeling of subordinate categories (left column) into basic-level (middle
column) and superordinate ones (right column).

the two first methods, we used the ImageNet hierarchy in the functions of partitioning (Eq. (4.3)) and
re-labeling (Eq. (4.4)). In the first method, a part of the categorical-level categories of ILSVRC is
obtained from the list released in [216] and the other part is re-labeled by ourselves as depicted in Ap-
pendix (Section C.2). This latter results into 480 generic and 1, 000 specific categories for ILSVRC,
200 generic and 483 specific categories for ILVRC*. Some examples of relabeling of subordinate-
level categories into basic and superordinate-level ones are given in Table 4.3. For the hierarchical-
grouping, we follow the bottom-up approach of [109] and re-label the categories to higher levels
of the ImageNet hierarchy. For the clustering grouping, we follow [33] and cluster the data of the
categories with a Kmeans algorithm (K from 50 to 300 with step of 50). Regarding the extraction
and combination of the features (Eq. 4.7), we used the best label-set per grouping SPV (i.e., basic-
level, 7th hierarchical and the clustering with K=100), obtained by cross-validation on the evaluation
set of the source-task. The latter choice results in a set of four SPs (including the initial one). For
the extraction of the representations of images of target-tasks, we always use the penultimate layer
from each subnetwork. To normalize before combining the representations, we used the infinite-norm
(L∞). For the FSFT method, we choose the following settings: L = 6, meaning that we focus the
retraining on the penultimate and last layers; η2 = 10−2, as the learning-rate used to train the initial
network; and α = 0.1, meaning that we train the last layers 10 times faster than the firsts. Moreover,
when used in the MulDiP-Net method, FSFT is implemented with two dimensions: 4, 096 (denoted
FSFT-4K) meaning that FSFT is only used to improve performances, and 2, 048 (denoted FSFT-2K)
meaning that FSFT reduces the dimension in addition.

4.3.2.2 Comparison with Universalizing Methods

The universalizing methods of the literature considered for comparison are:

• REFERENCE [132]: Training a CNN on the initial SP that contains specific categories. All
other methods include this one. The universality of the methods will thus be measured with
regard to this reference, in particular in the Borda Count evaluation.

• SPVspe
A [11, 297]: A method that consists to perform a SPV by adding of 100 new specific

categories (randomly obtained from the leaf nodes of ImageNet) and thus their 100, 000 images.
Simply said, this method corresponds to the learning of one network on images labeled among
583 specific categories.

83

M
ethod

V
O

C
07

V
O

C
12

C
A

101
C

A
256

N
W

O
M

IT
67

stA
C

T
C

U
B

stC
A

FL
O

m
N
R
G

m
A

P
m

A
P

A
cc.

A
cc.

m
A

P
A

cc.
A

cc.
A

cc.
A

cc.
A

cc.
R

E
FE

R
E

N
C

E
66.8

67.3
71.1

53.2
52.5

36.0
44.3

36.1
14.4

50.5
n/a

SPV
sp

e
A

[11,23,297]
66.6

67.5
74.7

54.7
53.2

37.4
45.1

36.0
13.7

51.9
+1.5

SPV
g
e
n

G
[132,166,246]

67.7
68.1

73.0
54.3

50.5
37.1

44.9
36.8

14.6
50.3

+1.4
A

M
E

C
O

N
[33]

61.1
62.1

58.7
40.6

45.8
24.3

32.7
26.1

13.1
36.4

-17.7
W

hatM
akes

[109]
64.0

62.7
69.4

50.1
45.6

33.7
41.9

15.0
12.5

42.8
-7.5

ISM
[275]

62.5
65.4

68.8
50.7

28.5
37.9

42.6
34.0

13.3
50.0

-4.3
G

row
B

rain-W
A

[272]
68.4

68.3
73.1

54.7
49.3

38.4
46.5

37.5
14.7

54.8
+3.5

G
row

B
rain-R

W
A

[272]
69.1

69.0
74.8

55.9
50.4

40.0
48.4

38.6
14.8

56.1
+6.0

M
uC

aL
e-N

et[243]
69.5

69.8
76.0

56.8
54.7

41.3
48.5

35.6
15.7

54.8
+7.7

FSFT
(O

urs)
67.5

67.4
73.9

55.0
44.6

40.4
47.1

38.7
15.8

56.8
+4.0

M
ulD

iP+FSFT
(O

urs)
69.8

70.0
77.5

58.3
47.9

43.7
50.2

37.4
16.1

59.7
+9.8

Table
4.4:

C
om

parison
of

our
m

ethods
(bottom

)
w

ith
state-of-the-art

universalizing-m
ethods

(top).
T

he
com

parison
is

carried
in

a
transfer-

learning
schem

e
on

ten
target-datasets,w

hen
w

e
reportthe

perform
ances

ofthe
m

ethods
w

ith
the

standard
evaluation-m

etrics
foreach

target-dataset
and

as
depicted

in
Section

4.2,m
ethods

are
especially

com
pared

in
term

s
oftheirindividualscores

on
each

benchm
ark

as
w

ellas
aggregated

scores
based

on
the

m
edian

R
elative

G
ain

(m
N

R
G

)
in

the
lastcolum

n
(scores

in
blue).

T
his

latter
uses

a
reference

m
ethod

for
w

hich
w

e
colored

their
scores

in
red.

For
each

benchm
ark

as
w

ellas
for

the
finalm

N
R

G
score,w

e
highlightthe

highestscore
in

bold,and
the

second
one

is
underlined.

A
llthe

m
ethods

have
been

learned
w

ith
the

sam
e

architecture
(i.e.,A

lexN
et)on

the
sam

e
initialSP

(i.e.,IL
SV

R
C

*).Forfaircom
parison

reasons,
w

e
only

used
tw

o
label-sets

in
the

M
ulD

iP-N
etm

ethod
(i.e.,specific

and
categorical).

84

• SPVgen
A [132, 166, 246]: Same as the previous method but with a generic SPV by adding, that

consists to add 100 new generic categories and corresponding 100, 000 new images. This results
in the training of one network on 583 specific and generic categories. The generic categories in
this method were obtained from random internal-nodes of the ImageNet hierarchy.

• WhatMakes [109]: A SPV by grouping (SPVhl
G) method of specific categories into generic

ones is conducted according to the relabeling of specific categories into internal levels of the Im-
ageNet hierarchy (i.e., hierarchical-levels denoted hl). We performed it for all the hierarchical-
levels and report the results for the best level (i.e., sixth level starting from the leaf-node’s level),
selected by cross-validation on the validation set of ILSVRC.

• AMECON [33]: This method is similar to the previous one but differs by its type of SPV
by grouping, that is performed by clustering (SPVclu

G). Specifically, all the images of each
specific categories are used to compute the average features (from the fc7 layer of the pre-
trained reference network) for the categories. Then, a Kmeans algorithm is used to cluster this
set of category average features. We applied this method with different amount of clusters (i.e.,
K ∈ {50, 100, 150, 200, 250, 300}) and report the method with the best results on the validation
set of ILSVRC (i.e., K=100).

• ISM [275]: This method consists to train an ensemble-model with N networks, one for each
problem DSn,n∈J1,nK obtained from a SPV by splitting (SPVhalf

S). Here we applied the method
with half splitting, that is to say, we split the initial source problem in two balanced subsets.
We chose n = 2 because we limit the ensemble-model methods to a maximum of two networks
for fair comparison. Once the networks trained, we normalize and concatenate the features
extracted from the two trained CNNs.

• GrowBrain-WA [272]: This recent method consists to fine-tune a trained network on the same
source problem it was trained initially, by growing the network capacity (wider or deeper lay-
ers). The best setting of this work is the width augmented (WA) growing that consists to add
2, 048 neurons to the penultimate layer (fc7). We also implemented their normalization and
scaling step for the new and old layers, because they insist on its importance for performances.
The final representation corresponds to the final 6, 192-dimensional fc7 layer.

• GrowBrain-RWA [272]: This method is another version proposed by [272] that consists to
increase the network capacity recursively. In contrast, to the previous version, it consists to
perform a recursive width augmented (RWA) growing capacity, that is to say to increase both
the fc6 and fc7 layers. The best setting they report is to add 1, 024 neurons on the fc6 layer
and 2, 048 on the fc7 one.

• MuCaLe-Net [243]: It consists to perform a normalization step followed by the concatenation
of the features extracted from two CNN-models, one trained on data labeled according specific
categories and another one trained on the data labeled according categorical-levels. It results in
a 8, 192-dimensional representation.

The results of this comparison are presented in Table 4.4. A salient observation is that MulDiP-
Net+FSFT significantly performs better than all other methods, except for two of the ten datasets.
Globally, it has the highest mNRG score, meaning that it is clearly the most performing univer-
salizing method. Another salient observation is that FSFT is quite powerful, especially because it
outperforms the methods that consist to increase the data and their annotations (SPVspe

A and SPVgen
A)

as well as those that increase the capacity of the network (GrowBrain-WA). It is worth noting that

85

Method Avg RG BC aNRG mNRG

REFERENCE 49.2 0.0 50 n/a n/a

SPVspe
A [11, 23, 297] 50.1 0.9 62 2.3 1.5

SPVgen
G [132, 166, 246] 49.7 0.5 56 +1.4 +1.4

AMECON [33] 40.1 -9.1 17 -20.2 -17.7

WhatMakes [109] 43.8 -5.4 22 -10.8 -7.5

ISM [275] 45.4 -3.8 32 -8.8 -4.3

GrowBrain-WA [272] 50.6 1.4 71 +3.0 +3.5

GrowBrain-RWA [272] 51.7 2.5 87 +5.6 +6.0

MuCaLe-Net [243] 52.3 3.0 92 +7.0 +7.7

FSFT (Ours) 50.7 1.5 76 +3.0 +4.0

MulDiP+FSFT (Ours) 53.1 3.8 103 +8.6 +9.8

Table 4.5: Comparison of our methods (bottom) with state-of-the-art universalizing-methods (top).
Here a special emphasis is given on the aggregated scores on all the benchmarks. Indeed, the scores
of all the methods on all the benchmarks (those in Table 4.4) are aggregated according the different
metrics mentioned in Sec. 4.2. For each metric, we highlight the highest score in bold, and the second
one is underlined. Note that, for all the metrics the higher score is the better and for BC, for a set of
11 methods and 10 datasets, the best achievable score is 110, while the worse is 10.

FSFT does not need more data neither more capacity. Thus, it increases universality at zero cost of
capacity and annotation. As expected, the methods that consist to increase the data and their annota-
tions (SPVspe

A and SPVgen
A) as well as those that increase the capacity of the network (GrowBrain-WA

and GrowBrain-RWA) learn more universal representation compared to the reference method. Sur-
prisingly, the ISM [275] method is not as performing as reported in their context. This is certainly due
to the fact that it is designed for very large source-problems, and the half-million images used here are
not sufficient. Finally, the authors of [109] highlighted that a network trained on data labeled among
generic categories is almost as performing as one trained on specific categories, through the evalu-
ation on three target-datasets distributed among two domains (general objects, actions and scenes).
However, we observe that on more domains, and especially on fine-grained datasets, the difference
with the reference method is much higher.

4.3.3 In-Depth Analysis

4.3.3.1 Comparison with Baseline Methods

In this section, we take further experiments to analyse the performances achieved by the proposed
MulDiP-Net and FSFT, through their comparison to several baseline-methods. The comparisons for
all the Section 4.3.3 are conducted on eight of the ten target-datasets presented in Section 4.3.2.1.
We removed VOC12 and stCAR because the evaluation-servers needed to get the performances of a
method are limited to 1 run per day. For fairness in the comparisons, we mainly used two networks
in the MulDiP-Net method (i.e, initial specific, and basic-level) but others could be used (see Sec-

86

tion 4.3.3.2 where we present the impact of the set of label-sets used and Section 4.3.3.3 in which
three networks are used). The results are reported in Table 4.6 and an illustration as well as the
description of all the baselines is given in Figure 4.13.

In particular, for the MulDiP-Net method, we first assess whether the gain of universality is due
to the ensemble-model (denoted Ensemble) component. To do so, we compare to a baseline that
consists in an ensemble-model with two networks trained on the same specific SP but with different
random initializations of the weights. Compared to those of the reference method, the performances
of the Ensemble are significantly better on six datasets, and less performing on the two others. In
terms of aggregated performances, there is a significant gain of +2.3 in terms of mNRG. The fact
that the performances of the Ensemble are only marginally above those of the reference method (1
point of improvement) could be surprising because ensemble-models generally provides more gain
of performance. However, it should be noted that here the evaluation is carried in a transfer-learning
scheme and not on an end-to-end scheme – for which different features (useful for the learning task)
could be learned by each subnetwork –. Thus even if different useful features are learned, they are
useful only for the source-task, not necessary for the target-ones. Moreover, the ensembling is not
performed as usually (i.e., aggregating the output of the classifiers of the networks), since here we
aggregate the internal layers. In any case, this experiment shows that the performances of MulDiP-
Net do not result from the ensemble-model aspect only, but specifically from the combination of
features learned with data labeled among different types of categories (i.e., generic and specific).

Another baseline is to compare our method without the ensemble-model, but by jointly training (JT)
a network on the two SPs (generic and specific). We tested three variants:

• SPVcat
G +JT(SSL) training the set of SPs with a sum of softmax losses (SSL) – i.e., one for each

SP –, which corresponds to multi-task learning;

• SPVcat
G +JT(MLS) training the set of SPs with a multi-label loss (MLS) layer (e.g., sigmoid

cross entropy), where the labels for each image contain both annotations (generic and specific);

• SPVcat
G +JT(GtoS) gradually training the SPs and more precisely, the network is first trained to

solve the generic SP and then the training is continued on the specific SP.

Globally, the joint training gives always a much lower BC score compared to the reference method,
meaning that MulDiP-Net effectively benefits from the growing capacity obtained by its ensemble-
model aspect. An exception is the gradual training on the different SPs (generic then specific), that
is very close to the reference method (trained once on specific) in terms of BC score. This means
the GRP(CAT)+JT(GtoS) does not benefit from the features learned on generic data. We think that
this is mainly due to the fact than when the network is trained on the second specific problem, it
completely forgets the features learned on the former generic problem (this is known as catastrophic
forgetting [76]). To resume, the comparison to this baselines shows the utility of the disjoint-learning
of MulDiP-Net compared to the joint one (JT).

For the FSFT method, we mainly compare it to the two methods of [285] – Frozen Self Fine-Tuning
(FrSFT) and Self Fine-Tuning (SFT) – that roughly consist to re-train the network on the same prob-
lem. More precisely, FrSFT retrains the last layers only with the previous layers being “frozen”, FST
re-trains all the layers with the same learning-rate. As highlighted in [285], we observe a performance
drop of FrSFT compared to the reference. As mentioned in Section 4.1.2.5, this is due to the fragile
co-adaptation neurons learned in the original network. A slight drop of performance is also observed

87

Figure 4.13: Illustration of the different baseline methods. Yellow blocks are features learned with
specific labels, blues ones illustrate those learned with generic labels, and gray ones reflect the fea-
tures learned on multiple labels (thus could be generic, specific or level-agnostic). Blocks with low
opacity represent discarded layers (i.e., used in a first training stage but not in the second). The
padlock highlights the features that are frozen (i.e., not allowed to be trained on the actual problem
to solve) and the surrounded “+” indicated a concatenation of layers. The baselines are: (a) En-
semble: two networks trained on same specific problem LS , but with different initialization of the
weights; (b) Multi-Task: one network trained on both, specific and generic problems, in a multi-task
paradigm, i.e., with a sum of their losses LS + LG; (c) Multi-Label: one network for generic and
specific, but with the concatenation of the specific and generic labels and the learning of a multi-label
loss L=LS

⊕
LG; (d) Recursive: Generic weights as initialization for specific network (GtoS), i.e.,

training one network on the generic problem, then training of the specific problem with the learned
generic weights instead of random ones; (e) Frozen Fine-Tuning (FrFT): re-training on the initial
problem of the penultimate and last layers of a network pre-trained on specific labels, without allow-
ing the modification of earlier layer; (f) Self Fine-Tuning (SFT): same as FrFT but with the allowing
of modification of earlier layers.

for FST, meaning that fine-tuning does not always recover all the co-adapted neurons. In contrast,
FSFT increases the performances, even when we compact its representation to 2, 048, highlighting
its capacity to recover co-adapted neurons of the original network and even the training of others.
Finally, we also assess the combination of FSFT with MulDiP-Net compared to the reference and
EM+SPVcat

G . As expected, when the FSFT is used with the same capacity (FSFT-4k), it improves the
performances and when it is used with lower capacity (FSFT-2k), it both improves the performance
while reducing the dimensions.

4.3.3.2 Impact of the SPV by grouping

We assess the MulDiP-Net performance with different configurations in the set of SPs (i.e., set of
generic SPs in DSΩ of Eq. 4.7) as well as a comparison with each of its subnetworks alone. More
precisely, we report the performances of each SPV by grouping alone – i.e., SPVcat

G for categorical,
SPVhl

G for hierarchical and SPVclu
G clustering levels –, as well as MulDiP-Net with each of the three

grouping SPV – i.e., EM+SPVcat
G , EM+SPVhl

G and EM+SPVclu
G (with EM designating ensemble-

model). As depicted in Section 4.1.2.4, MulDiP-Net can benefit from the combination of all the
grouping SPVs, thus we also report its performances with three generic levels (initial, categorical and
hierarchical) denoted EM+SPVcat+hl

G and four levels (initial, categorical, hierarchical and clustering)
denoted EM+SPVcat+hl+clu

G . Finally, in order to assess whether MulDiP-Net really benefits from
semantic grouping, we also compare it to a baseline where we group the categories randomly. This
method is denoted EM+SPVrand

G . All the methods are compared with the same reference one, and
the results are presented in Figure 4.14.

88

Method
VOC07 CA101 CA256 NWO MIT67 stACT CUB FLO

mNRG
mAP Acc. mAP Acc. Acc. Acc. Acc. Acc.

REFERENCE 66.8 71.1 53.2 52.5 36.0 44.3 36.1 50.5 n/a

(a) Ensemble 67.8 72.2 54.5 52.0 37.2 45.0 34.7 51.8 +2.3

(b) Multi-Task 61.5 61.8 45.4 49.4 30.7 36.4 25.6 38.7 -16.2

(c) Multi-Label 44.7 46.8 26.4 25.1 27.2 28.0 15.2 38.1 -45.0

(d) Recursive 65.3 68.6 50.8 52.4 33.4 50.8 29.4 45.5 -4.8

(e) FrST 62.3 64.3 47.3 50.0 30.9 38.4 29.3 41.1 -11.6

(f) SFT 67.0 71.5 52.5 49.8 36.2 44.0 36.4 50.1 -0.1

FSFT-2k 67.6 73.3 54.8 47.2 37.9 46.9 38.2 56.3 +3.4

FSFT-4k 67.5 73.9 55.0 44.6 40.4 47.1 38.7 56.8 +4.5

MulDiP-Net 69.5 76.0 56.8 54.7 41.3 48.5 35.6 54.8 +7.9

MulDiP+FSFT-2k 69.8 76.6 57.3 49.9 41.6 48.7 38.0 59.2 +8.8

MulDiP+FSFT-4k 69.8 77.5 58.3 47.9 43.7 50.2 37.4 59.7 +10.7

Table 4.6: Comparison of our universalizing-methods with baseline-methods. Top rows correspond
to baselines. Each baseline is associated to a letter between brackets, that corresponds to the letters
of their illustrations in Figure 4.13. Methods are compared in terms of their median Relative Gain
(mNRG) scores (last column colored in blue), with a reference method that consist of a network
trained on specific categories (red scores). For each benchmark as well as for the final mNRG score,
we highlight the highest score in bold, and the second one is underlined. All the methods have been
learned with the same architecture (i.e., AlexNet) on the same initial SP (i.e., ILSVRC*).

From the results, a first observation is that grouping SPs alone (SPVG) is always below the reference
method, which is consistent with [109]. Among the three grouping methods, the categorical grouping
always obtains the best results, highlighting the interest to introduce a grouping matching human
categorization principles. Second, almost all the EM+SPVG perform better than its subnetworks
learned on specific and generic data only, showing the interest of their combination in MulDiP-Net
(i.e., the SPVG and reference methods that respectively corresponds to the training on generic and
specific data). This latter, clearly demonstrates the contribution of the combination of the specific
and generic knowledge and thus that, MulDiP-Net is always beneficial, whatever the grouping SPV.
In contrast, the performances of EM+SPVrand

G are always very close to the reference method, which
puts forward the utility of the SPV by semantic grouping. Finally, the more different grouping SPs
we consider in MulDiP-Net, the more the performances increase. However this performance increase
seems to saturate above two SPs.

4.3.3.3 MulDiP-Net with More Training Data

To estimate the universalizing capacity of MulDiP-Net with larger SPs, we trained MulDiP-Net on the
full ILSVRC containing containing around 1.2 million images labeled among 1, 000 categories. The
results are respectively reported in first (reference) and third line (MulDiP-Net) of Table 4.8. MulDiP-
Net performs better than the reference method on all datasets except CUB, although the results are

89

Figure 4.14: Impact of the different SPV by grouping considered in our MulDiP-Net. We plot the
performance of the methods according to the benchmarks with their associated standard evaluation-
metrics. Best view in color.

quite close (−0.2%), showing the previous results can be extended to a larger source dataset.

4.3.3.4 MulDiP-Net with More Networks

Up to now, we mainly reported results of MulDiP-Net with two networks learned on specific and
generic categories. They correspond to the subordinate and the basic levels of the categorical lev-
els [214]. A third level even more generic, namely superordinate level, can nevertheless be consid-
ered. We report in Table 4.7 the results obtained with this third level on two datasets.

The results obtained with the network learned on superordinate levels only are much lower than with
the other networks. Indeed, the features added with this third network are very generic and thus seem
to not contribute a lot to discriminate classes.

When it is added to the two other networks (concatenation), the results are slightly improved, but at
the cost of a representation that is 50% larger, making the interest of the process quite limited. From
these results, it seems that it better worth to include network learned on fine categories, as it is further
developed in Section 6.2.1.

4.3.3.5 MulDiP-Net with Deeper Architectures

Increasing network capacity (wider or deeper layers) can help to get a better universal representation.
It is thus important to determine whether the principle of MulDiP-Net has an effect with a larger net-

90

work. To evaluate this point we considered AlexNet (5 convolutional layers and 3 fully-connected),
the deep and wide VGG-16 (16 convolutional layers and 3 fully-connected) and DarkNet-20 (20 con-
volutional layers and one fully-connected layer). Results of the methods with respect to the network
architectures are presented in Table 4.8. Three observations can be done from the results. First,
the deeper is not the better for universalizing since the reference method with VGG-16 has a better
BC score than the one with DarkNet-20. Second, for any architecture, SPVG is below the reference
method, except for the DarkNet one, which is surprising. Third, MulDiP-Net always performs better
than its two subnetworks (i.e., reference and SPVcat

G), regardless the network architecture, showing
its robustness with regards to this aspect.

One can see that the network trained on specific categories (also denoted Net-S in the following) is
always better than the one trained on generic categories (Net-G), except for the DarkNet architecture.
This can be due to the presence of three fully connected layers in AlexNet and VGG while DarkNet is
almost fully convolutional. Hence, AlexNet and VGG can finally combine more convolutional filters
than DarkNet and a Net-S learns very specific filters compared to a Net-G that learns generic ones
(Section 4.3.1). Such a combination of convolutional filters is able to detect more diverse patterns
and being thus beneficial to universalize the representation. It is also possible to combine the filters
with convolutional layers but it would require more layers. Here, it seems that the usage of fully-
connected layers leads to a larger diversification of the patterns that can be detected thus improves the
universality, while an even deeper fully convolutional network may also obtain good results.

Set of Label-Sets (B) VOC07 NWO
{L2} (Superordinate) 58.9 37.4
{L1} (Basic-Level) 70.0 51.0
{C} (Subordinate=specific) 70.3 51.2
{C,L1} 72.5 54.1
{C,L1,L2} 73.0 54.9

Table 4.7: Impact of the categorical-levels considered in MulDiP-Net, in terms of performance in
transfer learning on PascalVOC 2007 (VOC07) and Nus wide object (NWO).

Method Network VOC07 CA101 CA256 NWO MIT67 stACT CUB FLOW
BC

mAP Acc. mAP Acc. Acc. Acc. Acc. Acc.
Ref. AlexNet 71.7 79.7 62.4 58.3 46.9 51.2 36.3 58.4 19
SPVcat

G AlexNet 71.5 77.4 60.4 57.8 42.8 49.3 19.5 52.4 10
MulDiP AlexNet 74.4 82.5 65.2 60.8 48.4 54.2 36.1 62.5 25
Ref. VGG 86.1 88.8 78.0 71.8 66.7 73.5 69.8 78.9 52
SPVcat

G VGG 85.7 87.6 76.9 70.3 65.8 72.2 67.0 75.0 43
MulDiP VGG 87.5 92.0 80.9 72.6 68.9 75.0 71.5 81.9 68
Ref. DarkNet 82.7 91.0 78.4 70.5 64.8 72.2 59.5 80.0 44
SPVcat

G DarkNet 83.2 91.5 78.1 73.2 64.4 72.6 52.5 78.9 46
MulDiP DarkNet 84.1 92.7 80.1 73.9 66.4 74.5 61.2 82.1 62

Table 4.8: Comparison of MulDiP-Net with its sub-components: specific (Ref.) and generic (SPV cat
G)

on the full ILSVRC and different network architectures (AlexNet: 7 layers - VGG: 16 layers -
DarkNet: 20 layers). The last column reports the global Borda Count score (BC). Using 9 methods,
the BC score ranges in J9, 90K. The highest scores are in bold and the second one is underlined.

91

4.4 Conclusions

In this chapter, we proposed a simple novel approach for learning more universal representations. Our
approach learns a set of features on an initial source-problem (SP) then consists in three main steps:
(i) applying a source problem variation to produce new source-problems; (ii) learning features on the
new source problems and (iii) combining all features (learned on the initial SP and the new SPs) to
form the final representation. The original contribution concerns the method to perform SPV and the
combination of the features: a SPV by grouping according to some semantic knowledge in the form
of hierarchies with “is-a” relations that is in line with our hypothesis that adding semantics is a good
way to improve universality, and a combination through a dimensionality reduction (FSFT), followed
by an independent normalization and a simple concatenation.

MulDiP-Net+FSFT exhibits promising results, increasing the universality of the learned representa-
tion (on a set of ten target-datasets in a transfer-learning scheme) without more annotated data. In
addition, we also performed an in-depth analysis showing that our approach works better because of
two properties, namely filters diversification and diversification relevance.

It is important to note that the third step can be performed differently. Such alternative approaches
are discussed in details in Chapter 6.

92

5

Preserving Unimodal Semantics in
Multimodal Representations

Contents
5.1 Non-Semantic Meta-Concepts Classification . 94

5.1.1 Introduction . 94

5.1.2 Proposed Method . 95

5.2 Experimental Results . 103

5.2.1 Settings . 104

5.2.2 Comparison to State-Of-The-Art Methods 107

5.2.3 In-Depth Analysis . 107

5.3 Conclusions . 108

T he question of the universality of the representation is not restricted to the visual domain. This
chapter deals with building a joint representation of the visual and the textual/semantic modal-

ities, that is an alternative to the proposal of the previous chapter to align the high-level semantic data
to the low-level visual ones.

Each modality is mapped to the other through supervised learning. The originality of our approach
mainly lies in using one modality to define the labels that is used as ground-truth to learn the other
modality. We adopt an unsupervised learning approach to define these labels, such that they do not
correspond to an actual concept, that would be unequivocally recognized by a human being. We argue
that this ambiguity may reflect a visual concept that can hardly be defined with words as well as a
semantic concept that could be illustrated by many visual aspects. In that sense, these meta-concepts
aim to get more universal embedding space than those that are directly reflected by the unimodal
features.

93

5.1 Non-Semantic Meta-Concepts Classification

5.1.1 Introduction

We are interested in the joint representations of the visual and the textual/semantic modalities. Such
approaches have had an increasing success in the past few years in particular because the alignment of
textual and visual data facilitates cross modal retrieval and can be directly applied to text illustration
and automatic image captioning [123, 122]. It also allows to tackle the problems of zero-shot classifi-
cation [77] and visual question answering [6]. It is also of interest on a theoretical point of view since
it provides a model that tends to unify the concept independently of the modality used to represent it.

A major difficulty to understand visual and textual content lies in its ambiguity with regard to the ac-
tual user need, for instance when identifying an entity from a given textual mention [145] or matching
a visual perception to a need expressed through language [6]. On the one hand, it is simply expressed
by the well-known idiom “A picture is worth a thousand words” that Smeulders et al. [230] used to
introduce their presentation of the “semantic gap”. On the other hand, the number of visual represen-
tations of simple objects or persons is almost infinite, not to mention more difficult concepts such as
emotions or actions that are nonetheless quite easily identified by a human.

Many approaches that aim to align visual and textual/semantic content rely on supervised learning,
including in particular those that learn joint representations [127, 77, 123, 122, 271, 254, 255, 67,
222, 153, 68] (more details in Sec. 2.1.4). In such a scheme, the labels are non ambiguous thus it
attempts to map a modality to the other one while skipping half of the inherent ambiguity that could
exist. For example, when one wants to map a diversity of images to a given concept, it usually ignores
that such images should also match its synonyms or possible “close concepts”. Such a limit can of
course be managed through an ad-hoc additive process that models explicitly these relations in the
semantic space.

We nevertheless argue this could be directly managed during the learning of the initial mapping, by
considering ambiguous concepts. In practice, we consider meta concepts that subsume several con-
cepts, either representing physical entities (concrete concepts) or non-physical ones (abstract con-
cepts). Since our approach to define these labels is strongly driven by unsupervised learning, it may
result into a concept that could hardly be described by words. Hence, we qualify it as a non-semantic
concept, resulting into the central notion of non-semantic meta concept, named NAMECON.

These NAMECONs being used as labels in a supervised learning framework, the rest of the approach
is inspired by the some of the most successful recent approaches to learn joint representations for
visual and textual content. Overall, the architecture consists in supervised learning of each modality
that are learned jointly to optimize a bi-directional ranking loss [271, 270]. In addition, a classification
task is added to provide a semantic regularization that favors high-level alignment with the common
space [222, 236]. In summary our method learns the multimodal embedding space by correctly rank-
ing aligned pairs and jointly correctly classifying NAMECONs, thus we named it NAMRank.

Note that, some works in the literature also proposed to rely on classes during the learning of the mul-
timodal embedding space. Indeed, Gong et al. [85], Salvador et al. [222] and Suris et al. [236] pro-
posed, to add to a standard learning strategy, an additional classification loss that learns to recognize
some semantic classes derived from ground-truth annotations. Carvalho et al. [153] proposed to rec-
ognize these categories by learning a double-triplet scheme to express jointly the instance loss and the

94

Figure 5.1: Given an input image-text pair and their respective unimodal features (a) and (b), the
proposed NAMRank method maps each unimodal data into a multimodal space. In particular, each
mapping function is represented by a branch (top: image to multimodal (c) through FV ; bottom: text
to multimodal (d) through FT). To learn the mapping functions, we use an objective that promotes
two main constraints: (i) bring closer the positive image-text pairs and drives away the negative ones
(through a bi-directional ranking loss Lr); and (ii) ensures the multimodal representations of the
image-text pairs to belong to their associated unimodal categories (visual and textual classification
losses LV and LT). The three objectives are calibrated with a set of parameters (λr, λV and λT)
that results in multiple potential training strategies. The main novelty of this paper lies in the fact
that the categories associated to the image-text pairs were obtained by clustering the set of unimodal
features which aims to get Non-semAntic MEta-CONcepts (NAMECONs). This latter ensures the
preservation of the unimodal visual and textual semantics into the learned multimodal representation.

class-based one. Such proposal is similar to the structure preserving method proposed in [271, 270],
but differs by the fact that [153] uses real multimodal classes (that contains images and texts) while
Wang et al.only used the multiple captions associated to each image, that is, unimodal categories.

Compared to all previously mentioned works, a major difference with our work is that, in our case,
the non-semantic abstract concept deeply results from an unsupervised approach, avoiding to rely on
human annotations that are costly to obtain.

5.1.2 Proposed Method

Given data from multiple modalities, our goal is to learn an embedding space where, aligned data
from multiple modalities describing the same scene produces close representations in a multimodal
space, and non-aligned ones produce representations that are far from each other in this space. Here,
we specifically focus on visual and textual data.

Unimodal images and text representations are usually not directly comparable because they are learned
on different data, with different objectives and learning-strategies. They thus do not encode the same
semantics, which brings us to the famous semantic gap. Hence, to make an image and a text directly
comparable, we aim at learning a common spaceM where features Vi of images Ii and features Ti of
texts Ti can be projected in and being directly comparable. It thus consists in learning two mapping
functions, FV that maps a visual feature vector Vi to its multimodal representationMV

i and FT that
maps a textual feature vector Ti to its multimodal representation MT

i . Hence, the projected visual
and textual features have the same dimension (MV

i ∈ RM andMT
i ∈ RM).

95

Figure 5.2: Illustration of the two-branch network and the additional namecon classification layer on
top of each branch.

To learn more effective mapping functions, we propose to consider the two following principles:
distributions ofMV

i andMT
i need to be modality-invariant, and the projected features need to be se-

mantically discriminative. More specifically, our contribution here is on the second objective, were we
get the categories at zero-cost of annotation and especially because they directly encode the semantics
of the initial modalities (visual and textual), which in a certain sense, aims to preserve semantics of
the different modalities into the learned multimodal embedding space. This latter is ensured through
our proposed Non-semAntic MEta-CONcepts (“NAMECON”) – i.e., categories that are both, generic
and non-semantic – that are obtained by clustering, thus at zero-cost of annotation and obtained on
the features of each modality, thus they encode the semantics of each modality. Since, we train the
multimodal representation with both, the bi-directional ranking and NAMECON classification loss as
objectives, we call our method “NAMRank”. An overview of the method is illustrated in Figure 5.1.

In the following, we first detail the two-branch network containing the two mapping functions (Sec-
tion 5.1.2.1); then we detail the bi-directional and discriminative objectives (Section 5.1.2.2). Finally,
we describe our NAMECON principle (Section 5.1.2.3), detail the way we construct and infer them
(Section 5.1.2.4) and, provide some important technical details to consider them with a ranking-based
loss function (Section 5.1.2.5).

5.1.2.1 Two-Branches Network

To map from unimodal to multimodal representations, we need one mapping function per modality.
Since we consider two modalities, the architecture we use contains two mapping functions and as
in [271], it is called a two-branch network that is illustrated in Figure 5.2. Each branch is a L-layer
perceptron, where each of its L − 1 hidden layers is expressed as hBl (x) = f(WB

l x + bBl), with
x being the input of a unimodal representation or output of a previous hidden layer (B = V for
the visual branch and B = T for the textual one). WB

l , bBl are the weights and bias terms of the
lth hidden layer of branch B and f is a non-linear activation function (ReLU). The output layer of
each branch hBL is hBL (x) = (WB

L x + bBL)/
∥∥WB

L x + bBL
∥∥2, where x is the l2-normalized output of

the previous layer hBl−1. Finally, on top of each branch B, an additional layer is present to learn an
additional classification problem. This latter, does not belong to the mapping functions and is only
here for regularizing and improving them. More precisely, the additional L+1 layer is expressed by
yBL+1(x) = σ(WB

L h
B
L + bBL), where x corresponds here to the output of the mapping function FB

applied on the unimodal representation B, and σ is the softmax function.

96

It is important here to mention that the multimodal representations for the visual and textual features
respectively correspond to the output of the mapping functions FV and FT (i.e., output of the L-
layer (hBL)) and do not correspond to the output of L + 1 layer, that is only here for regularizing
and improving the mapping functions (this will be described in more details in the next sections).
Indeed, the L+1 layer of each branch is discarded during the inference phase. Thus, to get the
multimodal representationMB(X) of an input data X from modality B, during inference, we first
extract its unimodal representation B from a pre-trained network of that modality B, then we do a
simple forward pass hB1 ◦hB2 ◦· · ·hBL on the branchB for which the extracted unimodal representation
B is given as input (i.e., projection of B through the pre-trained mapping function FB).

5.1.2.2 Learning Multimodal Representations with NAMECON and Ranking Objectives

The most challenging aspect of multimodal representation learning is the objective used to train the
mapping functions of each branch. Hence, our method roughly consists to train the mapping functions
(FV and FT) by solving the commonly used bi-directional ranking task and at the same time an
additional namecon classification task. In particular, the former objective enforces the multimodal
representation to have close representations for aligned data and distant features for non-aligned ones;
and since the ranking task only enforces alignment, the additional one is here to act as a sort of
semantic regularization and ensures that the learned multimodal embedding is also discriminative
with respect to the semantics of the initial modalities (visual and textual).

Formally, let us consider a training dataset D = {Xi}i=1···N of N text-image pairs, with images
I+
i that are aligned with texts T+

i and images I−i that are not aligned with texts T−i . Using pre-
trained networks, we extract the visual features V+

i of dimension dV and the textual features T +
i

of dimension dT (usually, dV 6= dT). Each instance Xi is also assigned to a semantic label vector
Yi = [yi1, yi2, . . . , yiC] ∈ RC , where C is the total number of categories. If the ith instance belongs
to the jth category, yij = 1, otherwise yij = 0. Hence, Xi can belong to one or multiple categories.

A natural framework to learn a representation that is highly similar for aligned data and weakly similar
for non-aligned ones is to minimize a bi-directional ranking loss [271, 270]. More precisely, the goal
is to minimize a margin-based loss function:

Lr =
N∑
i=1

(∑
i,j,k

max
{

0,m+ d(v+
i , t

+
j)− d(v+

i , t
−
k)
}

+ λ1

∑
i′,j′,k′

max
{

0,m− d(t+i′ , v
+
j′) + d(t+i′ , v

−
k′)
})

, (5.1)

where vi = FV(Vi) and ti = FT (Ti) respectively denote the output of the L-layer of the visual and
textual branches, d(a, b) is the Euclidean distance between a and b, m is a margin, and λ1 balances
the strength of the ranking loss in the second direction.

In order to ensure that the semantics encoded in the representations of initial modalities V+
i and T +

i

is preserved in the multimodal embedding space, we regularize by a classification task that consists
to recognize categories that were built using the unimodal representations [222, 153]. More precisely,
the multimodal representations obtained from each branchMV andMT is provided as input to the
last L + 1 layer which outputs a predicted C-dimensional score vector that is squashed into a proba-
bility vector (ŷVi for visual branch and ŷTi for textual branch) through a softmax function σ, and for

97

Figure 5.3: Illustration of the different training strategies. (a) Parallel, (b) Sequential (we can also start
by Lc for a certain amount of epochs and finish by Lr), (c) Sequential-parallel , and (d) Alternately.
Note that for (b) and (c), we can also start by Lc for a certain amount of epochs and finish by Lr. Best
view in color.

which each dimension corresponds to a given category of the set of C categories to recognize yBi for
branch B. Indeed, the main novelty of this work is that, the set of categories that we named namecons
are obtained from the unimodal visual and textual features that respectively encode some semantics
of the visual and textual modalities. Namecons roughly correspond to clusters computed on unimodal
representations and they thus encode the cluster structure of unimodal data, but their principle will
be detailed in the next section. Once namecons obtained, we simply use them as ground-truth cat-
egories for each data. Hence, each image-text features pair (V+

i , T +
i) is associated to a bank of C

namecons N = {c1, . . . , cC}, that is used as ground-truth probability for each branch. All branches
are thus learned to correctly predict the namecons for a set of N samples of each mini-batch, through
a softmax cross-entropy loss LB:

LB =
N∑
i=1

yBi log(ŷBi) + (1− yBi)log(1− ŷBi), (5.2)

were, ŷBi = σ(WB
L+1FB(Bi)) is the predicted probability of presence of the CB namecon categories

with the multimodal representationMB (which has been obtained by a forward pass into FB with the
unimodal feature vector Bi as input); and yBi corresponds to the banks of CB desired namecons for
the ith element Bi. Note that, with a softmax cross-entropy, the categories may be mutually exclusive,
but their probabilities do not need to also be mutually exclusive (i.e., one-hot encoding). For instance,
while the dog and car classes are mutually exclusive, an image that may contain a big car near a small
dog will for instance have 0.7 probability of being categorized as car 0.3 probability as dog. Simply
said, all what is required is that each bank of ground-truth labels is a valid probability distribution,
which allows us to also solve multi-label classification problems. This latter is important since the
final namecon objective is an objective that encodes both visual and textual namecons, which results
in a multi-label classification problem.

Finally, the overall loss of the NAMRank method, is minimized through Adam optimizer and modeled
as a multi-task combining the bi-directional ranking loss Lr and the discriminative classification loss
of each branch LB:

L = λr(e)Lr + λV(e)LV + λT (e)LT , (5.3)

where λ(e) are hyper-parameters that depend on the number epochs e. More precisely, λ(e) can be
set by cross-validation or even be trainable. However, with the λ(e) parameters, we can imagine

98

Figure 5.4: Illustration of the different kinds of concepts. A semantic concept (a) is a group (gray
surrounded in black) of instances (white circles) that represents a semantic notion, and this group
is associated to a semantic connotation (here rottweiler). According to definition 1, a non-semantic
concept (b) is a group of instances that do not represent a semantic notion or is not yet associated to
a semantic-connotation (here unknown). A meta-concept (c) is a group of elements (i.e., instances
or group of instances), where all the elements subsumed by the group and the group itself represents
a semantic notion and is named by a human (here, dog for the group; and pitbull, rottweiler for its
hyponyms). Finally, according to definition 2, the non-semantic meta-concept (d) corresponds to a
group of elements, where at least one element subsumed by the group or the group itself does not
represent a semantic notion or is not yet named by a human (here, an hyponym is unknown thus the
group is indescribable thus unknown too).

different training strategies. Indeed, four strategies can be considered: (i) train both the ranking
and discriminative loss at the same time from the beginning (Parallel strategy); or (ii) first train the
network to correctly rank and then to be discriminative, or inversely (Sequential strategy); or (iii) first
train one and add the other (Sequential-parallel); or finally (iv), alternate between one and the other
(Alternately strategy). The different strategies that can be set by cross-validation, are illustrated in
Figure 5.3.

5.1.2.3 Non-semAntic MEta-CONcepts (NAMECONs)

Let us recall that a semantic concept is any word or n-gram from a real-world vocabulary used by
humans to describe a particular notion, that is to say, a physical entity (e.g, bicycle, plant, bird, etc.)
or a non-physical one (e.g, peace, love, beauty, etc.). In the following we use the term “concrete
concept” to describe a physical semantic-concept and “abstract concept” to describe a non-physical
semantic-concept. Let also recall that a meta-concept is a semantic-concept (concrete or abstract)
that subsumes at least one other semantic-concept (concrete or abstract). We introduce and define
non-semantic concepts and Non-semAntic MEta CONcepts (NAMECONs) as:

Definition 1. A non-semantic concept is an instance or group of instances that can not be directly
named by a human, or that has not yet been named.

The first case of the definition could be illustrated by a set of instances (images or texts) that were
grouped randomly or by clustering without obvious semantic links between them. In such a case, the
concept that is illustrated by the instances is clearly non-semantic and as long as a human can not as-
sociate this group entity to a known notion by attributing it a semantic connotation (i.e., unique known

99

Figure 5.5: Illustration of the way we learn namecons. Given all the set of captions (or words) (a)
or images (or patches) (a’) in a training corpus and their projection in an unimodal embedding space
((b) for textual features and (b’) for visual features), our method clusters the space ((c) and (c’)) such
that each cluster is a non-semantic meta-concept (namecon). A namecon is both non-semantic (is not
yet associated to a semantic connotation by a human; or does not exist in the real-world – i.e., inside
a group, the instances are not semantically related, which prevents a human to attribute it a correct
semantic concept) and general (i.e., subsumes multiple instances). For instance, the bottom cluster
in (c) is general since it subsumes the vectors of many words and is non-semantic since no semantic
connotation can be attributed to it. Best view in color.

word or n-gram), the entity remains non-semantic. In the second case of the definition, an example
would be a set of elements that seem to have a link between them and could be easily associated
to a semantic connotation by a human. However, as long as a human did not attributed a semantic
connotation, the entity remains non-semantic. Generally, when facing the same non-semantic concept
(from the second case of the definition) frequently, humans assign it a new unique n-gram and add it
to the real-world vocabulary used by humans in order to make it semantic. In summary, as long as a
human is not able to attribute or did not yet attributed a unique n-gram (from his vocabulary) to this
concept, it remains non-semantic.

Definition 2. A non-semantic meta-concept (NAMECON) is both, a non-semantic concept and a
meta-concept. It thus subsumes at least one concept and especially, at least one non-semantic concept
and is thus indescribable (or not yet described) by a human with one unique word. As in Definition
1, a namecon can be non-semantic because it has simply not yet described by a human.

For instance, if we group three non-semantically related semantic concepts, the probability that a
human can describe this group with a unique n-gram is near-zero, making it a non-semantic meta
concept (denoted namecon in the following). Finally, an overview illustration of the existing kinds of
concepts and those introduced in this section is given in Figure 5.4.

5.1.2.4 Learning NAMECONs that Encode Unimodal Semantics

In practice, namecons are roughly built by grouping (through clustering) all the representations of the
instances of a certain modality (image or text) into a set of clusters. This latter results in a codebook
that then serves as a reference space were we project each instance of the training-dataset on it,
and for which we get the closest category that we encode in a vector that is used as ground-truth

100

Figure 5.6: Illustration of the way we compute the visual and textual namecons for a given pair of
image-text (a)-(a’). We first extract some global or local information (b) and (b’), then, we compute
the unimodal features for each information and project them into the pre-built visual (c) and textual
(c’) namecon spaces. For each feature vector, we get the cluster where it falls down, activate its asso-
ciated dimension and fill all other dimensions with a zero-value. For instance, in the image modality,
the bottom region falls in the black cluster thus we activate its associated dimension, which is the
sixth one. Applying this process on the global information (images or captions) results in a the final
ground-truth binary mono-label NAMECON (d) and (d’). Note that, if the information was extracted
locally (from words or patches), the binary namecons obtained from each local representation needs
to be pooled (maximum). This latter would result in a bank of NAMECONs that is multi-label. Best
view in color.

namecon during training (as depicted in Equation 5.2). More specifically, namecons are obtained
by grouping visual or textual features through unsupervised clustering. The clustering (supervised
or not) is applied to instances and thus aims to get groups, which makes the clusters meta. Since
the clustering is unsupervised, we thus have a very high chance to obtain at least one cluster that
is a non-semantic concept, which ensures the non-semantic aspect of the obtained bank of clusters.
Hence, the obtained concepts verify the two characteristics of namecons: (i) it groups similar data
(from the same modality) into a generic cluster that corresponds to a meta-concept and (ii) because of
the unsupervised aspect, the resulting clusters do not have any explicit semantic connotation (i.e do
not exist in the real-world vocabulary of humans) making them non-semantic concepts. An overview
of the way we build the namecons is illustrated in Figure 5.5.

As stated in Section 5.1.2.2, the classification objective (here namecons) should encode the semantic
encoded in unimodal representations. However, as mentioned above, namecons are non-semantic,
but it is important to recall that the clustering is applied on the unimodal representational spaces,
and thus capture common properties between the instances. While some of them are indescribable
(non-semantic w.r.t first case of definition 1), others are nameable (thus they encode some semantics)
but are not yet named (non-semantic w.r.t second case of definition 1). Simply said, some namecons
are labeled as non-semantic simply because they have not yet named, but obvious links between
their instances clearly exists, thus these namecons are nameable, and more especially, encode some
semantics of unimodal features.

More formally for the description of namecons construction, let us consider a dataset D of n image-
text pairs D = {(Ii, Ti)}i=1...n. Each element of DT and DV is then represented by standard rep-
resentations, namely n-dimensional CNN features {vi}i=1...NV for the local visual elements and m-
dimensional word2vec features {ti}i=1...NT for the textual ones.Since we want to encode both se-
mantics (visual and textual), we build two different set of namecons (visual and textual). Indeed,
given the sets of visual features {vi}i=1...NV and textual ones {ti}i=1...NV , we create groups of ele-
ments resulting in two group sets, namely the visual namecons N V and the textual namecons N V ,
containing respectively CV and CT clusters (C being chosen arbitrarily or obtained through cross-

101

validation for each modality). Each group is obtained by performing clustering (e.g K-means, or
Spectral-clustering, or MeanShift, etc.) on the whole set of representations. Hence, the whole set of
clusters forms a codebook, with each cluster being a namecon that has as prototype the corresponding
cluster-center (ci)i=1,...,CV ∈ RdV for the visual representational space and (ci)i=1,...,CT ∈ RdT for
the textual representation space. Hence, within a namecon cluster, captions or images have similar
non-semantic connotations (i.e., similar in the sense of the textual or visual representation used, but
not in the sense of the human semantics because the representation do not purely model it).

Once the visual and textual namecon codebooks learned, we build the ground-truth categories for
each instance of the training-dataset. Indeed, the set of visual namecons N V and textual ones N (T)

that are seen as a codebook are used to encode any piece of information of the modality of inter-
est. Generally, we adopt a coding scheme similar to local soft coding [147], originally introduced as
locality-constrained linear coding [269], that is nevertheless binarized. Given the unimodal represen-
tation of an image vi and the representation of its associated caption ti, we encode them according to
the namecon codebook of their modality (i.e., N V and N T), where there kth dimension is equal to:

yBi (k) =

{
1 if k ∈ NNp(bi)
0 otherwise, (5.4)

where bi is the representation of the ith instance (image if b=v, caption if b=t), NNp(bi) is the set of
indexes of the p nearest NAMECON clusters of bi in the representational space of modality B. It is
thus a “local hard coding” of Bi according to its associated modality’s codebook. Note that, here the
yBi vector is binary and thus corresponds to the ground-truth namecons of instance bi (i.e., yVi for the
visual representation vi of image Ii or yTi for the textual representation ti of caption Ti). Regarding
the p parameter, it can be simply set by cross-validation. In Figure 5.6, we illustrated how we compute
visual and textual namecons for visual and textual features, respectively.

Note that, for each instance, the two banks of namecons (yVi for visual instances and yTi for textual
ones) are used as output of the non-linearFV andFT mapping functions, as expressed in Equation 5.2.
The next section details how these different banks of namecons are considered as a single task in the
discriminative loss.

5.1.2.5 Same NAMECON Classification Task for All Branches

While the classification terms (LV and LT) of the loss function in Equation 5.3 are especially used
to preserve the unimodal semantics in the multimodal space, if not done correctly, it could lead to
misalignment of pair that should be aligned. Indeed, let recall that in order to benefit from the seman-
tics encoded in both unimodal representations, we create banks of namecons from both modalities. A
natural way to consider them both in our NAMRank method is to assign each bank of namecons to its
associated branch (i.e., visual namecons for visual branch and textual namecons for textual branch).
However, an important aspect is that even if images and captions are aligned, the captions are always
obtained by annotators that are asked to roughly describe the images. Simply said, captions are an
approximation of the content of the images, and do not reflect all the details, but only what is se-
mantically important. Because of this difference in aligned data, the learned visual and textual banks
of namecons, and thus the namecons of pairs of aligned data, will be different. Hence, assigning
namecons of only one modality to the branch of the same modality, means that the network is learned
to (i) bring closer aligned data; (ii) bring the multimodal visual features MV

i to visual namecons;
and (iii) bring multimodal textual features MT

i to textual namecons (that are different from visual

102

ones). Hence, the last two objectives are adversary, thus only one of them can be reached (i.e., the
network will learn mapping functions that satisfy objectives (i) and (ii) or (i) and (iii), but not the
three of them). In other words, only the semantics of one modality will be encoded in the multimodal
embedding space, and not both of them. To avoid this problem, and fully take benefit from the name-
cons of both modalities, we propose to use the same namecons for all branches. In particular, we
propose to fuse visual and textual namecons into one, through concatenation, and use them directly
as ground-truth for each pair of aligned data. This, ensures that each branch solves the same problem.

Since we use the same bank of namecons for all branches, the predictions of namecons with multi-
modal representations obtained from all the branches, should also be the same. Indeed, we could let
the network figures it out, but in order to accelerate the training we propose to enforces this aspect
during learning. To do so, a solution could be to consider an additional MSE loss on the namecon
predictions from each branch, in order to map them one another. However, we propose to rely on a
simpler solution proposed recently by Salvador et al. [222], that consists to use the same weights in
all branches (i.e., the same weights are used in each branch, and only on the layer that maps from the
multimodal embedding to the namecon classes). Indeed, with this method, if the visual and textual
features of aligned data are close in the multimodal embedding space, the same namecon weights in
all branches will certainly ensure that the namecon predictions are the same. If they are not close,
the same namecon weights would promote data-alignment, and thus go in the same direction of the
ranking term, which is desirable. The principles of having the same namecons and same weights for
all branches, are illustrated in Figure 5.1. In particular, the red blocks Ws highlight that the same
weights Ws are used in all branches, and the last blue and gray layers show that each branch solves
the same problem, that is to say, a problem that encodes both, the visual and textual namecons.

5.2 Experimental Results

We evaluate the efficiency of our multi-modal approach with two cross-modal retrieval tasks, namely
image captioning (i.e., given a query image, retrieve the most descriptive captions from a large
database) and text-illustration (i.e., given a caption as query, retrieve the most illustrative images
from a large database). While in the literature, the evaluation is generally carried on three commonly
used datasets (Flickr8k, Flickr30k and MSCOCO), here we only used Flickr30k. Indeed, this latter is
very similar to Flickr8k but with more training data and generally in the literature, an improvement
observed on Flickr30k is also observed on MSCOCO. This work needs to be more validated experi-
mentally, especially in all the commonly used datasets as well as an evaluation in a Transfer-Learning
scheme that will state for the universality of the learned representations, which is the main topic of
this Thesis. Instead here, we evaluate in a more classical end-to-end learning scheme (i.e., learn the
representation on the training set and evaluate on the test set of the same dataset). In Section 5.2.1, we
detail the experimental settings, that is to say, the commonly used datasets and the implementations
details of our method. Then, in Section 5.2.2, we compare our method with state-of-the-art ones in
a classical learning scheme and discuss the obtained results. Finally, in Section 5.2.3, we conduct an
in-depth analysis of our method, that contains a comparison to baseline methods, to highlight some
insights and an ablation study, showing the impact of each component of our method.

103

5.2.1 Settings

5.2.1.1 Datasets

As said above, three datasets are commonly used in the literature to evaluate the methods. More
precisely, the datasets are Flickr-8K [103], Flickr-30k [287] and MSCOCO [144] databases. All
the datasets contain complex images associated to five precise captions and thus can be used either to
perform image-captioning or text-illustration. In practice, for the three datasets, the training data are
always used to train the models and the testing data to evaluate them. For the cross-modal retrieval
tasks, we follow the literature and use the test data of one modality (i.e., images or captions) as
queries and the test data of the other modality as the collection (i.e., images or captions, respectively).
Regarding the total amount of data (train), Flickr-8k contains 8, 000 images, Flickr-30k contains
31, 783 images and MSCOCO, which is the largest one, contains 82, 783 images. Since in the three
datasets, each image is associated to five captions, they respectively contains, 40, 000, 158, 915 and
414, 113 captions. The tree datasets need to be splitted in three sets, namely training, validation
and testing. However, only the Flickr datasets contain official splits for cross-modal retrieval tasks.
Indeed, for Flickr-8k the training, validation and testing sets respectively contain 6, 000, 1, 000 and
1, 000 images with their associated five captions each. For Flickr-30k, which is larger, the training,
validation and testing sets respectively contain 29, 783, 1, 000 and 1, 000 images with their associated
five captions each. It is worth noting that during training, since each image Ii is associated to its five
captions (T 1

i , . . . , T 5
i), we use them as five different training examples that results in the following set

of training text-image pairs {(Ii, T 1
i), . . ., (Ii, T 5

i)}. Also, note that, since each image is associated
to five captions, many evaluation protocols emerge in the literature. In our experiments, we used
the most common one [123, 122, 279] which consists to treat each caption with its associated image
as an individual pair of data. For instance, in the Flickr-8k each of the 5, 000 captions has to be
illustrated by one image from the whole set of 1, 000 test images in the text-illustration task. For the
MSCOCO dataset, which is the largest dataset, since no official splitting is provided, we could simply
follow [122] and use 1, 000 validation images and 1, 000 test images (with their associated captions),
randomly obtained from the whole set of data. Regarding the evaluation metric, we adopted recall at
top K retrieved results (denoted R@K in the following) for the three datasets. As in the literature,
we set K ∈ {1, 5, 10}, meaning that we evaluate the methods in their capacity to retrieve the good
documents among the first (R@1), five (R@5) or ten (R@10) retrieved document(s). In order to
highlight the best methods, we simply aggregate the results of each method in terms of R@1, R@5,
R@10 on the two tasks (image-annotation and text-illustration), which we denote Avg.

5.2.1.2 Implementation Details

Here, we detail the representations used for each modality, the way we build and infer namecons and
how we train the networks.

Visual and Textual Representations: We follow the literature [33, 271, 270, 128, 67] to represent
images and captions. More precisely for images, a common procedure consists in extracting the penul-
timate layer of a pre-trained network. Here, we used RestNet-101 [96] trained on ILSVRC [216] and
the modified version (VGG-4k) [246] of VGG [228] that has been pre-trained on a diversified set of
ImageNet [53]. More precisely, for the RestNet-101, we follow [271, 128, 67] and crop the original
256×256 image in ten different ways into 224×224 images: the four corners, the center, and their

104

vertically flipped image. The mean value is then subtracted from each color channel. Then the result-
ing images are feed to the network that outputs one representation for each of them, which are then
averaged. This setting will be denoted 10C in the following. As commonly done in the literature, to
represent captions, we primarily use the 300-dimensional means of word2vec [167] vectors of words
in each caption (referred as w2v-mean in the following), and tf-idf-weighted bag-of-words vectors,
with a dictionary size and descriptor dimensionality of 3, 404 (referred as tf-idf in the following). In
particular, we pre-process all the captions with WordNet’s lemmatizer [24] and remove stop words.

Learning and Inferring Namecons: To build the visual and textual NAMECONs, we respectively
used the visual and textual representations described above. In particular, we used the k-means al-
gorithm to cluster the whole space of unimodal data (visual or textual), with a set of CV clusters
for the visual representations and CT clusters for the textual representations. The sizes of the visual
CV and textual CT NAMECON codebooks are hyper-parameters of our NAMRank method, and can
be set by cross-validation. More precisely, we cross-validated them on the validation set and use
a set of values that is 1, 000 to half of the size the training-dataset (e.g., 15, 000 for the Flickr-30k
that contains 29, 783 instances), with a step of 1, 000. The experiments suggest that an amount of
5, 000 NAMECONs is the most performing. It results, in average, to 6 instances (visual or textual)
per NAMECON. Once the NAMECON codebooks constructed for the two modalities, we infer them
from all the visual Ii and textual Ti instance of the training-data. To do so, we applied a hard-coding
scheme with a set of p nearest neighbors, with p being set by cross-validation between the values that
goes from 1 to 10. The results suggest that p = 1 is the more performing configuration. Then as
expressed in Section 5.1.2.5, the visual and textual NAMECON labels of all aligned data (Ii, Ti) are
merged together (through concatenation) and used as ground-truth NAMECONs (i.e., as the vector
ŷBi of Equation 5.2) for the data of the given pair to train the two-branch network.

Training the Network: As depicted in Section 5.1.2.1, we used a multi-layer perceptron (MLP) to
train the FV and FT mapping functions. Following [271, 270], the MLPs of each branch contains
two layers, one of size 2, 048 and one of size 512 (see Figure 5.2 to see on which layer dropout and
batch-normalization, and l2-normalization are performed). We used standard parameters to train the
weights of the mapping functions, that is, a starting learning rate of 10−2, a momentum of 0.9, a
weight decay of 5 · 10−4 and a batch size of 512. Note that the learning-rate is not decreased during
training, since this practice seems to stop the learning. The weights and biases of the networks are
initialized randomly and optimized through the Adam optimizer [126]. Better results could be ob-
tained with different architectures, but this is out of the scope of the paper. The input of the FV and
FT mapping functions are respectively the 4096 or 2048-dimensional features extracted from VGG-
4k and Resnet-101; and 300 or 3404-dimensional textual features obtained from word2vec-mean and
tf-idf textual features, respectively. Regarding the output of each branch, they are the same than the
size of the codebook NAMECONs, and thus respectively correspond to CT -dimensional vector (for
the bank of textual NAMECONs) and CV -dimensional vectors (for the bank of visual NAMECONs).

5.2.1.3 Comparison Methods

Here, we describe the state-of-the-art methods used for comparison. Before listing them, it is impor-
tant to note that, while not done here since it is an in-progress work of the Thesis, our final goal is the
increase of universality through the learning of multimodal representations. Thus, it is important that

105

the evaluation of the different methods is carried in a Transfer-Learning setting. However, since the
communities of vision, NLP, and multimodal are rapidly moving, there is a lack of works that report
fair comparisons of the methods, that is to say, with the same visual and textual settings. Indeed,
it is obvious that multimodal representations could directly benefit from better unimodal representa-
tions (e.g., word2vec features learned on more data, 36, 000-dimensional Fisher-vectors derived from
hybrid gaussian-laplacian mixture models [128, 67], LSTMs that encode the natural temporarily of
sentences [231] or even CNNs to represent texts [10, 125], and for the visual modality, better archi-
tectures [105, 276], more universal visual representations [243, 244], visual attention [177, 149] etc.)
and/or better architecture for the mapping functions (e.g., RRF [149], ensemble-models [149]) or by
considering local data (e.g., fragments [123, 122], fragments obtained by weak supervision [68], at-
tention [177, 149]), semantic and context [106], etc.). Thus, to the best of our knowledge, it is at this
stage, hard to say which principle to learn multimodal representations is the best. Hence, in order to
tackle the problem of universality, we plan to conduct an extensive set of experiments to demonstrate
which multimodal-learning principle is the most promising to universality. First, we plan to compare
to one of the strongest statistical models for learning joint embeddings for different feature spaces
when paired data are provided, namely Canonical Correlation Analysis (CCA) [95]. Another ap-
proach to consider, is the asymmetric mapping one, since recently, a couple of works [31, 33, 40, 58],
demonstrated some interesting results on the cross-modal retrieval. The principle roughly consists to
map the representation of one modality to those of another modality, through a simple MLP trained on
paired data. In practice, two ways are possible, that is, from image to text representations (im2txt) and
from text to image representations (txt2im). Thus we re-implemented the works of AMECON [33]
and Word2VisualVec [58] that respectively corresponds to the im2txt and txt2im possibilities. Note
that, the latter work belongs to an asymmetric approach, because, their “multimodal” embedding cor-
responds to a unimodal one (i.e., textual for im2txt and visual for txt2im). Thus, in the cross-modal
retrieval tasks, the images (resp. captions) are represented by the unimodal features, and the repre-
sentations of the captions (resp. images) are projected into the visual (textual resp.) space through
their learned mapping function for txt2im (resp. im2txt) way. Very recently, Eisenschtat et al. [67]
proposed a symmetric mapping approach, that is called 2-Way-Net. The principle of this approach is
to map both, from the textual to visual representation and, from the visual to textual representation, by
passing though a common multimodal layer. In practice they use two networks, one for each mapping
functions, and most importantly, the same weights are used in both networks (i.e., the matrix weights
of the Lth layer of one way network is learned and used as is (with a transposition) in the branch
of the other way network). Finally, one of the most efficient way to learn multimodal embeddings
is to use a two-branch network that maps the representation of each modality into a multimodal em-
bedding layer, and train it with metric-learning, and more precisely bi-directional ranking [271, 270]
(denoted Bi-Dir Ranking). A special case of the latter method is the work of [77] that consists to
map from visual to textual representation (i.e., use one branch network) and train the network with
a one-directional ranking (One-Dir Ranking). Note that, as in the mapping approach, this method
is asymmetric. Note that for all the methods, to perform cross-modal retrieval, the multimodal rep-
resentations are extracted from two through the trained mapping functions, and are compared by
computing their similarity through euclidean distance. Note also that, all methods are implemented
with the same settings (i.e., same visual and textual representations, same architecture and same train-
ing set, as expressed in Section 5.2.1.2), thus only the principle to learn the multimodal representation
varies. In addition to these re-implemented recent works, we also report the results of some reference
works [123, 122, 127].

106

Method Image-Annotation Text-Illustration Avg
R@1 R@5 R@10 R@1 R@5 R@10

Bi-Dir Ranking [271, 270] 26.6 53.0 65.9 22.7 50.1 63.3 46.9
Karpathy et al. [123]* 12.6 32.9 44.0 10.3 31.4 44.5 29.3
Kiros et al. [127]* 14.8 39.2 50.9 11.8 34.0 46.3 32.8
Karpathy et al. [122]* 22.2 48.2 61.4 15.2 37.7 50.5 38.7
Word2VisualVec [58] (txt2im) 16.8 40.3 53.0 0.1 5.6 10.0 21.0
AMECON [33] (txt2im) 18.3 41.3 53.5 6.1 9.8 12.2 23.5
AMECON [33] (im2txt) 9.6 13.5 19.2 20.0 49.8 64.2 29.4
NAMRank (ours) 30.4 55.3 69.1 23.8 52.0 65.5 49.4

Table 5.1: Comparison of our method (bottom) with state-of-the-art methods (top) on the Flickr30k
dataset. The Bi-Dir Ranking method is used as reference, thus its scores are colored in red. All the
methods are evaluated on the Image-Annotation and Text-Illustration tasks, for which we report their
R@1, R@5 and R@10. We also report their average recall (last column with scores colored in blue)
on all the tasks. Note that, in order to have fair comparisons, all the methods (except those marked
with *) are re-implemented with the same settings (same visual and textual features, same architecture
and same training set), thus only the principle to learn the multimodal representation varies.

5.2.2 Comparison to State-Of-The-Art Methods

In this section we report and discuss the results obtained by comparison methods and ours (NAM-
Rank) on the famous tasks of image-captioning and text-illustration. In particular, the evaluation is
carried on the Flickr-30k dataset. The results for both image-captioning and text-illustrations tasks on
the Flickr-30k dataset are reported on Table 5.1.

Roughly, we observe that our method achieves the best results on both tasks. In average, it takes 2.5
points in terms of R@K compared to the best principle of the literature to learn multimodal embed-
dings, namely Bi-Dir Ranking (which is used as Reference in our evaluation scheme). This clearly
demonstrates the interests of the proposed principle to additionally learn to predict NAMECONs.
Another salient result lies with the fact that the methods belonging to the asymmetric approach (i.e.,
Word2VisualVec, AMECON-txt2im and AMECON-im2txt) provide good results on on direction of
cross-modal retrieval but provide much lower results on the other way. For instance, AMECON-
im2txt is in line with the state-of-the-art results on text-illustration but is lower than the very old
methods like [123]. This surprising phenomenon suggests that different modalities should not be
aligned by bringing only one modality to the other, but an effort to bring both of them close to the
other is necessary.

5.2.3 In-Depth Analysis

In this section, the goal is to evaluate the impact of each component of our method. To do so, we con-
ducted an ablation study where we removed one or many components from our NAMRank method.
In particular, the elements removed and studied are (i) the use of ranking loss, (ii) the use of same
weights in all branches, (iii) the use of same NAMECONs in all branches, and (iv) the use of one of

107

Method T.S S.W
Image-Annotation Text-Illustration Avg.

R@1 R@5 R@10 R@1 R@5 R@10
Ranking only n/a n/a 26.6 53.0 65.9 22.7 50.1 63.3 46.9
NAMECON n/a 3 18.0 39.4 51.8 15.9 39.6 53.6 36.4
NAMRank Par 7 24.4 51.4 64.4 21.9 48.8 62.8 45.6
NAMRank Par 3 27.2 56.5 68.1 21.5 48.5 60.5 47.1
NAMRank Seq-Par 7 26.4 53.7 65.1 21.7 49.9 62.7 46.6
NAMRank Seq-Par 3 30.4 55.3 69.1 23.8 52.0 65.5 49.4
Ranking only n/a n/a 23.4 50.2 63.3 20.1 44.8 59.3 43.5
NAMRank Par 3 24.6 52.1 66.5 20.3 47.7 62.0 45.5
NAMRank Seq-Par 3 26.0 52.4 65.9 18.4 45.4 59.7 44.6

Table 5.2: Ablation study of our method and comparison to the baseline method Ranking only. The
scores reported here correspond to image-annotation and text-illustration results of the methods on
the Flickr30k dataset. On top of the table, we report the results with the following features: 3404-
dimensional tf-idf features for captions and 2048-dimensional Resnet-101 10C for images. At bot-
tom, we report the results with: 300-dimensional w2v-mean features for texts and 4096-dimensional
VGG-4k features for images. T.S and S.W respectively state for the Training Strategy and Same
Weights, while Par and Seq-Par respectively refer to the Sequential and Sequential-Parallel learning
strategies.

the different learning strategies1. To perform the evaluation, we used the Flickr-30k dataset and two
different settings for the unimodal semantics, i.e., VGG-4k for images and w2v-mean for captions;
and Resnet-101 10C for images and tf-idf for sentences. The results of the ablation study are reported
in Table 5.2.

Beside the fact that our method outperforms all the other baselines on both features settings, we
observe that compared to the ranking only, a gain of performance is observed only when the same
weights and same NAMECONs are used in all branches. This latter, highlights the importance to have
the same weights and NAMECONs in all branches. With dense textual features (bottom part of the
Table), the Sequential-Parallel learning strategy seems to be more performing than the Parallel one,
while it is the contrary with very sparse textual features (top of the Table). While the NAMECONs
only (i.e., w/o ranking loss) seems to already provide satisfying results, it is important to also consider
the ranking loss in the final objective. This may due to the fact that to perform cross-modal retrieval,
learning to exactly match instances is important. Finally, our method with ranking, NAMECONs,
same weights and NAMECONs in all branches is better than the the ranking only, clearly meaning
the interest of NAMECONs, and more precisely, the utility of learning to exactly match instances but
also to group them semantically.

5.3 Conclusions

In this work, we proposed to preserve unimodal semantics in multimodal representations learned
through classical bi-directional ranking loss. To do so, we proposed to rely on the introduced prin-
ciple of non-semantic meta-categories (NAMECONs) that are both non-semantic (not interpretable

1The results here are preliminary, and a complete study of all variants of our method is required.

108

or not yet interpreted) and meta-categories (capture common properties between similar instances).
NAMECONs are specifically used as labels of an additional classification loss that tends to regularize
the alignment of corresponding visual and textual representations.

We conducted extensive experiments on text-illustration and image-captioning tasks over three com-
monly used datasets (i.e., Flickr-8k, Flickr-30k and MSCOCO), and our method significantly outper-
forms all comparable state-of-the-art methods. We also conducted an in-depth analysis of our method
and demonstrate the utility of each component as well as the utility of the proposed NAMECON
principle compared to only using the bi-directional ranking loss. While here we did not evaluated
our in terms of universality (in a transfer-learning scheme), we think it will be even more effective on
different target-tasks, but this is discussed in more details in the next section.

109

6

Conclusions and Perspectives

Contents
6.1 Summary of Conclusions & Discussions . 110

6.1.1 Evaluation Protocol and Metrics for Universality 111

6.1.2 Semantically Reducing Noise on Large Semantic-Representations 111

6.1.3 More Features on CNN-Representations Without More Annotated Data . 112

6.1.4 Preserving Unimodal Semantics on Multimodal Representations 113

6.2 Directions for Further Research . 114

6.2.1 SPV by Splitting: From Specific to Finer Categories 114

6.2.2 Exploring FSFT in Theory and Practice 114

6.2.3 Efficient Parametrization of the Model 115

6.2.4 Longer Term Perspectives . 116

I n Section 6.1, we summarize the salient points that were shown through the contributions pre-
sented in Chapters 3 to 5. Section 6.2 outlines prospective directions for further research.

6.1 Summary of Conclusions & Discussions

In this Thesis, beyond the proposal of the challenge of universality and a protocol with metrics to
evaluate it (Section 6.1.1), we explored three directions to universality: (i) in a context of semantic
representations, we proposed to semantically reduce the noise introduced in the representation, that
results from an increasing in the number of detectors through data-enlargement (Section 6.1.2); (ii)
in a context of CNN-representations, we proposed to diversify the features with a simple approach
that requires no additive work to collect and annotate data (Section 6.1.3); and (iii) in a context of
multimodal-features, we proposed to increase the scope of action of the individual detectors through
the preservation of unimodal semantics into the multimodal representation (Section 6.1.4).

110

6.1.1 Evaluation Protocol and Metrics for Universality

In Sections 4.2 and 4.3.2.1 of Chapter 4, we respectively proposed a set of metrics as well as a protocol
for evaluating the increase of universality. More precisely, regarding the metrics we first identified a
set of desirable properties for such evaluation and proposed three metrics (Borda Count based on sta-
tistical order, aRG and mRG based on the average or median of relative gain compared to the scores of
a reference method) that we compared to the most natural baseline (averaging scores) as well the VDC
proposed by Rebuffi et al. [210]. We especially showed and empirically demonstrated the limits of the
last two ones, which are partially and even almost totally alleviated by our metrics. It is important to
notice that the proposed metrics are not limited to evaluate visual and multimodal representations and
could be easily used by the NLP community for evaluating universalizing methods. In summary, all
the metrics (including our best one that verifies almost all the properties) are not perfect, meaning that
the evaluation of universality remains an open problem. Thus, identification of desirable properties as
well as metrics themselves are welcomed. Regarding the protocol of evaluation, we made the choice
to evaluate the learned representations in a transfer-learning scheme with a classical scenario where
representations are not modified during the adaptation to the target-tasks. We motivated this choice by
a link with the popular cognitive study of Atkinson et al. [8]. While such protocol is commonly used
in NLP [44, 42, 41, 124, 235, 180], to the best of our knowledge, we are the first to propose to use such
protocol for the visual and multimodal representations. Finally, in practice we evaluated the univer-
salizing methods with target classification problems. It is obviously desirable to evaluate universality
with many different tasks (i.e., boundaries, saliency, detection, segmentation, etc.) as performed by
Kokkinos [130], more complex tasks (such as 3D recognition [184], Augmented Reality [173, 174]
and Diminished Reality [220] in vision, or event detection [129, 59], POS tagging [165], automatic
extraction of bilingual multiword expressions [223] in NLP), and even on many modalities to handle
more tasks such as cross-modal retrieval, VQA [6], or Visual Dialog [51]. Moreover, while ImageNet
already covers a large set of semantic domains, it could be also interesting to evaluate universality
on more domains, such as the medical one (as in [23]), images of scenes [297], or even low-level
objects such as structures [39], materials [19], illuminations [172], or even satellite images [268] with
low-resolution [141]. More fundamentally, such goals raise the question of the characterization of the
source and target datasets, as well as their tasks, ideally independently of the method used to process
them, in order to be able to predict how they relate to each other on a semantic point-of-view, and
consider them in the evaluation metric.

6.1.2 Semantically Reducing Noise on Large Semantic-Representations

In Chapter 3 we proposed two methods of sparsification for semantic representations. Both methods
aim to reduce the noise generated by the increase of object-detectors in semantic representations. The
first method (CBS) consists of an adaptive sparsity according the image and/or the local region content
that is modeled through the entropy and the confidence of the output classifiers. The second one (D-
CL) consists of the exploitation of human knowledge organized according to a semantic hierarchy,
to identify groups of concepts according to their categorical-level. This latter, aims to process the
groups of visual concepts differently from each other, according to their categorical-level. More
importantly it boosts the scores of generic concepts, avoiding their consideration as noise when a
sparsification process is applied. Both methods outperform existing semantic representations in a
transfer-learning scheme on multiple target-datasets, showing their ability to increase the universality
of semantic representations.

111

The CBS contribution was applied to semantic representations, but is nevertheless not limited to this
context. In particular, it would be interesting to see whether the same type of noise could be encoun-
tered on internal layers of CNNs and whether our proposal could be a solution. Another aspect is
on the proposed solution to the problem of the presence of noise. One could rely on learning it from
data as proposed in [204]. Regarding the D-CL that is especially designed to semantic representations
with high-level detectors, we proposed a simple protocol to determine the categories from the basic
and superordinate-levels, but it could be interesting to rely on large scale categorical-level hierarchies
as we proposed in the second part of this thesis [243] or even try to identify them automatically as
proposed recently by Wang et al. [267]. Last but not least, four directions of improvement seem to
emerge for semantic representations: (i) more annotated data; (ii) more structured data; (iii) better
individual classifiers; (iv) better lower-level representations. The first and third point seem less inter-
esting since using more annotated data requires costly human annotation and using better classifiers
would remain to a simple application of another classifier, except if a focus is done on proposing a
completely new classifier. Regarding point (ii), the structure used could be determined in another
way, that would bring more trainable information. For example, one could consider the full captions
describing the categories or other relations than the “is-a” we used here. It is also possible to get
new categories through some unsupervised clustering to get non-semantic meta-concepts [33] or even
sub-categories to define more precise detectors. For the direction (iv), an advantage of semantic rep-
resentations is their interpretability while they are trained on top of lower-level representations that
are not directly interpretable. However, these last representations can themselves be improved to in-
clude more semantics. In particular, they can be themselves more universal, as we discuss in the next
section.

6.1.3 More Features on CNN-Representations Without More Annotated Data

In Chapter 4, we proposed a universalizing method, based on an ensemble-model strategy, that con-
sists to vary the discriminative problems solved by each network of the ensemble to learn CNN fea-
tures. The variation of the discriminative problem is based on category-grouping and more precisely,
on categorical-levels used in the human-categorization process. We showed that it increases the image
classification performances in a transfer learning context, compared to a standard learning strategy. It
thus increases the universality of a given CNN-based representation, and the proposed method uses
exactly the same data while the annotation process concerns the categories and not each image. It
thus results into a particular cheap process in terms of required manual work. Finally, we investigated
the reason why it increases the universality. On the one hand, we showed that the learned features
are more different than those resulting from the usual learning strategies [143]. In addition, we also
showed that this difference is always beneficial in terms of discrimination, exhibiting a kind of com-
plementarity for this aspect that was not a priori obvious. While difficult, it certainly worths to push
further the investigation to better understand the underlying learning process. In particular, it would
be interesting to determine how much sparse or distributed is the coding of a particular image, or a
set of images belonging to a given category, at the different layers.

Alternative approaches can be considered to implement each of the three main modules of our ap-
proach (SPV, CNN architecture and fusion strategy). For the SPV, one can modify the set of images
or the set of categories. Regarding the images, the SPV includes data augmentation that modifies
the images according to a geometric transform or a noisy process (compression, jittering). It also
includes the addition of new annotated data of existing categories. Previous works usually preferred
to extend the set of categories, although one could imagine a process of replacement of some of them.

112

We nevertheless showed that grouping categories provides better results and has the advantage to be
cheap in terms of manual work. We decided to group according to categorical levels and showed this
choice is better than several other baselines (grouping randomly, grouping through levels of the Im-
ageNet hierarchy, and grouping by clustering). We argue that using categorical-levels leads to better
match the human user need but there is no guaranty that it is the best approach and alternative group-
ing strategy may obtain better results. For our part, we nevertheless think that it worth to explore a
splitting strategy, as it is detailed in Section 6.2.1.

Regarding the second module, it also exists many ways to do it. For instance, a natural way to do it is
to train one net per discriminative problem (DP), but it may have a large cost in terms of amount of
parameters, when considering many DPs. At that time, we wanted to demonstrate that a clever use of
data with the same algorithm (same architecture and learning-strategy), is beneficial. Thus, we did it
with the same network.

Regarding the fusion strategy, the concatenation originally used had the drawback to increase the
dimensionality of the representation linearly with the number of DPs considered. We thus proposed
to add a dimensionality reduction method to solve this problem. However, instead of concatenating
the representations, one could consider pooling (e.g., sum, average, max) them, but it is not better
than concatenation (as mentioned in Section 4.1.2.6). Regarding the dimensional reduction, we could
use a classical method (e.g., PCA or even LDA since we have categories on the train-set). Important
to note, if so, we should do this on the training environment, not the target-dataset. It is worth noting
that FSFT not only reduces the dimensionality but also increases the performances, while a classical
dimension reduction usually hurts the final performances.

6.1.4 Preserving Unimodal Semantics on Multimodal Representations

In Chapter 5 we claim that universality is not limited to vision and that representations should go to-
wards the ability to perceive the world through multiple modalities (vision, language, sound). In that
sense, learning multimodal representations on top of unimodal ones contributes to improve the uni-
versality of representations. In particular, in this work, we proposed to preserve unimodal semantics
in multimodal representations learned through classical bi-directional ranking loss. It relies on the
notion of non-semantic meta-categories (namecons), that is used as labels of an additional classifica-
tion loss that tends to regularize the alignment of corresponding visual and textual content according
to a more abstract view of the underlying concept.

We evaluated on Flickr30k and highlighted its interest compared to methods that learn through one
of the best principle to learn multimodal representations to date, namely bi-directional ranking [271,
270]. An evaluation on other cross-modal datasets will be conducted in a near future to assert the
validity of the approach in various contexts. Beyond cross-modal retrieval, we are also interested in
evaluating it in a transfer-learning scenario, consisting in learning the network on one large dataset
in a general domain and testing the ability of the system to provide a universal representation that
exhibits good performances on other domains with small datasets. As in [3], since the source-task
(e.g., MSCOCO), will be in a large-scale setting, we hope that the bi-directional ranking [271, 270],
which is a ranking-based algorithm will be even less performing than our method that also considers
a one-vs-rest classification strategy. Indeed, the problem with the former method is that it encourages
the learning of detectors that are too specific to each instance and thus less able to recognize concept
in very similar instances. Simply said, we think it is less suited to universality than our method.

113

6.2 Directions for Further Research

In this Thesis, we have three main contributions to improve universality, but the MulDiP-Net seems
the most promising one. We made particular choices for each of the three modules that composes the
approach, leading to significant results in terms of universality improvement. However, alternative
choices can be considered, leading to three short-term perspectives. In addition, we propose longer
term perspectives that could build interesting contribution upon the proposed work.

6.2.1 SPV by Splitting: From Specific to Finer Categories

For the variation of the source problem, we preferentially adopted a grouping of specific categories
according categorical levels to obtain generic ones. As underlined, there is no insurance this choice is
optimal and other grouping may give better results. However, another results is of interest, namely that
the performances in transfer learning with a unique CNNs are even better than when the categories
learned are specific (see table below).

Set of Label-Sets (B) VOC07 NWO
{L2} (Superordinate) 58.9 37.4
{L1} (Basic-Level) 70.0 51.0
{C} (Subordinate=specific) 70.3 51.2
{C,L1} 72.5 54.1
{C,L1,L2} 73.0 54.9

Table 6.1: Impact of the categorical-level considered in MulDiP-Net, in terms of performance in
transfer learning on Pascal VOC 2007 (VOC07) and Nus wide object (NWO).

Hence, one can naturally wonder whether a network learned on finer categories than specific ones
could obtain better performances. However, to get the finer categories, it is not possible to rely on se-
mantic knowledge organized in the form of hierarchies with “is-a” relations, since specific categories
are the leaf nodes of the hierarchy. Thus, alternatives to get finer categories should be considered.

A first idea would be to use the pose of the objects, although the precise implementation is not obvious
since this pose needs to be determined without annotation. A more fruitful direction would be to
use unsupervised learning to determine finer categories. Indeed, when the categories are grouped
hierarchically without considering the categorical levels , the results are improved over the reference
and the random grouping (Fig. 4.14). It is also the case when the groups are determined by KMeans
on the penultimate output of the network (clustering grouping). Since the specific categories are, by
definition, quite homogeneous in terms of semantics, it thus makes sense to try to determine finer
categories using such clustering. Actually, with a master internship (Julien Girard), we proposed a
method on this topic and the first results are quite encouraging.

6.2.2 Exploring FSFT in Theory and Practice

In the MulDiP-Net method, we proposed a new method called Focused Self Fine-Tuning (FSFT) to
reduce the dimensionality of the representation and the amount of parameters in the final model, while
maintaining or improving the universality.

114

The theoretical arguments to justify this efficiency are nevertheless still limited since it mainly relies
on empiric observations of [285] concerning the comparison of self-training and fine tuning with
regards to the co-adaptation of features learned.

Beyond theoretical aspects, we did not explore all the potential of FSFT. In particular, we applied it
to the penultimate fully-connected layers of the networks only, since we were mainly interested in
merging the representations to perform transfer learning with vectors of limited dimension. It would
be interesting to apply the FSFT on other internal layers and in particular on convolutional layers.
This would be in any case necessary with a network without internal fully-connected layers, such as
GoogleNet [237], DarkNet [212] or ResNet [96].

More interestingly, one can even imagine a recursive process, consisting in training the full network
withK layers then applying FSFT to theK−1 last layers, then theK−2 last and so on. While costly,
this process should lead to improve incrementally the universality of the penultimate representation.
Indeed, at iteration N , the network will have to focus the training on the K −N layers, with exactly
the same data (that was used to train much more parameters in the previous iteration).

6.2.3 Efficient Parametrization of the Model

In the second module of the MulDiP-Net method, we proposed to rely on the training of a full net-
work on the newly obtained source-problems (SPs). While, a significant jump of performances was
observed with this method, it has the major drawback to linearly increase the amount of parameters,
dimensionality of the representation and inference time, with the amount of SPs considers. As a con-
sequence, imagining more than two or three SPs seems complicated. While the proposed FSFT was
a first attempt to alleviate the dimensionality limitation, it is natural to pay special attention to the
aspect of parameters.

To do so, an important question need elements of answers: Should we pay attention to parametrization
during learning or after learning? Simply said, should we directly learn efficiently or learn in “brute-
force” (without considering parametrization) then compress the model? For the first point, one could
follow [272, 210, 219] which consists in relying on the background of a master-network (full network
trained on the initial SP) by adding a small amount of parameters in each layer (on top of previously
learned ones) and learning them on the new SPs. While such approach could be interesting, it is
very biased by the knowledge encoded in the neurons learned on the previous environments, which
is non-desirable to learn really new features. Such problem could be alleviated by learning in “brute-
force” then compress the model. In the literature, many works proposed to compress neural-network
models, through Pruning [160, 170, 159] or Knowledge Distillation (KD) [101, 213]. A natural idea
is to consider the application of such methods on the learned ensemble (that consists of multiple
SPi-Net). However, while the pruning methods are a trade-off between accuracy and amount of
parameters, it could significantly decrease the performances. Regarding the KD method, the problem
is even more complicated, since the original formulation consists to train a small network that mimics
the behavior of an ensemble of models that were trained on the same problems (i.e., with the same
amount of neurons at their output layers). However, in our case, this requirement is not encountered,
since each SPi-Net has been learned on a particular problem with a particular number of categories to
recognize. An alternative idea could thus to imagine, a mapping process, that consists in training an
ensemble with full networks (one on the initial SP, denoted Master-Net and one per new SP, denoted
SPi-Net), and then learning to map from the penultimate layer (and thus all the knowledge encoded in
the previous layer) of the Master-Net, to the penultimate layer of any SPi-Net. This will have the main

115

advantage to only add (to the final model) the small amount of parameters in the mapping functions,
without considering all those of the lower layers of the SPi-Nets. Potentially, the mapping functions
could provide even better performances than the initial ensemble, since they are in a certain sense,
learned to collaborate, which was not the case during the independent learning of the ensemble.

6.2.4 Longer Term Perspectives

We showed that guiding the grouping with explicit knowledge on human categorization [214] leads
to more universal representations. It is possible to go deeper in the universality by increasing the
scope of the use of a priori knowledge and by considering other kinds of semantic and structural
relations than hierarchical relations. In particular, one can consider to exploit spatial knowledge
and spatial reasoning which is known to be of prime importance for visual recognition and under-
standing [15, 7, 107, 108]. The importance of learning structured representations capturing objects
and their semantic relationships, as for instance scene graphs [116], label relations graphs [52] or
knowledge graphs [162], has been at the core of some recent works [157, 152, 200, 278, 142, 288].
Nevertheless, to our knowledge, visual and semantic relationships between objects have never been
used in the context of learning universal representations.

The principle of knowledge distillation [101] could also contribute to improve universality in a com-
plementary direction to the use of semantic and visual relationships, since it adds knowledge at an-
other step of the learning process. In particular, the recent teacher-student framework proposed by
Hu [104] enables the distillation of diverse knowledge sources, including logic-based ones and thus,
in some sense, is a first step to include expressive formal knowledge models such as ontologies. This
type of approach could lead to the integration of rich and expressive spatial knowledge [14, 108, 288]
in this kind of frameworks.

In the context of transfer-learning and domain adaptation, an important point that has been weakly
processed, to our knowledge, is the study of the dependencies (intersection, complementarity, con-
flict, etc.) between the source problem and the targeted problems. From our point-of-view, knowing
precisely these dependencies could be of great interest to conduct and parameter the transfer-learning
process. A possible direction of research is to study the alignment of ontologies describing both prob-
lems as in Todorov et al. [251, 250] or even more complicated, the alignment of tasks as proposed
very recently by Zamir et al. [290].

116

7

Publications

7.1 Articles in Peer-Reviewed Journals

• Vision-Language Integration using Constrained Local Semantic Features,
Youssef Tamaazousti, Hervé Le Borgne, Adrian Popescu, Etienne Gadeski, Alexandru Lucian
Ginsca, and Céline Hudelot,
Computer Vision and Image Understanding (CVIU), 2017.

• Descripteur sémantique local contraint basé sur un descripteur RNC diversifié,
Youssef Tamaazousti, Hervé Le Borgne, Adrian Popescu, Etienne Gadeski, Alexandru Lucian
Ginsca, and Céline Hudelot,
Journal Traitement du Signal, 2017.

7.1.1 In Preparation or Revision

• Preserving Unimodal Semantics in Multimodal Representations Through Non-Semantic
Meta-Concepts,
Youssef Tamaazousti, Hervé Le Borgne, Ines Chami, Céline Hudelot, and Yannick Le Cacheux,
In preparation for ACM Transactions on Multimedia (ToM).

• Learning More Universal Representations for Transfer-Learning,
Youssef Tamaazousti, Hervé Le Borgne, Céline Hudelot, Mohamed-El-Amine Seddik, and Mo-
hamed Tamaazousti
In revision for IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

7.2 International Peer-Reviewed Conferences

• MuCaLe-Net: Multi Categorical-Level Networks to Generate More Discriminating
Features,
Youssef Tamaazousti, Hervé Le Borgne and Céline Hudelot,
IEEE Computer Vision and Pattern Recognition (CVPR), 2017.

117

• AMECON: Abstract Meta Concept Features for Text-Illustration,
Inès Chami*, Youssef Tamaazousti* and Hervé Le Borgne,
*Both authors contributed equally,
ACM International Conference on Multimedia Retrieval (ICMR), 2017. (Oral)

• Supervised Learning of Entity Disambiguation Models by Negative Sample Selection,
Hani Daher, Romaric Besançon, Olivier Ferret, Hervé Le Borgne, Anne-Laure Daquo, and
Youssef Tamaazousti,
International Conference on Computational Linguistics and Intelligent Text Processing (CI-
CLing), 2017.

• Diverse Concept-Level Features for Multi-Object Classification,
Youssef Tamaazousti, Hervé Le Borgne and Céline Hudelot,
ACM International Conference on Multimedia Retrieval (ICMR), 2016. (Oral)

• Constrained Local Enhancement of Semantic Features by Content-Based Sparsity,
Youssef Tamaazousti, Hervé Le Borgne and Adrian Popescu,
ACM International Conference on Multimedia Retrieval (ICMR), 2016. (Oral)

7.2.1 In Preparation

• Learning Finer-class Networks for Universal Representations,
Julien Girard*, Youssef Tamaazousti*, Hervé Le Borgne and Céline Hudelot,
*Both authors contributed equally,
In preparation for British Machine Vision Conference (BMVC), 2018.

7.3 National Peer-Reviewed Conferences

• Désambiguı̈sation d’entités nommées par apprentissage de modèles d’entités à large échelle,
Hani Daher, Romaric Besançon, Olivier Ferret, Hervé Le Borgne, Anne-Laure Daquo, and
Youssef Tamaazousti,
COnférence en Recherche d’Information et Applications (CORIA), 2017.

• Descripteurs à divers niveaux de concepts pour la classification d’images multi-objets,
Youssef Tamaazousti, Hervé Le Borgne and Céline Hudelot,
Reconnaissance des Formes et Intelligence Artificielle (RFIA), 2016. (Oral)

• Agrégation de descripteurs sémantiques locaux contraints par parcimonie basée sur le
contenu,
Youssef Tamaazousti, Hervé Le Borgne and Adrian Popescu,
Reconnaissance des Formes et Intelligence Artificielle (RFIA), 2016. (Oral)

118

7.4 Patents

• Procédé d’obtention d’apprentissage d’un premier réseau de neurones convolutif vers un
deuxième réseau de neurones convolutif,
Youssef Tamaazousti, Julien Girard, Hervé Le Borgne and Céline Hudelot,
Patent filled on June 2018 at INPI, ref 1854785.

• Procédé d’obtention d’un système de labellisation d’images, programme d’ordinateur et
dispositif correspondant,
Youssef Tamaazousti, Hervé Le Borgne and Céline Hudelot,
Patent filled on December 2016 at INPI, ref 1662013.

7.5 Other Publications and Talks

• Learning More Universal Representations,
Youssef Tamaazousti, Hervé Le Borgne and Céline Hudelot,
Both at GdR ISIS (CNAM) and Thales (”Journées de Palaiseau”), 2018 (talks)

• Image Annotation and Two Paths to Text Illustration,
Hervé Le Borgne, Etienne Gadeski, Ines Chami, Thi Quynh Nhi Tran, Youssef Tamaazousti,
Alexandru Lucian Ginsca, and Adrian Popescu,
Working Notes for the ImageCLEF 2016 Workshop, (ImageCLEF), 2016.

• Contrained Local Semantic Features,
Youssef Tamaazousti, Hervé Le Borgne,and Adrian Popescu,
International Computer Vision Summer School (ICVSS) 2016 (poster)

• Diverse Concept-Level Features for Image Classification,
Youssef Tamaazousti, Hervé Le Borgne and Céline Hudelot,
Mathematical Modelling of Complex Systems (MMCS), dec 2016, Chatenay-Malabry (talk)

119

A

Tasks and Datasets

W e describe the classical pipelines used in the literature for the tasks of classification (Sec-
tion A.1) and cross-modal retrieval (Section A.2). Then, in Section A.3, we describe all the

datasets used in this Thesis to evaluate methods on the classification and cross-modal retrieval tasks.

A.1 Classification Task

The general image classification scheme, illustrated in Figure A.1, follows a supervised learning
approach, and consist in two main phases: an off-line training phase and an on-line testing phase.
More precisely, given a training set composed of images and their associated labels, the off-line
training phase usually consists in first, describing each image with an adequate image representation,
then use these representations and their associated labels as input elements for a machine learning
algorithm to learn a classification model. This model (“learned model”) is learned to map input
image representations to their associated labels. The learned model is then used in the on-line phase
to predict the labels of the unknown images (i.e., not contained in the database of the training phase).
Indeed, on the test phase, each image that belongs to the test set (that are different from images of the
training set but are associated to the same labels of the training-set), is described through an image
representation (the same description as that used in the training phase), which is passed to the learned
model in order to predict (through comparison with the learned data) the labels describing this image.
Note that, on the on-line phase, the unknown images can also come from any other place than the
testing set (i.e., for any application that needs an automatic visual recognition system). Regarding the
evaluation of the different classification methods, many evaluation-metrics have been proposed in the
literature. Most of them consist in comparing the predicted labels (i.e., labels predicted by the learned
classification model) to the ground-truth labels.

A.2 Cross-Modal Retrieval Task

Cross-modal retrieval consists in retrieving image from text (text illustration) or captions from im-
ages (automatic captioning). As in the classification scheme, the cross-modal retrieval also contain

120

Figure A.1: Illustration of the general classification scheme. Each block here is a system and inside
each block, we illustrate its output. An arrow that goes from the inside of a block to another block
means that it takes the output of the first system and use it as input for the second system. In the
off-line phase, images of the training set are represented using a features extractor then each repre-
sentation is used as data point with their associated labels to learn a model in a supervised manner.
In the on-line phase, unknown images (from the test-set or from any application) are represented
(through the same features extractor as in the off-line phase) then, they are passed to the learned
classifier model in order to output predicted labels. The predicted labels are then compared with the
desired ones using evaluation metrics (mAP, Accuracy, etc.) in order to assess the prediction. Best
view in color.

an off-line training phase and on-line testing one. For the training phase, the methods are generally
learned in a supervised approach with a set of paired data from two modalities (e.g., on caption de-
scribing an image). In particular, the goal is to learn a multimodal representation (on top of unimodal
representations) that, after projection of the unimodal representations of paired data into the common
space, the multimodal vectors are close to each other, and inversely far for unpaired data. The learned
model is then used in the on-line phase to find, for a query of given modality (image or text), the
closest instances of the other modality (text or image, respectively). More precisely, unimodal repre-
sentations from each data (from the query and collection) are extracted and feed to the learned model
that outputs the multimodal representation. Then, the representations of the query and all those of the
collection are classically compared through an euclidean distance. The classical way to evaluate such
cross-modal retrieval systems is to use Recall@K. It evaluates the capacity of the methods to retrieve
the good documents among the first K ones.

A.3 Training and Evaluation Datasets

Most of the datasets are composed of three pre-defined splits: training, validation and testing splits.
We organized them in two categories: object-centric datasets and scene-centric datasets, regarding
the entities contained in their images and we will described these datasets according to the following

121

criteria: (i) some statistical information: number of images, number of concepts, average number of
concepts per image, data repartition into train/test splits; (ii) quality of the images and (iii) semantics
(or level of semantics) of the classes.

Object datasets:
In the context of classification, we consider thirteen widely used datasets. The first two (based on
ImageNet [53]) and the third one (Places205 [297]) are considered as large datasets since they contain
millions of images and thousands of categories. All others are much smaller and are much more used
since they are historically quite popular. All of them are described in the following.

• ImageNet [53]: It is a large database that, currently, contains 14 million images labeled among
22,000 categories. The dataset is organized according to a semantic hierarchy (WordNet [168])
with hyponymy relations (i.e., “is-a” relations). It is important to note that, all categories con-
tain unique images (i.e., that are not present in other categories). It contains eleven levels of
specificity (i.e., maximum amount of entities subsuming a leaf-node of the hierarchy) and con-
tains many categories from many different domains, such as animals, vehicles, furnitures, etc.
However, it has the particularity to be very unbalanced, since it contains some categories with
a huge amount of images and others with a near-zero amount. Moreover, ImageNet does not
contain pre-defined train/val/test splits, since it is too large to be commonly used. Instead, the
providers of ImageNet also provide a clean subset called ILSVRC described below.

• ILSVRC [216]: It is a subset of ImageNet and has been proposed as data for a challenge of
large-scale visual recognition. Indeed, its name (ILSVRC) comes from ImageNet Large Scale
Visual Recognition Challenge. It has been designed with three objectives: (i) being large –
i.e., with a large amount of categories and images per class; (ii) being fine-grained – i.e., with
each category labeled according to a set of specific words, such as rottweiler, persian cat, office
desk, etc.; and (iii) being clean – i.e., all images inside a category are very representative of
the category, with the entity represented by the category positioned in the center of the image
with a reasonable size compared to the size of the image. Thus, in terms of size, ILSVRC has
been splitted in three pre-defined sets: the training set that contains 1.2 million images and the
validation and testing sets that contain 50, 000 images each. Almost all categories contain at
least 1, 000 images and most of them contain 1, 300 images. For the fine-grained categories,
they took almost all the categories of ImageNet that correspond to the leaf nodes of its hierarchy.

• Caltech-101 [73] / Caltech-256 [93]: They are mono-object datasets where images are labeled
by one of 101 categories for the former and 256 for the latter. Both of them contains also one
background category that contain images from different categories. A popular split of the liter-
ature is to take 30/60 images per-class for training (which results in 3, 060/15, 420 in total) and
the rest for testing (total: 3, 022/15, 187) in Caltech-101/256, respectively. A key particularity
of these datasets is that they mostly contain images in a white background, as e-commerce im-
ages, and each object is localized in the center of the image. Regarding their categories, they
are part of basic-level categories (i.e., categories most commonly used by Humans to categorize
objects) 1.

• Pascal VOC 2007 [71]: It is an object classification benchmark that contains a total of 9, 963
images, labeled among 20 basic-level categories (such as car, table, bird, etc.). A pre-defined
split is released, consisting of 5, 011 training-images and 4, 952 testing ones. It has the particu-
larity to contain multiple objects in each image. Hence, each object can be very localized in the

1More details are given in Section 2.2.5 regarding categorical-levels and more precisely, basic-level categories.

122

images, that is to say, different images of one object-category can contain the object at different
spatial locations of the image.

• Pascal VOC 2012 [70]: It is an extension of the Pascal VOC 2007 dataset. The extension
carried on the enlarging of the number of images, since it contains 22, 531 images that are split
into 5, 717 training-images, and 10, 991 testing-images. Note that, even the validation data is
pre-defined and it contains 5, 823 images. An official evaluation server is available for this
dataset, thus, the ground-truth of the test set is not publicly available.

• Nus-Wide Object [38]: It is a subset of the relatively large Nus-Wide dataset. The entire Nus-
Wide dataset contains many images (161, 789 training images and 107, 859 images for the test).
This subset contains 36, 255 images in total labeled among 31 generic object categories. The
whole data is separated in 21, 709 training-images and 15, 546 images for test. An important
aspect is that it is a multi-label dataset, thus each image is labeled by one or several labels from
the 31 categories.

Flickr-8K [103], Flickr-30k [287] and MSCOCO [144] are datasets used for the cross-modal re-
trieval task. Thus they, all provide pairs of data, that is to say, captions (generally 5) obtained by
different annotators that describes the images. In the literature, for cross-modal retrieval tasks, the
test data of one modality (i.e., images or captions) are used as queries and the test data of the other
modality as the collection (i.e., images or captions, respectively). Regarding the total amount of data
(train), Flickr-8k contains 8, 000 images, Flickr-30k contains 31, 783 images and MSCOCO, which is
the multimodal dataset, contains 82, 783 images. Since in the three datasets, each image is associated
to five captions, they respectively contains, 40, 000, 158, 915 and 414, 113 captions. The tree datasets
need to be splitted in three sets, namely training, validation and testing. However, only the Flickr
datasets contain official splits for cross-modal retrieval tasks. Indeed, for Flickr-8k the training, vali-
dation and testing sets respectively contain 6, 000, 1, 000 and 1, 000 images with their associated five
captions each. For Flickr-30k, which is larger, the training, validation and testing sets respectively
contain 29, 783, 1, 000 and 1, 000 images with their associated five captions each. MSCOCO, contain
80, 783, 1, 000 and 1, 000 train, validation and test images.

Scene datasets:
Regarding the context of scenes, two main datasets are used. The first one, is called Places and
contains a large amount of images and labels, while the second one, is much smaller and thus contains
much less images and labels. Each of them is described in details in the following items:

• Places205 [297]: It is one of the largest scene dataset in the literature. It contains 205 scene
categories and 2.5 millions of images. The 205 categories can be from any type, as long as
it represents a scene (e.g., train-railway, bedroom, football-stadium, etc.) and each of them
contains at least 5000 images. Regarding the splits, for the training a set of 2,448,873 images
from the 205 categories is provided, the validation set contains 100 images per category (which
results in a total of 20,500 images) and the test set contains 200 images per category (which
results in a total of 41,000 images)

• MIT Indoor [205]: It is a popular scene recognition dataset that consists to categorize im-
ages among 67 categories of indoor places (e.g., kitchen, library, office, etc.). Each image is
associated to one category only. A common training-test split consists to take 80 images per
category for training and 20 other as testing ones, resulting in 5, 360 training-images and 1, 360
testing-images.

123

Figure A.2: Illustration of examples of images for the datasets that are commonly used in the lit-
erature. We splitted the images into two groups, the group of object datasets (on the left) and the
scene dataset (right). Each row contains the images of the different datasets for a particular category
(vertical text) that is given on the left for object datasets and on the right for the scene dataset. We
illustrated a complexity arrow under the group of object datasets, that highlights the increase of com-
plexity (i.e., the complexity of the image can be defined by the intra-class variance of the categories
of the dataset) between the datasets. For instance Caltech contains objects centered in the image in
a white background, while Nus-Wide contains very localized objects in the images with potentially
high occlusions of the objects. Images from ILSVRC and Places205 are not illustrated here because
those of ILSVRC are the same than those of ImageNet and those of Places205 are the same than those
of MIT Indoor except that they also belong to categories of outdoor places. Best view in color.

Stanford Cars (CARS) [131], CUB-200 Birds (CUB) [265] and Flowers-102 (FLO) [181] are fine-
grained categories, containing respectively images in the domain of cars, birds and flowers. Stanford
Actions (stAC) [283], is a dataset of images that are labeled according the actions performed by
humans in the images.

In Figure A.2 we illustrated some examples of images for each of the datasets. We also resumed the
description of all the datasets in Table A.1. In the following, we will see that ILSVRC and Places are
commonly used as source-datasets for training CNNs in a classical transfer-learning scheme and all
other datasets are generally used as target-datasets for evaluating learned representations, since they
are not sufficiently large to efficiently train a neural-network.

124

Datasets (1) (2) (3) (4) (5) (6) (7) (8)
ILSVRC* [216] objects specific 483 1,2K 7 569,000 48,299 Acc.
ILSVRC [216] objects specific 1K 1,2K 7 1.2M 50,000 Acc.
Places205 [297] scenes specific 205 1.2K 7 2.5M 41,000 Acc.

VOC-07 [71] objects generic 20 250 3 5,011 4,952 mAP
VOC-12 [70] objects generic 20 577 3 11,540 10,991 mAP
NW Ob. [38] objects generic 31 700 3 21,709 14,546 mAP
CA-101 [73] objects generic 102 30 7 3,060 3,022 Acc.
CA-256 [93] objects generic 257 60 7 15,420 15,187 Acc.
MIT-67 [205] scenes specific 67 80 7 5,360 1,340 Acc.
ACTIONs [283] actions specific 40 100 7 4,000 5,532 Acc.
CUB [265] birds specific 200 30 7 5,994 5,794 Acc.
CARs [131] cars specific 196 41 7 8,144 8,041 Acc.
FLOWERs [181] plants specific 102 10 7 1,020 6,149 Acc.
Flickr8k [103] general captions 40, 000 1 7 6,000 1K R@K
Flickr30k [287] general captions 158K 1 7 29,783 1K R@K
MSCOCO [144] general captions 414K 1 7 80,783 1K R@K

Table A.1: Detailed descriptive of the different datasets used in this Thesis. On top of the table,
we describe datasets used as source-task and at bottom, those used as target-task. For each dataset,
we detail eight characteristics. Each column of the table corresponds to a certain characteristic: (1)
domain of the images; (2) annotation-level of the categories (generic or specific); (3) amount of
categories; (4) average amount of training-images per category; (5) whether the dataset contains
multiple categories per image (3) or no (7); (6) amount of training examples; (7) amount of test
examples; and (8) the standard evaluation metric (Accuracy and mean Average Precision, respectively
denoted by Acc. and mAP).

125

B

Deep-Learning Background

I n this section we review the main deep learning techniques relevant for learning and using neural
networks. First, we describe (in Sec. B.1) the main component of a neural network, namely

the “neuron”. Then, we detail (in Sec. B.2) the way they are assembled together in order to give an
“Artificial Neural Network” (ANN). We follow this latter, by a in-depth description (in Sec. B.3) of the
way we learn their parameters (weights and biases). We then describe (in Sec. B.4) the “Convolutional
Neural Network” (CNN) and detail the novelties compared to artificial neural networks. Since the
performances of CNNs critically depend on the design of their architectures, we describe (in Sec. B.5)
the main architectures proposed in the literature.

B.1 Modeling One Neuron

The area of Artificial Neural Networks has originally been primarily inspired by the goal of modeling
biological neural systems. In this section, we first briefly discuss the biological system that has mainly
inspired this area. Then, we describe the formal modeling of one neuron and finally we describe the
most commonly used activation functions in the formal neuron.

B.1.0.1 Biological Motivation

The basic computational unit of the brain is a neuron. We can found, approximately, 86 billion neurons
in the human nervous system. These neurons are connected with an amount of approximately 1014

synapses. In Figure B.1, we present a commonly used cartoon-illustration of biological neurons (i.e.,
cell body) with their main components, namely “dendrites”, “nucleus”, “axon”, “axon’s branches”,
“axon terminals” and “synapses”. Each neuron receives input signals from its dendrites and produces
output signals (through electrical signals) along its axon. Note that, each neuron contains only one
axon, but this axon can eventually branch out and connect via synapses to many dendrites of one or
many other neurons. Simply said, the output signal of one neuron can activate multiple other neurons.

126

Figure B.1: Illustration of two biological neurons (cell body #1 and #2) and their main components,
namely dendrites, nucleus, axon, axon’s branches, axon terminals and synapses. Best viewed in color.

Figure B.2: Illustration of a common formal model of a neuron. We colored, in blue all the values
that output from a neuron, in yellow all the weights that connect two neurons and in light gray, all the
input-values of a neuron. Best viewed in color.

B.1.0.2 Formal Neuron

To simulate the functioning of a biological neuron, the “formal neuron” has been introduced by Mc-
Culloch and Pits [164] in 1943. A formal neuron is stimulated by its previous neurons, that we will
call “input neurons”, and regarding this stimulation, the neuron will output a value between 0 and 1.
This latter will be called “output value” in the following.

Formally, given a set of n output values {x0, x1, · · · , xn} from preceding neurons that stimulate the
formal neuron denoted x(l)

i , each of these values will be considered as input values for x(l)
i and will

influence its output values. More precisely, let consider a set of n values {w0, w1, · · · , wn} corre-
sponding to the synapses respectively associated to each input neuron. These values are formally
called “weights” and are pre-determined. This being said, in the computational model of the formal
neuron x(l)

i , the signals that travel along the axons (i.e., input neurons xi) interact multiplicatively
(i.e. wi · xi) with the dendrites (input values) of the formal neuron through the synaptic strength (the
weights wi) at that synapse (i.e. wi). The idea is that the synaptic strengths (that are learnable) control
the strength of influence of previous neurons to the formal neuron. The influence of a previous neuron

127

to the formal neuron can be either positive (which will cause the excitation of the formal neuron) or
negative (which will inhibit the excitation of the formal neuron). In the basic model, the dendrites
carry the signal to the cell body, which explains why preceding neurons correspond to input values
of the formal neuron. All input values are then get summed through the “weighted sum” s(l)

i (·) that
is formally expressed by: s(l)

i (x
(l)
i) =

∑n
i=1 wi · xi. If the final sum is above a certain threshold, the

neuron can fire, sending a spike along its axon, which corresponds to the output value denoted xo.
The firing rate of the neuron is obtained through an “activation function” denoted ϕ that takes as input
the computed sum as a real value and outputs a value between 0 and 1. The output of that function
directly corresponds to the output value (axon) xo of the formal neuron which is formally expressed
as:

xo = ϕ(
n∑
i=1

wi · xi). (B.1)

Originally, the activation function used is the Heaviside function that simply consists in a threshold.
An illustration of a common formal model of a neuron is given in Figure B.2.

It is important to note that, the current model of the biological neuron in the Neuroscience area is
much more advanced than the one presented here. In fact, there exist many different types of neu-
rons (each with different properties), the dendrites in biological neurons perform complex nonlinear
computations, the synapses are not just a single weight but rather they are a complex non-linear dy-
namical systems, etc. Thus, due to all these and many other simplifications the previous description
of the biological neuron is very brief and corresponds only to a coarse model.

B.1.1 Commonly used Activation Functions

In the formal neuron we have seen that the neuron sums the input values and applies on it an activation
function (denoted ϕ). Every activation function (also called “non-linearity”) takes a single number
and performs a certain fixed mathematical operation on it. Historically, the “sigmoid” function (de-
noted σ) has been frequently used as the non-linearity in the formal neurons. This latter, is due to the
fact that the sigmoid function has a nice interpretation as the firing rate of a neuron: from not firing
at all (0 value) to fully-saturated firing at an assumed maximum frequency (1 value). Today, there are
three main popular activation functions that we describe briefly in the following items:

• Sigmoid: The sigmoid function (illustrated on the left graph of Figure B.3) is mathematically
formalized by:

σ(x) =
1

1 + e−x
. (B.2)

It takes a real-valued input (the signal strength after the sum in the neuron) and restricts it
to range between 0 and 1. In particular, large negative numbers become 0 and large positive
numbers become 1. Importantly, when the neuron’s activation saturates at either 0 or 1, the
gradient at this regions is near to zero. Thus, the backpropagation algorithm (see Sec. B.3) fails
at modifying the weights of the formal neuron and obviously, those of the preceding neurons.
For these reasons, the sigmoid has recently fallen out of favor and is rarely ever used.

• Hyperbolic Tangent (Tanh): The Tanh squashes (i.e., restricts) a real-valued number to the
range [−1, 1] as illustrated on the middle graph of Figure B.3. Unlike the sigmoid function
its output is zero-centered. Therefore, in practice the Tanh function is often preferred to the

128

Figure B.3: Illustration of the three main activation functions, namely Sigmoid (left), Tanh (middle)
and ReLU (right). The Sigmoid non-linearity squashes the input values (x) in range [0, 1], the Tanh
one squashed them in range [−1,1] and the ReLU, in range [0, +∞[.

sigmoid function. Formally, the Tanh function is expressed as:

ϕ(x) =
ex − e−x

ex + e−x
= 2σ(2x)− 1, (B.3)

with σ corresponding to the sigmoid function. Note that, the Tanh function is simply a scaled
sigmoid function, thus, it has the same drawbacks as the sigmoid.

• Rectified Linear Unit (ReLU): Mathematically, the ReLU function is expressed by:

ϕ(x) = max(0, x). (B.4)

The ReLU has become very popular in the last few years, due to its great ability to accelerate
the convergence of the popular stochastic gradient descent optimization algorithm compared to
the previously described Sigmoid and Tanh functions. Another advantage is its cheap compu-
tational cost compared to the expensive operations (e.g., divisions, exponentials, etc.) in the
Sigmoid/Tanh functions. The function is illustrated on the right graph of Figure B.3.

The three non-linearities are illustrated in Figure B.3. Two other functions have been proposed to fix
some limitations of the ReLU (e.g., if the learning rate of the optimization algorithm is set too high,
it can lead to the “death” of some neurons, etc.), namely Leaky ReLU [155] and Maxout [90]. The
former is one attempt to fix the “dying ReLU” problem, however it seems that the consistency of the
benefit across tasks is currently unclear. The latter (Maxout) is a generalization form of the ReLU and
its leaky version (Leaky ReLU). Note that, both ReLU and Leaky ReLU are a special case of Maxout,
thus, this latter enjoys all the benefits of a ReLU unit (linear regime of operation, no saturation) and
does not have its drawbacks (dying ReLU). However, compared to the ReLU neurons, it doubles the
number of parameters for every single neuron, leading to a high total number of parameters. Finally,
the ReLU is a good trade-off between accuracy and efficiency and is by far the most frequently used
activation function in the deep-learning community.

B.2 Artificial Neural Networks

In this section, we describe “Artificial Neural Networks” (denoted ANN). Historically, many ANNs
have been proposed after the formal neuron [164]. In particular, the standard linear Perceptron has

129

been proposed by Frank Rosenblatt [215] in 1957. In 1969, Minsky and Papert [169] highlighted some
limitations of the perceptron and proposed an extension, namely the Multi-Layer Perceptron (denoted
MLP). In 1989, it has been demonstrated in [47] that, contrary to the standard linear perceptron, the
MLP can distinguish data that are not linearly separable [47]. Hence, because of their efficiency and
popularity, in this section, we will focus on MLPs only and we will exaggerate the assimilation of
ANNs to MLP. More specifically, we will first detail the layer-wise organization of the neurons in the
ANN, then we detail the feed-forward computation across the layers of an ANN.

B.2.1 Architecture of ANNs

First, let introduce the term “layer” as a collection of neurons. Hence, an ANN is a set of layers
that are stacked one after the other. Every pair of layers of an ANN is connected through neuron’s
connections (i.e., weights), thus the outputs of some neurons of one layer can become inputs of other
neurons of another layer. However, neurons within a single layer are not connected at all. For regular
ANN, the most common type of connection is the full-connection (i.e., for a given layer, all the
neurons of the preceding layer are connected to all the neurons of the actual layer) thus the layers of
an ANN are called “fully-connected”. The ANN can be seen as a directed acyclic graph with each
neuron as a node and each weight as an edge between two neurons. Any node of a regular ANN is not
connected to itself (no cycles). ANNs with cycles are commonly called “Recurrent Neural Networks”
(RNNs) and are out of the scope of this thesis.

Formally, let consider an ANN of L layers {(0), (1), · · · , (L)} with each layer x(l) being a set of
n(l) neurons {x(l)

0 , x
(l)
1 , · · · , x

(l)

n(l)}. Each pair of two consecutive layers ((k), (l)) in the ANN is
fully-connected and this connection is formally represented by a matrix of weights that contains n(l)

lines and n(k) columns, and that we denote W(l). Each line W
(l)
i of that matrix contains a vector

{wi1, wi2, · · · , wik} that respectively corresponds to the weights wi1, wi2, · · · , wik of one neuron x(l)
i

of the layer (l). Notice that, a “bias term” is also added to the set of input neurons of the neuron x(l)
i

of layer (l). Indeed, the bias term is a sort of neuron b(l) that has the particularity to be not connected
to the neurons of the preceding layer but only to those of the next layer. More specifically, its weights
are connected to each neuron of the next layer, and we denote them bi for each neuron x(l+1)

i of the
next layer. The whole set of bias terms for the neurons of a layer (l) will be denoted b(l) and is rep-
resented as a vector equal to {b1, · · · , bn(l)}. This being said, each element of the lines of the matrix
W

(l)
i corresponds to the weights between neuron x(l)

i of a layer (l) and neurons x(k)
i of the preceding

layer (k) and each element of the vector b(l) corresponds to the weights between neuron x(l)
i of a layer

(l) and the bias term b
(l)
i of the preceding layers.

As said in the previous section, the value of the weight between two neurons can be interpreted as
the power of influence of the preceding neuron to the actual neuron. More generally, the main goal
of an ANN is to map input vectors to output vectors. The input vectors, usually correspond to raw
data vectors (images reshaped to vectors, one-hot encoding word vectors, signals, etc.) and the output
vectors usually correspond to the representation of the class scores (e.g. in classification) which are
one-hot coding numbers, or some kind of real-valued target (e.g. in regression). Thus, there exist
three types of layers in ANNs, namely “input”, “hidden” and “output” layers. While the input layer
has the particularity to have no preceding layer (i.e., no input neurons), the output one has the inverse
particularity of having no next layer. Finally, the first layer is the input layer, the last is the output layer
and all the others are named hidden layers. An illustration of a common ANN is given in Figure B.4.

130

Figure B.4: Illustration of an ANN with four layers (one input layer (0) colored in yellow, two hidden
layers (1) and (2) colored in dark gray and one output layer (L) colored in blue). We colored in light
gray all learnable parameters Θ = {W(1),b(1),W(2),b(2),W(L),b(L)} of the ANN and specified the
bias weights in dashed lines.

The architecture of an ANN is generally defined by two (hyper)parameters, (i) the number of layers
(denoted L) which is frequently named depth of the ANN and (ii) the number of neurons per hidden-
layer (denoted n(l)) which is called width of the ANN. It has been shown in the literature [292] that,
properly increasing the depth and width of an ANN increases its capacity to approximate functions
and thus goes further towards its goal of mapping a set of input vectors to a set of output vectors.

B.2.2 Feed-Forward Computation in ANNs

The main goal of an ANN is the mapping of a set of input vectors to a set of output vectors. Hence,
each input vector will be passed to the ANN through its hidden layers until it reaches the output layer.
This latter is called “feed-forward computation” or “forward pass”.

Formally, a forward pass in an artificial neural network is a stack of function computations. Indeed,
let consider an ANN with L layers (one input, L−2 hidden and one output), its set of parameters Θ =
{W(1),b(1),W(2),b(2), · · · ,W(L),b(L)} (where W(l) is a matrix that contains the weights of layer
(l) and b(l) is a vector that contains the weights of the bias term of layer (l)) and an N -dimensional
input vector x(0) = {x(0)

0 , · · · , x(0)
N }. The forward pass first consists to apply an affine transformation

on the input vector (s(x(0)), corresponding to the weighted sum described in the previous section),
followed by an element-wise activation function ϕ(s(x(0))) that aims to obtain the first hidden layer
h(1)(x(0)). This latter is expressed by:

h(1)(x(0)) = ϕ(W(1)x(0) + b(1)), (B.5)

with b(1) the bias terms of the input layer. Then, the forward-pass still continues by applying the same
kind of functions to the outputs of the preceding layers. Concretely, the output of each following
hidden layer is expressed by:

h(l)(h(l−1)) = ϕ(W(l)h(l−1) + b(l)), ∀l ∈ [1, . . . ,L − 2], (B.6)

131

where W(l) parametrizes the affine transformation of the lth hidden layer and b(l) is the set of bias
terms. In the same vein, we compute the output layer x(L) (that we will denote y(p) in the following)
by:

y(p) = hL(h(L−1)) = ϕ(W(L)h(L−1) + b(L)). (B.7)

Once this previous equation is computed, the ANN has reached the output layer x(L), which is the
last step of the forward-pass. Note that, from now, the output vector obtained after the forward-pass
is called “predicted vector” and is denoted y(p).

B.3 Training Neural Networks

In the previous section, we defined the architecture of a regular ANN and the way it maps from an
input vector to an output vector. However, we have not discussed the way the weights of each layer
are obtained. Hence, in this section, we describe the way we obtain the weights (initialization and
learning of their values according to some training-examples), which, generally corresponds to the
training of neural networks. More precisely, we describe their training in four parts: (i) initialization
of the weights, (ii) estimation of the difference between the actual and the desired mapping-ability,
(iii) training (i.e., updating) the weights in order to minimize the difference of the previous point and
finally (iv) we will present some popular techniques used to improve the training of ANNs.

B.3.1 Weights and Biases Initialization

Learning an ANN consists in determining its parameters (i.e., weights and biases) from some anno-
tated training-data. Above mapping the raw inputs to the desired outputs, the challenge of general-
ization consists in being able to map an unviewed data to the correct output. For this, it exists many
techniques, grouped under the term “regularization”. This latter will be described in more details be-
low. But before learning the parameters, it is important to fix the size of the weight-matrices (which
is done when setting the network architecture) and then initialize their values.

To initialize the weights of an ANN, a reasonable-sounding idea might be to set all the initial weights
to zero, however, this turns out to be a mistake. The reason of this latter needs the understanding
of the optimization algorithm (backpropagation) used to train the network (i.e., update the weights).
Nevertheless, a rough explanation is that, if all the weights are initialized to zero, thus every neuron
in the network will compute the same output (since the weighted sum is always equal to zero and
thus the activation function will always outputs the same value), then all neurons will also compute
the same gradients (that are needed by the optimization algorithm to update the weights) during the
optimization, which will undergo the exact same weight-updates. More generally, all the neurons will
be the same, if their weights are initialized to be the same (not only initialized to be zero), which
clearly induces to the loss of utility of the ensemble of neurons (which is the most power part of
ANNs). Hence, it is very important to initialize all neurons with different values, which is called
“breaking symmetries”.

Therefore, we still want the weights to be very close to zero (in order to prevent the network to be
highly biased from the beginning), but as argued above, not all identically the same. A common
solution is to initialize them with small numbers such that all neurons are random and unique in the
beginning, in order that they compute different updates and integrate themselves as distinct parts of

132

the full network. In practice, the weights are initialized with random floats sampled small variance
(e.g., 0, 001).

In contrast to the initialization of the weights, for the initialization of the biases it is common to set
them with zero-values. Indeed, it is not problematic to initialize them with zero for the following
reason: since all the weights are already initialized randomly and especially differently, setting all
the biases to zero will never (at least, with a near-zero probability) result in a set of neurons with the
exact same set of outputs (and thus, gradients), hence it will never cause the same update of the input
weights and biases. When using ReLU non-linearities, it is frequent to use small constant value such
as 0.01 for all biases because this ensures that all neurons fire in the beginning and therefore obtain
and propagate some gradient. However, it is not clear if this provides a consistent improvement and
it is more common to simply use 0 as bias initialization.

B.3.2 Loss Functions

Given some training data (i.e., raw data and ground-truth labels), the ANN will be learned to fit the
data – i.e., given input vectors (raw data), the ANN will learn to map to the output vectors (ground-
truth labels) – and the “loss function” is a measure of the correctness of the mapping.

The first step (i.e., first forward-pass in the ANN given an input vector) of this mapping will result
to a random output vector (because of the random weights-initialization), which will be very far
from the wanted vector (ground-truth labels). Simply said, the prediction at the first forward-pass
will be random and thus false. Hence, it is important to measure the compatibility between the
predictions (e.g. the output vectors after a forward-pass) of the ANNs and the ground-truth label.
More rigorously, the set of output vectors of the ANN is called “predicted distribution” and the set
of ground-truth labels is called “desired distribution”. Hence, the goal is to minimize the difference
(or maximize the compatibility) between the predicted and the desired distributions. This notion of
difference is interchangeably called loss-function, objective-function and cost-function. The output of
this loss-function will indicate to the optimization algorithm the directions to update the weights of
the ANN. An illustration of the loss-function principle is given in Figure B.5.

Formally, let consider a set of training-data DNC that contains N raw data X = {x1, · · · ,xN} labeled
among C-dimensional vectors corresponding to ground-truth labels Y = {y(d)

1 , · · · ,y(d)
C } that we

will call “desired vectors”, in the following. Generally, y
(d)
i is a binary vector, that is to say, full of 0

besides 1-values in the corresponding class dimensions. Let us also abbreviate the ANN as a function
f that takes as input a vector xi, a tensor of weights Θ and outputs a predicted vector y

(p)
i through

y
(p)
i = f(xi; Θ). It exists three main cost-functions used to train ANNs:

• Mean Square Error (MSE): It is a multi-class mono-label loss-function that has the following
mathematical form:

L(y
(p)
i ,y

(d)
i) =

1

C

C∑
j=1

|y(p)
j − y

(d)
j |. (B.8)

The multi-class means that C > 1 and the mono-label means that y
(d)
i is a vector full of 0

besides one 1-value in the corresponding class dimension.

• Cross-Entropy: The cross-entropy is similar to the MSE, in the sense that it is a multi-class
mono-label loss-function. However it differs from it since it takes probability distributions as

133

Figure B.5: Illustration of the loss-function principle. Given some training data (raw data and ground-
truth labels), the ANN first computes a forward-pass (illustrated by the dashed arrow) with the actual
weights (initialized randomly) until it reaches the predicted-vector, then the predicted-vector is com-
pared to the desired-vector (ground-truth labels) through the loss-function, which outputs a loss value
(called “LOSS” in this graph). The output of the loss-function (which can be interpreted as the dif-
ference between the predicted-vector and the desired one) is then back-propagated in the network
(illustrated by the black arrow). Once all the error values are computed for all the neurons, they are
used as input to the optimization algorithm that will update the weights. Once the weights updated,
the ANN takes again the raw data and computes a forward-pass and so on. This cyclic process is done
iteratively until convergence (i.e., the output of the loss-function is near-zero).

input. Formally, it is expressed by:

L(y
(p)
i ,y

(d)
i) = −

C∑
j=1

y
(d)
j log(ϕ(y

(p)
j)), (B.9)

where ϕ is the “softmax” activation-function that takes a vector x of arbitrary values and passes
it to a probability distribution through σ(x) = exp(xi)∑

j exp(xj)
. Indeed, this is necessary because the

cross-entropy can only be applied on probability distributions and y(p)
j has arbitrary values and

is not a probability distribution (the sum of its values are not equal to 1). Regarding y
(d)
i , we do

not apply the softmax on it because it already corresponds to a probability distribution since it
is full of zeros and has one 1-value thus, the sum of its values is equal to 1. Also important, the
softmax activation-function is not applied on one neuron (like activation-functions described in
Sec. B.1.1), but it is applied on the whole vector (i.e., the whole set of neurons).

• Multi-Label Loss: The multi-label loss-function is an adaptation of the cross-entropy for the
problem of multi-label multi-class classification. Indeed, the multi-label classification problem
has the property to have a desired output-vector y

(d)
i which is full of 0 besides many 1-values in

the corresponding class dimensions, thus the sum of its values is not equal to 1, which results in
an arbitrary vector (not a probability distribution). Formally, the multi-label loss is expressed

134

by:

L(y
(p)
i ,y

(d)
i) = −

C∑
j=1

y
(d)
j log(σ(y

(p)
j)) + (1− y(d)

j) log(1− σ(y
(p)
j)), (B.10)

where σ, is the sigmoid activation-function. The sigmoid function is useful here because it takes
any real input value (dimension of y(p)

j) and squashes it to a value between zero and one and
hence is interpretable as a probability. While the softmax takes all the dimensions of the vector
and outputs a joint probability, the sigmoid is applied on each dimension of the vector and
outputs independent probabilities. Note that, the Multi-Label loss is frequently called “sigmoid
cross-entropy”.

Notice that, the cost-function is not computed on one data-example, but rather on a batch N b (i.e.,
small subset from the whole set) of data. Hence, the cost-function that is minimized by the optimiza-
tion algorithm is J(θ) = 1

Nb

∑Nb

i=1 L(y
(p)
i ,y

(d)
i). In fact, in the following, the cost-function will be

denoted J(θ) with θ corresponding to the whole set of weight-matrices of the ANN.

B.3.3 Learning the Weights and Biases

In the previous sections, we have described the initialization of the weights/biases and the principle of
the loss-functions that consists to compute (after a forward-pass) the difference between the predicted
and the desired-output. In this section, we will describe the way we learn the weights and biases
of a neural-network with respect to the given random weights (at the first iteration) and the chosen
loss-function. Very generally, the common method to train ANNs is to use an optimization algorithm
in conjunction with a backpropagation algorithm. In fact, to understand why the problem of learning
an ANN is equivalent to minimize the cost-function, we need to recall that the goal on an ANN
is to find the weights/biases so that the output from the network approximates the desired output-
vector for all training input-vectors. Since, the loss-function quantifies how well we are achieving
this goal, then, updating the weights for minimizing the cost-function (i.e., makes the loss as small
as possible) clearly reaches the goal of fitting the training-examples. The backpropagation is also
called “backward propagation of errors” and the main optimization algorithm used to learn ANNs is
the gradient descent algorithm. Each of these two algorithms corresponds to a phase – i.e., backward
propagation of errors for the first phase and weights and biases update for the second phase – and
the main principle to learn the weights and biases of an ANN is to repeat these two-phases cycle until
some stopping criterion.

More precisely, the first cycle (backward propagation of errors) consists of three main steps. First,
when an input vector is presented to the network, a forward-pass is computed until it reaches the
output layer which gives the predicted vector (as described in Sec. B.2.2). At the first iteration, the
forward-pass is computed with random weights. Second, the predicted-vector is then compared to the
desired output, through the loss-function and an error value is calculated for each of the neurons in
the output layer (as described in Sec. B.3.2). The error values are then propagated backwards (starting
from the output layer, until the first layer) which results in an association of each neuron of the ANN
to an error value which roughly represents its contribution to the original output. Third, these error-
values are used to calculate the gradient of the loss-function with respect to the actual weights in the
network.

In the second cycle phase, this gradient is fed to the optimization algorithm, which in turn uses it to
update the weights/biases, in an attempt to minimize the loss-function. Very importantly, behind the

135

process of gradient descent, as the network is trained, the neurons in the intermediate layers organize
themselves in such a way that the different neurons learn to recognize different characteristics of the
total input space. After training, when an arbitrary input pattern is present which contains noise or
is incomplete, neurons in the hidden layer of the network will respond with an active output if the
new input contains a pattern that is like a feature that the individual neurons have learned to recognize
during their training.

Now that we have presented the main principle of the algorithms that aim to learn the weights and
biases, we will present exactly how they work, that is to say (i) how we minimize the error of the
loss-function, given the gradients and (ii) how we compute the gradients for each neuron of the ANN
(even in the hidden layers), given the output loss. Hence, for the gradient descent algorithm, the goal
is to find the weights W(l) and biases b(l) (with l ∈ [1,L]) of the L-layers ANN that minimize the

loss-function L. Let first define the gradient of L to be the vector of partial derivatives
(

∂L

∂w
(l)
ij

, ∂L
∂b(l) i

)T
.

We denote the latter gradient vector∇L. Thus, given each individual weights w(l)
ij (t) (weight between

neuron j of the preceding layer l−1 and neuron i of the actual layer l) and the bias term b
(l)
i (bias term

of neuron i of the actual layer l) at iteration t, the way we update (for iteration t + 1) each value of
the weight-vector W(l) and the value of the bias-term is respectively obtained through the following
equations:

w
(l)
ij (t+ 1) = w

(l)
ij (t)− η ∂L

∂w
(l)
ij (t)

, (B.11)

b
(l)
i (t+ 1) = b

(l)
i (t)− η ∂L

∂b
(l)
i (t)

, (B.12)

with η > 0 is a small, positive parameter, known as the learning-rate. These equations are then used
again (i.e., for another iteration) to make another modification of the weights and biases. If we keep
doing this, over and over, we will keep decreasing the loss-function L until the algorithm converges
(i.e, it reaches a global or local minimum for the loss-function). Generally, the algorithm is stopped
when the loss is near-zero or when it does not change after a large number of iterations.

In the previous paragraph, we described the way we update each weight and bias at one iteration
during the learning of the ANN, but we have supposed that the gradient vectors are given. Indeed,
computing the gradient vectors (i.e., the partial derivatives ∂L

∂w
(l)
ij

and ∂L

∂b
(l)
i

) for each neuron j of layer

l is crucial and it is exactly the purpose of the backpropagation algorithm. More precisely, the back-
propagation is based on four fundamental equations which give us a way of computing the gradient
of the loss-function. Let first introduce an intermediate quantity, δ(l)

i , which we call the “error” in the
ith neuron of layer l. The backpropagation algorithm gives us a procedure to compute the error δ(l)

i

for every neuron in every layers and then relating those errors to the quantities of real interest, namely
the partial derivatives. Indeed the error of the ith neuron in layer l is mathematically defined by:

δ
(l)
i =

∂L

∂s
(l)
i

(B.13)

where s(l)
j is the weighted sum input (s(l)

i =
∑n

j=1 x
(l−1)
j w

(l)
ij) of the neuron i in the layer l. Now that

we have defined the general mathematical form of the error, we will define it both for the neurons of
the output layer and for the neurons of the hidden-layers. Indeed, we start by the error at the output
layer since it corresponds to the initial error when we do backward propagation of the error. Hence,

136

the initial error – i.e., the error δ(L)
i of the neurons of the output layer – is given by:

δ
(L)
i =

∂L

∂x
(L)
i

ϕ′(s
(l)
i) (B.14)

with x(L)
i being the output of the ith neuron in the output layer L, s(l)

i the weighted sum of the ith

neuron in the output layer and ϕ′ the derivative activation function. The first term on the right of
this equation ∂L

∂x
(L)
i

measures how fast the loss is changing as a function of the output x(L)
i of the ith

neuron. For instance, if we vary the output x(L)
i and the loss L varies a lot, then the error δ(L)

i will be
large. In contrast, if the loss does not vary at all (or varies very weakly) then the error will be very
small. Regarding the second term σ′(s

(l)
i), it measures how fast the activation function ϕ is changing

as a function of the weighted sum s
(l)
i . Note that, both terms on the right will depend on the form of

the loss function L and the last term will also depend on the activation function ϕ.

The first step that consists to compute the initial error (error of the output layer) is then backprop-
agated (i.e., propagation towards the back) in the neurons of the preceding layers. More precisely,
provided the errors δ(l+1)

i of all the neurons of layer l + 1, the error δ(l)
j of neuron j at layer l is

expressed by:

δ
(l)
i =

n(l+1)∑
j=1

w
(l+1)
ji δ

(l+1)
j ϕ′(s

(l)
i) (B.15)

with n(l+1) being the number of neurons we have in layer l + 1 and w(l+1)
ji the weights that goes from

neuron i of the actual layer l to all the neurons j of layer l + 1. The term
∑n(l+1)

j=1 w
(l+1)
ji δ

(l+1)
j can

be intuitively, seen as the action of moving the error backward through the network, which results in
some kind of measure of the error at the output of the layer l. Multiplying this latter with the term
ϕ′(s

(l)
i) can be seen as the move of the error backward through the activation function in layer l, which

gives the error of the neurons of layer l.

By using Equations (B.14) and (B.15), we can compute the error δ(l)
i of any neuron at any layer of the

network. More precisely, we start by computing the error of the neurons of the output layer (through
the use of Equation (B.14)), then we use these computed errors δ(L) of layer L to compute (through
Equation (B.15)) the errors of the previous layer L − 1, and so on, until we reach the weights of
the first hidden-layer, which means that we have backpropagated the errors through all the network.
Now that we have detailed the procedure to compute the errors for each neuron of each layer it only
remains to relate them to the partial derivatives. More precisely, the partial derivative ∂L

∂w
(l)
ij

of the loss

with respect to any weight w(l)
ij (weight between neuron jth of layer l − 1 and ith neuron of layer l) in

the network is computed through:
∂L

∂w
(l)
ij

= x
(l−1)
i δ

(l)
i , (B.16)

with δ(l)
i computed through Equation (B.14) if l = L or through Equation (B.15) if l ∈ [2,L− 1], and

x
(l−1)
i and x(l−1)

j the jth neuron of layer l − 1. In the same vein, the partial derivative ∂L
∂b(l)

of the loss
with respect to any bias b(l)

i of a neuron i at layer l in the network is computed through:

∂L

∂b
(l)
i

= δ
(l)
i . (B.17)

137

Note that Equation (B.16) can be rewritten more simply as

∂L

∂w
(l)
ij

= xinδout, (B.18)

with xin the output of the input neuron of the weight w and δout, the error of the output neuron. For
the bias error, the right terms of the simple equation are the same but without the term xin since the
bias has no input neuron.

To summarize, the backpropagation algorithm consists in four main steps: (i) compute a forward-pass
for an input vector to obtain the terms s(l) and x(l) = ϕ(s(l)) for l ∈ [1,L], (ii) compute the error of
the output layer δL with Equation (B.14), (iii) backpropagate the error through each layer of the ANN
in order to have the error δl at each layer l ∈ [L − 1, 2] via Equation (B.15) and finally (iv) compute
the partial derivatives, through Equation (B.16) and (B.17). Note that, the four fundamental equations
((B.14), (B.15), (B.16) and (B.17)) to compute the partial derivatives for any neuron of any layer are
only given in this section, but we do not provide the proofs of each of them.

B.3.4 Regularization Techniques

Above mapping the raw inputs to the desired outputs, the challenge of neural networks consists of
being able to map an unviewed data to the correct output. Simply said, the main challenge is to in-
crease generalization performance (i.e., difference between training error and test error) of neural
networks. Indeed neural network models exhibit relatively high generalization performance. How-
ever, sometimes the accuracy of neural networks with enough capacity converges towards perfection
on the train-set but its performances degrade on the test-set. This phenomenon is called “overfitting”.
For this, it exists many techniques, grouped under the term “regularization”. Hence in the following
items, we quickly describe some of them:

• L2/L1 Regularization. The first main approach to overcome overfitting is the classical L2
regularization, which adds a term (i.e.,

∑
i ‖θi‖

2, with θ a vector containing all the network
parameters) to the cost function to penalize the parameters in each dimension, preventing the
network from exactly modeling the training data and therefore help generalize to new examples.
L2 regularization is also known as weight decay as it forces the weights to decay towards
zero (but not exactly zero). L1 regularization is similar to L2 regularization, but penalizes the
absolute value of the weights (i.e.,

∑
i ‖θi‖). Unlike L2 regularization, the weights may be

reduced to zero in L1 regularization.

• Data augmentation. It is a method of boosting the size of the training set so that the model
cannot memorize all of it. This can take several forms depending on the dataset. For instance,
if the objects are supposed to be invariant to rotation such as galaxies or planktons, it is well
suited to apply different kind of rotations to the original images.

• Early stopping. It consists in stopping the training before the model begins to overfit the
training-set. In practice, deep learning practitioners use it very frequently when training neural-
networks.

• Max norm constraints. Another form of regularization is to enforce an absolute upper bound
on the magnitude of the weight vector ~θ for every neuron and use projected gradient descent

138

to enforce the constraint. In practice, this corresponds to performing the parameter update as
normal, and then enforcing the constraint by clamping the weight vector of every neuron to
satisfy ~θ2 < c. Typical values of c are on orders of 3 or 4. One of its appealing properties is that
network cannot “explode” even when the learning rates are set too high because the updates are
always bounded.

• Dropout. Finally, a recent success has been shown with a regularization technique called
Dropout [232]. The idea is to randomly set a certain percentage of the activations in each
layer to 0. During the training, neurons must learn better representations without co-adapting
to each other being active. During the testing, all the neurons are used to compute the prediction
and Dropout acts like a form of model averaging over all possible instantiations of the model.

While the weight decay and Dropout are the most popular and efficient regularization techniques,
other interesting ones [83, 26] were proposed.

B.4 Convolutional Neural Networks (CNNs)

ANNs described in the previous section can be used in a wide range of applications as long as the
targeted problem can be formalized as a supervised learning problem. In our case, we only consider
problems that involve images as input, i.e., image classification problems. Using ANNs in this case,
needs to convert the images into vectors and it can be achieved very easily by reshaping them such
that all the pixel’s lines (or columns) of the image are concatenated in a vector. Let’s take an example
of an RGB image of size 256 × 256 × 3 and reshape it to a vector, it will result in a vector of size
256 ∗ 256 ∗ 3 = 196, 608 thus, the ANN would take 196, 608-dimensional input vectors. Therefore,
if we consider one neuron in the next layer (first hidden-layer), it will be connected to all input
neurons (because the neurons are fully-connected), which will result to 196, 608 weights to learn for
that neuron. Moreover, there is much more than one neuron per layer and also much more than one
layer in an ANN, thus the number of weights will add up quickly. In summary, this full connectivity
between the neurons is costly since it produces a huge number of parameters to learn, which has
been shown to be very hard or impossible in practice (because the learning would quickly lead to
overfitting). To fix the drawbacks of ANNs in the case of real-world images, “Convolutional Neural
Networks” (denoted CNNs) have been introduced by LeCun et al. [140].

Similarly to standard ANNs, Convolutional Neural Networks are made up of neurons that have learn-
able weights and biases. Each neuron (the term “filter” is more appropriate in the case of CNNs)
receives some inputs, performs a dot product and optionally follows it with a non-linearity. The
whole network still maps inputs (raw images) to output-vectors and they still have a loss function on
the last layer to compare the predicted outputs and the desired ones. Finally, the learning process of
the weights of a CNN follows the same strategy as regular ANNs. However, CNNs make the explicit
assumption that the inputs are not vectors but tensors (images), which allows us to encode certain
properties into the architecture. These properties make a vast reduction of the amount of parameters
in the network.

More generally, the main difference between ANNs and CNNs is in the connection between the neu-
rons. Indeed, in ANNs, a neuron operates on the input neurons with a unique weight for each of them,
and the operation between the two neurons is a dot product, while in CNNs, a neuron operates on a
group of input neurons (called “receptive-field” in the following), through the same group of weights

139

(called “filter” in the following) and the operation between the filter and the receptive-field is a convo-
lution. Moreover, while in ANNs, the whole set of output neurons is organized as a vector, in CNNs,
it is organized as a matrix, which is called “feature map” in the following. More generally, there are
three main novelties that we will describe in this section: (i) an element called “spatial convolution”
(in Sec. B.4.1), (ii) an other element called “spatial pooling” (in Sec. B.4.2), and finally (iii) the whole
architecture of the CNN from which we will provide a complete overview (in Sec. B.4.3).

B.4.1 Spatial Convolution

Let consider an input image I of size WI×HI×DI , with WI , HI and DI respectively corresponding
to the width, height and depth of the image. Let also consider a filter F of size WF ×HF ×DF , with
WF , HF and DF respectively corresponding to the width, height and depth of the filter. In the case of
filters and images of depth DI = DF = 1, the convolution operation is called 2D-convolution and it
consists to convolve the filter F with a receptive field at pixel (i, j) (we will call this “spatial location
(i, j)”, in the following) of image I which outputs a real value that is expressed by:

(I ∗ F)(i, j) =

HF−1∑
m=0

WF−1∑
n=0

I(i+m, j + n)F (m,n), (B.19)

where ∗ is the convolution operator, (i, j) ∈ [0, HI − 1] × [0,WI − 1] is the pixel of image I at
line i and column j. Note that, the spatial location (i, j) is a patch of the image I which is of size
i + HF × j + WF , thus it has exactly the same width and height of the filter F . By applying the
convolution of filter F at all the spatial locations (i, j) (i.e., all the pixels) of the image I , the result is
a feature map M which is expressed by:

M(i, j) = (I ∗ F)(i, j). (B.20)

An illustration of a convolution of a filter applied at all spatial locations of an image withDI = DF =
1, is given in Figure B.6.

It is important to note that, the convolution of a filter is applied at a particular location (i, j) of an
image and on a set of its pixels, namely spatial location (i.e., all its pixels (m,n) with m ∈ [i, i+HF]
and n ∈ [i, i+WH]). Thus, when i+HF > HI or j +WF > WI the convolution can not be applied,
since the size of the filter exceeds the size of the spatial location. Hence, a convolution can only be
applied on pixels (i, j) with i ∈ [0, HI−HF −1] and j ∈ [0,WI−WF −1], which results in a feature
map of size HI −HF − 1×WI −WF − 1 smaller than the size of the image. An illustration of the
pixels that can not be processed with some filters of some sizes is given in Figure B.7. To fix that and
output feature maps of the same size than the image, the procedure of “padding” has been introduced.
It consists to increase the borders of the initial image with pixels at arbitrary values. Different kinds
of padding exist in image processing (e.g., zero-padding, mirror-padding, etc.) but, except aiming to
output feature maps of the same size than inputs, the padding has not been shown to be very important
in practice. Hence, a common procedure is to use zero-padding (i.e., add pixels around the image with
a zero value). Another important notion is the stride. It roughly on a parameter that represents a kind
of offset on the spatial locations at which the convolution is applied. We give more details about this
parameter at the end of the next section.

In the case of an image (or tensor) and filter with depths of DI > 1 and DF > 1, the convolution
operation is called 3D-convolution. The principle is exactly the same as with a 2D-convolution and

140

Figure B.6: Illustration of the convolution of a filter (b) – which is a green blob filter that may
corresponds to a part of a tree or grass – applied at all spatial locations of an image (a) – that contains
a bird with trees in the background. In (c), we observe the nine different spatial locations in which
the filter is convolved with. The output of this spatial convolution is given in (d) and is called feature
map. We see in this feature map that all the locations are colored in black, except those that have
a pattern correlated with the pattern of the filter (i.e., the more the correlation of the filter with the
pattern at that spatial location, the more the output is white). In (e), we displayed the resulting feature
maps if the filter (b) is convolved at all spatial locations rather than at the nine locations of (c). Best
view in color.

Figure B.7: Illustration of a 2D-convolution with a filter (b) of size 2 × 2 that convolves in an over-
lapping manner (i.e., with stride [1,1], the process of stride will be described in the following) with an
image (a) of size 5×5 at each spatial location of the image. The result of this convolution at all spatial
location (feature map) is given in (c). In (c), we colored in gray the pixels that can not be convolved
with this filter (of that size) since it will exceed the size of the image. In (d), we display the feature
map without displaying the pixels that can not be processed with this filter. Hence, this feature map
is effectively smaller than the input image. Best view in color.

it only differs by the fact that the depth of the elements to convolve should be considered. Hence, the
3D-convolution of a 3D-filter with a spatial location (i, j) of a 3D-tensor (e.g., RGB image, multi-

141

Figure B.8: Illustration of 3D-convolution of a filter of size 2× 2× 4 with a tensor of size 5× 5× 4.
It is called 3D, since the filter and the tensor have a depth greater than 1. The red lines in (a) and
(b) that are linked by a black arrow highlight the fact that the depth of the filter and the depth of
the tensor should be exactly the same. The result (feature map) of this 3D-convolution applied at all
spatial locations of the input tensor is given in (c). Note that, even if the depth of the filter and tensor
is greater than 1 (here the depth equals 4), the feature map will always have two dimensions only
(width, height) and thus, no depth.

spectral image, set of feature maps, etc.) is expressed by:

(I ∗ F)(i, j, k) =

HF−1∑
m=0

WF−1∑
n=0

DF−1∑
d=0

I(i+m, j + n, d)F (m,n, d), (B.21)

where DF = DI . As for 2D-convolutions, convolving the 3D-filter at all the spatial locations of the
3D-image outputs a feature map of the same width and height than the 3D-image but without depth
(i.e., DM = 1). Hence, it is important to note that whatever the depth of the 3D-filter/tensor, the
output (feature map) of the 3D-convolution has no depth. An illustration of a 3D-convolution is given
in Fig. B.8.

B.4.2 Spatial Pooling

Another important novelty in CNNs is the simple operation of “spatial pooling”. This latter has two
major advantages: (i) it provides invariance to slightly different input tensors (images or feature maps)
and (ii) it reduces the dimension (width and height) of the input tensor. The first ability is great since
it decreases the major problem in classical hand-crafted image representations, that is to say, resulting
in two features that are quite different for images of identical content but with slight differences (such
as illumination, point-of-view, translations, etc.). The second point is also crucial since it aims to
reach the goal of CNN. Indeed, let recall that the goal of a CNN is to map input images (very large
dimensions) to output vectors (small dimensions), thus, it is very important to reduce the output of the
filters (feature maps) across the layers in a CNN, and this is exactly the purpose of the spatial pooling.

Formally, the pooling operator PR applied on a small region R of a tensor is expressed by:

PR = A(R(m,n)),∀(m,n) ∈ [0, HR]× [0,WR], (B.22)

142

Figure B.9: Illustration of a spatial pooling at all spatial regions of an image (a) of size 4 × 4 with
regions R of size 2× 2 and two different strides, namely [2, 2] in (A) and [1, 1] in (B). In (A) and (B),
we display the image (a) and we highlight the regions where the pooling is applied, by surrounding
the pixels of each different regions with the same color. In (b), we show the obtained feature map and
color each pixel with the same color than their associated region in the image (a), that is to say the
pixels of the region of the image used for the pooling. Best view in color.

where R is a region of width WR and height HR, and A is an aggregation function (i.e., a function
where the values of a set of values are grouped together as input on certain criteria to form a single
value of more significant meaning). Note that, the aggregation functions always output a real value,
whatever the size of the region R. Regarding the region R, it is generally a small region extracted
from a bigger image I , that is to say, a region located at pixel (i, j) – i.e., the left-corner pixel of
the region R is located at pixel (i, j) – of the image I . Hence, applying the pooling operator at all
locations (i, j) of the image I is called spatial pooling and it gives the pooled image which consists
of a smaller feature-map obtained through approximations of group of pixels (region R).

As for the convolution, it is important to note that, the pooling is applied at a particular location (i, j)
of an image and on a set of its pixels, namely the region (i.e., all its pixels (m,n) with m ∈ [i, i+HR]
and n ∈ [i, i+WR]). Thus, when i+HR > HI or j+WR > WI the pooling can not be applied, since
the size of the filter exceeds the size of the spatial location. Hence, as for the convolution, a padding
(zero, mirror, etc.) is generally added to the initial image, which results in outputs of the same size
than inputs.

Moreover, the size of the feature map of the spatial pooling depends on the size of the input image,
the size of the region R and on one parameter called “stride”. Indeed the stride parameter represents a
kind of offset on the spatial locations at which the pooling is applied. It is formally expressed as two-
dimensional vector [a, b] with a being the offset of the operation (here, pooling) in the width axis and
b the offset in the height axis. For instance, if we set the stride to be [1, 1], the pooling will be applied
at all spatial locations of the image, except those where the size of the region aims to exceed the size
of the image. An illustration of a spatial pooling with two different strides is given in Figure B.9.

B.4.3 Overview of a CNN

We first recall that the goal of a neural network (ANN or CNN) is to map from inputs (vectors in ANN
and images in CNNs) to outputs (always vectors). Thus, a CNN takes as input an image and outputs
a predicted vector after a pass on convolutional, pooling and fully-connected layers. A convolutional
layer is a set of n(l) filters F = {F0, F1, · · · , Fn(l)} of size WF × HF × DF that convolve with an
input image I of size WI × HI × DI or a set of DM feature maps of size WM × HM . Each image,

143

Figure B.10: Illustration of the reshaping operation that is performed after any convolutional/pooling
layer before a fully-connected layer. First, each feature-map of the convolutional/pooling layer (a) is
reshaped to a vector (b) – simply by concatenating all the lines or columns –, then all the vectors are
concatenated to a relatively large vector (c) where each dimension is a neuron and is connected to all
the neurons of the next fully-connected layer (d). Best view in color.

filter and set of feature maps can be seen as a 3D-tensor and we will respectively denote them by I,
F andM. Note that the image and the feature maps are 3D-tensor since they have a width, a height
and a depth, while for the set of filters, it is a 4D-tensor since it contains NF filters that corresponds
to 3d-tensors. Each of them is thus respectively of size WI × HI × DI , WF × WF × DF × NF
and WM × HM × DM. It is important to note that, the convolution operation forces to have filters
of the same depth that the 3D-tensor used as input (image or set of feature maps) thus we always
have DF = DI and since each filter gives one feature map, a set of NF filters always outputs a set
of NF feature maps, thus the depth DM of the feature-maps tensor is always equal to the number of
filters in the convolutional layer, hence DM = NF . Simpler than the convolutional-layer, a pooling
layer consists of the application of the spatial pooling operation on a set of N input feature maps
of size WM × HM and it thus, always outputs the same number of feature maps (i.e., N) but with
smaller width and height, according to the parameters of the pooling operation. We roughly recall
that a fully-connected layer is a set of several neurons that are all connected to all the neurons of the
previous layer.

Putting all these layers together aims to build a complete CNN. Indeed, a complete CNN consists to
maps from the input images to the output vectors through the stacking of convolutional, pooling and
fully-connected layers. However, while we clearly highlighted how we goes from a convolutional
layer to a pooling layer and inversely, it is not clear how to goes from a convolutional or pooling
layer to a fully-connected one. Indeed, after getting the feature maps of the convolutional or pooling
layers, an operation of reshaping that consists to reshape all the feature maps to vectors is performed.
Hence, this latter, aims to output a set of vectors, where each vector is the reshape of each feature
maps of the previous layer. All these vectors are then concatenated to give the final output vector
of this convolutional or pooling layer (i.e., the one just before the fully-connected layer). This final
vector has thus all the properties of a fully-connected layer since each of this dimensions is a neuron

144

Figure B.11: Overview of a CNN. It maps from the raw input image (a) to the output vector (g)
by passing through 4 stacked layers – i.e., convolutional (b), pooling (c), convolutional (d), fully-
connected (f). We highlighted with gold lines that the depth of filters in a convolutional layer has the
same depth than the input image or set of feature-maps. In red lines, we highlighted the that fact that,
we have as much feature-maps as the number of filters. Best view in color.

and is connected to all the neurons of the next layer. An illustration of this reshaping operation is
given in Fig. B.10. In summary, we have illustrated an overview a complete CNN in Figure B.11,

B.5 CNN Architectures

In this section, we present the main CNN architectures proposed in the literature. We start by describ-
ing the pioneer LeNet architecture, then the most standard architecture to use in any vision problem,
namely AlexNet. We then, describe two other architectures (VGG and ResNet) that have been pro-
posed slightly later and that achieved state-of-the-art performances in a wide range of vision problems.
Finally in Section B.5.5, we briefly describe the other architectures recently proposed as well as the
other schemes for learning CNNs.

B.5.1 Shallow CNN (LeNet)

The pioneering CNN architecture named “LeNet” has been developed and proposed by LeCun et
al. [140]. It has been used to recognize hand-written digits and to read zip codes. It is quite similar to
the CNN that we have described in the previous section. More specifically, LeNet can be summarized
by seven points: (i) the stacking of five layers: convolution - pooling - convolution - pooling - fully-
connected, (ii) its inputs are normalized using mean and standard deviation to accelerate training,
(iii) sparse connection matrix between layers has been used to avoid large computational cost, (iv)
hyperbolic tangent or sigmoid were used as activation function, (v) trainable average pooling as
pooling function, (vi) fully-connected layers as final classifier, and (vii) mean squared error as loss
function. An illustration of the LeNet architecture is given in Figure B.12. In overall, this network
was the origin of much of the recent CNN architectures, and a true inspiration for many people in the
field1. In the next parts, we will describe the most popular of them.

17924 citations on Google Scholar.

145

Figure B.12: Illustration (from [140]) of the pioneering LeNet architecture.

B.5.2 Deep CNN (AlexNet)

The well known “AlexNet” [132] architecture was the first work that popularized CNNs in the field
of Computer-Vision. The AlexNet has been introduced by Krizhevsky et al. [132] won the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [53] in 2012 and significantly outperformed
the best methods (i.e., they achieved a top-5 accuracy of 84% and significantly outperformed the best
previous method that was based on hand-crafted features which obtained 74% of accuracy). The
network had a very similar architecture to LeNet, but was deeper (8 layer: 5 convolutional, 3 pooling
and 3 fully-connected), bigger (60 millions of parameters), and featured convolutional-layers stacked
on top of each other, while previously it was common to only have a single convolutional-layer always
immediately followed by a pooling-layer. In addition to popularized the approach of CNNs, they also
popularized the following three techniques: (i) the ReLU as activation function, (ii) the method of
stacking convolutional-layers without being immediately followed by a pooling-layer and (iii) the
method of overlapping max-pooling avoiding the negative averaging effects of average-pooling.

Notice that, the AlexNet architecture which popularized CNNs arrived only 14 years after their in-
vention in 1998 by LeCun et al. [140]. This latter, is mainly due to the time to put in conjunction
the three main elements that make CNNs very efficient: (i) theoretical advances [100], (ii) growing
computation capability (GPGPU based development) and (iii) availability of many annotated data
(ImageNet [53]). To date, there is a large investigation in the area of CNN architectures and it results
in many architectures proposed every year (e.g., DenseNet, Wide ResNet, DarkNet, etc.), but as said
above, we will only present the most popular of them.

B.5.3 Very Deep CNN (VGG)

From the two best teams in ILSVRC 2014, there was the team of the Visual Geometry Group (VGG)
that achieved great performances with a new CNN architecture called VGG-Net [228]. It highlighted
the importance of the depth of the architecture and proposed to increase this latter by the use of much
smaller filters (3×3 versus 11×11 in AlexNet) in each convolutional layers was necessary to increase
the depth. Their network contained 19 layers (convolutional, pooling and fully-connected). VGG-
Net insights the fact that that multiple 3×3 convolutions in sequence can emulate the effect of larger
receptive fields (e.g., 7×7). These ideas were also used in the next network architectures as Inception
(Google-Net) and ResNet. In counterpart, VGG-Net is more expensive to evaluate (high number
of filters per layers) and uses a lot more memory and parameters, since it contains 140 millions of
parameters.

146

B.5.4 Residual CNN (ResNet)

In 2015, ILSVRC was won by He et al. [97] with an architecture of 152 layers called Residual
Network (ResNet). Its main contribution was to use batch normalization and special skip connections
for training deeper architectures. They also shown that with these techniques, we can train a ResNet
with more than 1000 layers (even if the performances saturate after 150 layers). Importantly, the
architecture is also missing the two commonly used fully-connected layers (fc6 and fc7) before the
last layer of the network (fc8), thus it is only composed of convolutional and pooling layers. However,
it has been empirically found in [260] that ResNet usually operates on blocks of lower depth (i.e., 20-
30 layers), which act in parallel, rather than serially flow the entire length of the network. Anyway,
ResNets are currently by far the state-of-the-art CNN models and are the best choice for using CNNs
if one has GPUs (one or several) and wants to reach the best performances on its task.

B.5.5 Other Architectures and Learning Schemes

Beside all these very popular architectures, many others were recently proposed. For instance, Red-
mond et al. [212] proposed an efficient fully convolutional architecture named DarkNet, that was
shown to be very efficient for fast object detection (in the YOLO detection framework). DarkNet is
similar to ResNet, but without batch normalization and designed for rapid inference. Another very
popular is Inception (also named GoogleNet) proposed by Szegedy et al. [237], that is a memory effi-
cient network with multiple loss functions (one at the output layer and other at the high intermediate
layers) to enforce the mid-level layers to be discriminative. At CVPR 2017, many other architectures
(DenseNet [105], PolyNet [294], ResNext [276], Xception [37]) were proposed. Note that, the most
salient one is the DenseNet architecture that consists in connecting each layer of a network to every
other layer in a feed-forward fashion. More precisely, for each layer, the feature-maps of all preced-
ing layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers.
The latter principle has several compelling advantages: it alleviate the vanishing-gradient problem,
strengthen features propagation, encourage features reuse, and substantially reduce the number of
parameters. It resulted in substantial improvement in terms of classification performance (on object
recognition benchmark tasks like CIFAR-10, CIFAR-100, SVHN, and ImageNet).

Note that all these networks were trained in a supervised way, that is to say, by solving a classifica-
tion problem through a softmax loss function. More precisely, the images were generally obtained
from ImageNet [53] or Place [297] (and thus contained objects located in the center of the image or
“almost empty” scenes) and associated to one label (i.e., name of the object or name of the scene).
However, a supervised learning scheme needs many annotated data and the process of labeling mas-
sive amounts of data is often prohibitively time-consuming and expensive. More importantly, too
much labeling can impose human biases on the model. For these reasons, many other works were in-
terested in schemes that relies on less supervision. For instance, many works [35, 120, 262, 263, 264]
proposed to rely on webly-supervised learning scheme, that consist to consider images labeled by
Internet tags that are noisy but can be obtained at near-zero cost. A different scheme is the semi-
supervised learning [12, 117, 150] that aims at training models on a combination of labeled and
unlabeled data. While such schemes are interesting in terms of annotations, they remains an open
problem since it is still hard to highly benefit from the unlabeled data and/or noisy labeled data. Fi-
nally, recently unsupervised learning has gain a large interest from the machine-learning community,
especially with the proposal of generative adversarial networks (GANs) [89]. Such approach seems
very promising for learning features without the need of annotations, which is the most costly as-

147

pect of supervised-learning schemes. However, to the best of our knowledge such scheme were not
yet learned on a large scale dataset and evaluated as a representation extractor in a transfer-learning
scheme, such that we could compare its level of universality with those of representations learned in a
supervised scheme. Nevertheless, some other works proposed interesting “tricks” to learn features at
near-zero cost. For instance, Pathak et al. [193] proposed to learn by watching object moves, Noroozi
et al. [183] proposed a way to learn features by counting objects in images, and finally Pathak et
al. [194] proposed to rely on image completion [17, 36]. Unfortunately such scheme is still far from
being really competitive with representations learned with high supervision. A reason is the difficulty
to recover structures [27] and illumination [94] from small patches of pixels and more importantly
infer the semantics of objects.

While all the previously mentioned works were learned on large amount of data, their principle could
also be used as a way to adapt (in a transfer-learning scheme) to target-tasks with few annotated
data. However, it is well known [186, 187] that fine-tuning is one of the most efficient adaptation
method. Nevertheless, the recent work presented in the thesis of Thibaut Durand [60] was a big step
towards high adaptation to few annotated dataset at near-zero cost of annotation. More precisely, the
authors proposed a novel framework for weakly-supervised Learning [63, 61, 64], which consists in
automatically selecting relevant image regions from weak annotations like global image labels and
especially benefit from negative regions. In any case, such adaptation method starts with a CNN pre-
trained on large annotated data, and more generally, with representations containing a certain level of
universality.

148

C

Implementation details

C.1 Data-Enlargement: A Way to Universality

W hile it seems quite obvious, here we are interested in showing the effectiveness of adding
annotated data to an initial training dataset, in order to increase universality of the learned

representation. Indeed, it is well known that feeding neural networks with more data (categories
and/or image per category) lead to representations that get better performances on a set of target-
datasets [285], in a transfer-learning scenario. This latter, exactly means that a representation learned
on a bigger set of training data is more universal than the one learned on a smaller one. Especially,
here we detail a small contribution of this Thesis (named FTDG in the following) – this work results
from a collaboration with Adrian Popescu, who conducted most of the experiments –, that consist to
rely on fine-tuning when learning extremely large neural networks on extremely large datasets.

The principle of the FTDG (Sec. C.1.1) consists to diversify the amount of categories and learn the net-
work with fine-tuning. We report results of experiments that highlights some insights of this method
as well as the effectiveness of the data-enlargement approach for the increase of CNN-features’ uni-
versality.

In this section, we conduct two experiments: (i) we systematically evaluate the performances (on
a target-dataset) of a standard network trained on different sizes of training-database and (ii) we
highlight the effectiveness of our FTDG method compared to a standard method.

The size of a database can be represented by three aspects: (i) the total number of images, (ii) the
total number of categories and (iii) the number of images-per-class for each class. In this experiment,
we only variate the two first aspects (total number of images and categories) and neglect the third
one since it has been shown in [286] that the performances does not increase with roughly more than
1, 200 images-per-class, which is already the amount of images-per-class in the training-databases we
use. We thus take the whole ILSVRC database containing around 1.2 million images labeled among
1, 000 categories and extract two subsets: (i) ILSVRC0.5 containing around 500, 000 images labeled
among 483 categories and (ii) ILSVRC0.6 containing around 600, 000 images labeled among 583
categories. From each database (i.e., the two subsets and the initial ILSVRC dataset), we learn one
network following a standard CNN learning-strategy. The method is evaluated in a transfer-learning
scheme on the Pascal VOC 2007 dataset and the results are reported on Table C.1. As expected, the

149

#Images #Categories Method
VOC07 CA101

mAP (in %) Acc. (in %)
5×105 500 Standard 70.3 79.6
6×105 600 Standard 71.4 82.0
1.2×106 1,000 Standard 76.1 87.8

1.2×106 1,000 Standard 86.1 n/a
2.0×106 2,000 Standard 88.0 n/a
3.0×106 3,000 Standard 88.8 n/a
4.0×106 4,000 Standard 89.0 n/a

Table C.1: Overall performance of a standard CNN learning-strategy with a standard architecture
(AlexNet on top and VGG-16 at bottom) on two target-datasets (Pascal VOC 2007 and Caltech-
101). The network is trained using different size of the source training-database. Note that, the three
training-databases not only differs by their number of images but also by their discriminative-problem
since they contain images labeled among different set of specific categories.

larger training-database we use, the better the methods perform on the target-datasets, meaning that
the better universal representations we get.

C.1.1 Fine-Tuning for Diversified Genericness

When too much categories (i.e., more than 1,000) are fed to CNNs, it is hard to make the network
converge, especially when very deep CNNs (i.e., GoogleNet [237], VGG [228], ResNet [97], etc.)
are used. Hence, we propose to fix this drawback through a new learning strategy. More specifically,
our method consists of two steps, (i) choosing an appropriate and large subset of categories from a
large concept database and (ii) fine-tuning a pre-trained CNN model on the images of the categories
retained in the previous step. Fine-tuning was initially designed, and has been shown to be very
efficient [186], to specialize a pre-trained general CNN model on a particular domain or a small
dataset. Here, we exploit it with an opposite goal, i.e., the generalization of an already general model.
To the best of our knowledge, it is the first attempt to propose the use of fine-tuning as a way of
CNN models generalization, thus we name it “Fine-Tuning for Diversified Genericness” and denote
it FTDG.

For the first step that consist to select an appropriate set of categories, we use three criteria:

• balance constraint: selection of categories having at least 1, 000 images;

• visual homogeneity constraint: selection of categories having performance higher than a thresh-
old H after a K-fold cross validation. Standard VGG features [228] (fc7 layer) are used to
learn concept models (with linear SVM) using balanced data, e.g., as many negatives (from a
large and diversified set of Flickr images) as there are positive samples. In the experiments,
parameters are set at K = 5 and H = 95%.

• conceptual diversity constraint: selection of diversified categories. The algorithm is initialized
with a random candidate concept and is run iteratively until S concepts are selected. At each
iteration, the concept that has the highest average visual distance from the already selected

150

Pascal VOC 2007
mAP (in %)

Number of categories 1, 000 2, 000 3, 000 4, 000
VGGBASE 86.1 n/a n/a n/a
VGGFTDG 86.9 88.0 88.8 89.0

Table C.2: Evaluation of the transferability impact for different numbers of categories retained by our
diversification algorithm, through the Pascal VOC 2007 dataset.

concepts is retained. Each candidate concept is represented by its average vector (fc7 layer of
VGG). Subsets of S unique concepts are retained after diversification.

Here, we use the full ImageNet [216] as the large database and the 1, 000 categories of ILSVRC [53]
as seed CNN model for fine-tuning. Indeed, ImageNet contains a big imbalance regarding the number
of images per class and it is sub-optimal to learn CNNs without correcting this imbalance [166]. These
three criterion are applied on the whole set of ImageNet concepts in order to select a set of candidate
concepts.

For the fine-tuning, we initialize all the convolutional layers and the first fully-connected layer (fc6)
with the weights of the pre-trained network and initialize the weights of the last two fully-connected
layers (fc7 and fc8) with respect to a Gaussian distribution. Note that, we set the learning rate of each
layer to default values in the Caffe framework [114], leading to a training from scratch of the last two
layers and an updating of other layers (initialized with the pre-trained network). Our methodology is
generic and here we apply it to the popular deep architecture VGG provided by [228]. Regarding the
extraction phase for new images, as most works in the literature [114, 209], we extract the fc7 layer
and use it as mid-level-representation.

C.1.1.1 FTDG versus Standard Learning-Strategy

In this experiment, we set the S parameter of diversification algorithm in four values (S = {1000,
2000, 3000, 4000}) and learn a CNN for each of these set of categories using our Fine-Tuning for
Diversified Genericness strategy. We then compare the performances of the four CNNs in a transfer-
learning task. In practice, the target dataset was Pascal VOC 2007 and the fc7 layer of each CNN was
used to produce the feature vectors of the images. The results are presented in Table C.2. They confirm
the intuition that transferability is improved when concepts are added. However, the performance gain
becomes marginal when moving from 3, 000 to 4, 000 categories retained. More importantly, when
compared to a standard method (without FTDG), the performances of FTDG are significantly better
(86.9 versus 86.1 for the standard strategy).

Here, we conducted a second experiment which aim to determine whether our proposed diversifica-
tion strategy (FTDG) actually improves the learned features or only involves more semantic classi-
fiers. Indeed, it is obvious that our method recognizes more categories since it has been designed for
that objective. However, an interesting question is: Does it improves or decreases the discriminability
of the learned features ? To answer this question, we conducted an experiment in which we com-
pared two VGG networks: (i) the first is trained on the standard ILSVRC dataset (1, 000 categories),
denoted VGGBASE and (ii) the second is trained with our FTDG method on a diversified set of the
ImageNet dataset (4, 000 categories), denoted VGGFTDG. To compare the two methods, we evaluate
their discriminability on the ILSVRC 2012 validation dataset. It is important to note that, in order

151

Method
ILSVRC 2012 Validation

Top-1 Accuracy (in %)
VGGBASE 74.0
VGGFTDG 75.5

Table C.3: Evaluation of the ability of our diversification strategy (trained on a diversified set of
ImageNet, denoted VGGFTDG) to improve the learned features compared to a base VGG (trained on
ILSVRC 2012, denoted VGGBASE) on a subset of the validation set of the ILSVRC 2012 dataset.

Figure C.1: Examples of basic, subordinate and superordinate-level words used by Humans to cate-
gorize objects in images.

to compare these methods regarding their discriminability, we should not modify their learned classi-
fiers. However, while VGGBASE is able to classify the 1, 000 categories of the ILSRVC 2012 dataset
(since it has been trained on it), VGGFTDG is not able to do it because some of the 1, 000 categories
are not contained in its set of 4, 000 categories on which it has been trained. Hence, we considered all
the categories that are common to the original ILSVRC dataset and the set of categories obtained by
our diversification algorithm, which results in 721 categories. Then, we evaluate the two methods on
these 721 categories of the ILSVRC 2012 validation dataset. The evaluation is hence conducted on
36, 050 validation images.

The overall performances of the two methods (VGGBASE and VGGFTDG) on the ILSVRC 2012 vali-
dation set are given in Table C.3. The obtained top-1 accuracy results are 74.0% for VGGBASE and
75.5% for VGGFTDG. Note that, this improvement of 1.5% is significant since VGGFTDG aims to better
recognize 540 images more than VGGBASE. To conclude, while it is obvious that our proposed diver-
sification strategy increases the semantic classifiers, this experiment aims us to highlight its ability to
also increase the discriminability of the learned features.

C.2 More Implementation Details of MulDiP-Net

In this section, we describe more implementation details of the proposed MulDiP-Net method (Chap-
ter 4). Especially, we provide more details about the practical categorical-level re-labeling and the
partitioning protocol. Before digging into the details of the re-labeling and partitioning protocols,
we give more details about the definition of categorical-level categories and compare it to those of
hierarchical-level categories.

Hierarchical versus categorical-levels
Given a hierarchyH with “is-a” relations (H = (V , E) consists of a set V of nodes and directed edges

152

Figure C.2: Illustration of the difference between categorical and hierarchical-level categories on a
hierarchy with “is-a” relations. Nodes in the same horizontal line belongs to the same hierarchical-
level. Colored nodes with the same color belong to the same categorical-level. Blue nodes belong
to the basic-level, gray nodes to the subordinate and red ones to the superordinate. By definition,
a categorical-level contains the same type of categories (specific only, basic only, generic only) at a
given level while a hierarchical one may contain different types at a given level. For instance, the
third hierarchical-level contains generic categories (dog, cat, etc.) and specific ones (cuckoo, etc.).

E ⊆ V ×V), a hierarchical-level corresponds to the set of all nodes in the same level of the hierarchy.
Formally, assuming that none of the hierarchical-level nodes has more than one direct ancestor (e.g.,
∀(vi) ∈ V , Card(δH(vi)) = 1)1 , they correspond to the nodes that have the same amount of total
ancestors (e.g., ∀(vi, vj) ∈ V × V , Card({δkH(vi)}∞k=1) = Card({δlH(vj)}∞l=1). Thus, the definition is
mainly based on the topology of the hierarchy (it contains inconsistent and imbalanced information if
the hierarchy is imperfect, which is mostly the case in the real-world). In contrast, a categorical-level
is defined by a set of categories from the same type. For instance, the basic categorical-level corre-
sponds to the most common words used by Humans to categorize objects. Subordinate/superordinate
categorical-level corresponds to the words more specific/generic than those of the basic-level. Thus,
the definition of categorical-levels is mainly based on a human-cognition knowledge, namely catego-
rization words used by Humans to classify (thus, it contains very relevant and balanced information).
In Figure C.1, we show some categorical-level words used by Humans to categorize objects and in
Figure C.2, we illustrate the differences between the definitions of categorical and hierarchical-levels.

Re-labeling protocol
We first describe the near-zero cost re-labeling protocol of the categorical-level categories. As men-
tioned in the main paper, we used subordinate, basic and superordinate-levels with the initial training-
dataset (ILSVRC) labeled at subordinate-level (specific such as “rottweiler” or “malinois”). Our goal
is thus to re-label the categories of the training dataset in general categorical-levels, namely basic
(generic such as “dog” or “bird”) and superordinate-levels (very generic such as “animal” or “vehi-
cle”). A simple way to do that is to associate to each subordinate category one of its images (can be
any image of the category, as long as it contains only the object and that is clearly visible, which is
mostly the case on ImageNet images), show it to the annotator and ask him/her to label the image with
the most common word that he/she will use to categorize it generally (subordinate) or very generally
(superordinate). For instance, for the subordinate category hammerhead, the annotator will label it by

1δH(·) corresponds to the deductive function introduced in the main paper, that associates to a category vi of V its
direct ancestor.

153

the basic-level word shark and for the category weimaraner, it will label it by the word dog. For both
subordinate categories, it will re-label it with the word animal for the re-labeling to superordinate-
level. If one wants to have only words of the hierarchy in order to have homogeneity of the re-labeling
between the different annotators, he can constrain the annotators by asking them to re-label the images
with one of the set of words obtained from the ancestors of the subordinate-category.

Regarding the re-labeling of the whole ILSVRC dataset (1, 000 specific categories) that we used in
Sec. 5.3 of the main paper, we used an already available list [216] of 483 fine-grained categories
labeled to 200 basic-level categories and re-labeled (using the above re-labeling protocol) the re-
maining 517 fine-grained categories. Our re-labeling of the remaining categories results into 280
new basic-level categories, with a total of 1, 000 subordinate categories re-labeled in 480 basic-level
ones. In Sec. 5.2 of the main paper, we have reported some results of our method on ILSVRC0.5

with the three categorical-level label-sets, including the superordinate-level. To re-label subordi-
nate categories into superordinate ones, we considered their re-labeled 200 basic-level categories
(obtained from [216]) as the initial categories and re-label them into superordinate. This trick aims
us to re-label only 200 categories instead of 483 (subordinate categories of ILSVRC0.5). This lat-
ter, results in 12 superordinate categories. The whole sets of basic-level categories, superordinate
ones and their relation to the subordinate categories has been made available for the community at
http://perso.ecp.fr/˜tamaazouy/.

Partitioning protocol
Here, we detail how we automatically get the partitioning of the set C into G subsets (such that
C =

⋃G
i=1 Ci), as described in Sec. 3.1 of the main paper. Once the categories of the generic

categorical-level (basic or superordinate) are given, it is straightforward to partition the set C into
G subsets. In fact, let consider the following set of subordinate categories: C = {convertible, lan-
drover, malinois, rottweiler} and the set of their re-labeling categories {car, car, dog, dog }, our
method groups specific categories convertible and landrover to car and malinois and rottweiler to
dog, which results in a set of two subsets (thus, G = 2) of generic categories with L = {car, dog}. It
is important to note that, the partitioning is directly based on the set L of re-labeled categories, thus
G = Card(L). From this example, we have a ratio of two specific categories per generic category
but in the real-world with real-datasets, the ratio is much higher. Hence, all the images of the spe-
cific categories are re-labeled to the generic categories, resulting to subordinate categories that may
contain much less images than basic-level or superordinate ones. For instance, as in Figure C.2 the
basic-level category bird contains as much images as the amount of images in the ensemble of its
subsumed subordinate categories.

154

http://perso.ecp.fr/~tamaazouy/

D

Résumé en Français

En raison de ses enjeux sociétaux, économiques et culturels, l’intelligence artificielle (dénotée IA)
est aujourd’hui un sujet d’actualité très populaire. L’un de ses principaux objectifs est de développer
des systèmes qui facilitent la vie quotidienne de l’homme, par le biais d’applications telles que les
robots domestiques, les robots industriels, les véhicules autonomes et bien plus encore. La montée
en popularité de l’IA est fortement due à l’émergence d’outils basés sur des réseaux de neurones
profonds qui permettent d’apprendre simultanément, la représentation des données (qui était tradi-
tionnellement conçue à la main), et la tâche à résoudre (qui était traditionnellement apprise à l’aide
de modèles d’apprentissage automatique). Ceci résulte de la conjonction des avancées théoriques,
de la capacité de calcul croissante ainsi que de la disponibilité de nombreuses données annotées.
Un objectif de longue date de l’IA est de concevoir des machines inspirées des humains, capables
de percevoir le monde, d’interagir avec les humains, et tout ceci de manière évolutive (c’est à dire
en améliorant constamment la capacité de perception du monde et d’intéraction avec les humains).
Bien que l’IA soit un domaine beaucoup plus vaste, nous nous intéressons dans cette thèse, unique-
ment à l’IA basée apprentissage (qui est l’une des plus performante, à ce jour). Celle-ci consiste à
l’apprentissage d’un modèle qui une fois appris résoud une certaine tâche, et est généralement com-
posée de deux sous-modules, l’un représentant la donnée (nommé ”représentation”) et l’autre prenant
des décisions (nommé ”resolution de tâche”). Nous catégorisons, dans cette thèse, les travaux au-
tour de l’IA, dans les deux approches d’apprentissage suivantes : (i) Spécialisation : apprendre des
représentations à partir de quelques tâches spécifiques dans le but de pouvoir effectuer des tâches
très spécifiques (spécialisées dans un certain domaine) avec un très bon niveau de performance;
ii) Universalité : apprendre des représentations à partir de plusieurs tâches générales dans le but
d’accomplir autant de tâches que possible dans différents contextes. Alors que la spécialisation a
été largement explorée par la communauté de l’apprentissage profond, seules quelques tentatives
implicites ont été réalisée vers la seconde catégorie, à savoir, l’universalité. Ainsi, le but de cette
thèse est d’aborder explicitement le problème de l’amélioration de l’universalité des représentations
avec des méthodes d’apprentissage profond, pour les données d’image et de texte. Nous avons
abordé ce thème de l’universalité sous deux formes différentes : par la mise en oeuvre de méthodes
pour améliorer l’universalité (”méthodes d’universalisation”); et par l’établissement d’un protocole
ainsi que la définition de métriques pour quantifier et évaluer son niveau d’universalité. En ce qui
concerne les méthodes d’universalisation, nous avons proposé trois contributions techniques : (i)
dans un contexte de représentations sémantiques de grande dimensions, nous avons proposé une
méthode pour réduire la redondance entre les détecteurs à travers un seuil adaptatif et les rela-
tions entre les concepts; (ii) dans le contexte des représentations internes de réseaux neuronaux,

155

nous avons proposé une approche qui augmente le nombre de détecteurs sans augmenter la quan-
tité de données annotées; (iii) dans un contexte de représentations multimodales, nous avons pro-
posé une méthode pour préserver la sémantique des représentations unimodales (par le biais de
leur structure de groupes) dans les représentations multimodales. En ce qui concerne la quantifi-
cation et donc l’évaluation de l’universalité, motivé par une étude cognitive, nous avons proposé
d’évaluer les méthodes d’universalisation dans le cadre d’un schéma de transfert d’apprentissage.
En effet, ce schéma technique est pertinent pour évaluer la capacité universelle des représentations.
Cela nous a également conduit à proposer plusieurs nouveaux critères d’évaluation quantitative pour
l’universalisation des méthodes ainsi que plusieurs métriques respectant ces critères.

156

Bibliography

[1] P. Agrawal, R. Girshick, and J. Malik. Analyzing the performance of multilayer neural networks for
object recognition. In European Conference on Computer Vision, ECCV, 2014.

[2] K. Ahmed, M. H. Baig, and L. Torresani. Network of experts for large-scale image categorization. In
European Conference on Computer Vision, ECCV, 2016.

[3] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Good practice in large-scale learning for image
classification. Pattern Analysis and Machine Intelligence, PAMI, 2014.

[4] R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert gate: Lifelong learning with a network of experts.
In Computer Vision and Pattern Recognition, CVPR, 2017.

[5] G. Andrew, R. Arora, J. Bilmes, and K. Livescu. Deep canonical correlation analysis. In International
Conference on Machine Learning, ICML, 2013.

[6] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. VQA: Visual Question
Answering. In International Conference on Computer Vision, ICCV, 2015.

[7] J. Atif, C. Hudelot, G. Fouquier, I. Bloch, and E. D. Angelini. From generic knowledge to specific
reasoning for medical image interpretation using graph based representations. In International Joint
Conference on Artificial Intelligence, IJCAI, 2007.

[8] J. Atkinson. The developing visual brain. 2002.

[9] S. Avila, N. Thome, M. Cord, E. Valle, and A. D. A. AraúJo. Pooling in image representation: The
visual codeword point of view. International Journal of Computer Vision and Image Understanding,
CVIU, 2013.

[10] Y. Aytar, C. Vondrick, and A. Torralba. See, hear, and read: Deep aligned representations. arXiv preprint
arXiv:1706.00932, 2017.

[11] H. Azizpour, A. Razavian, J. Sullivan, A. Maki, and S. Carlsson. Factors of transferability for a generic
convnet representation. Pattern Analysis and Machine Intelligence, PAMI, 2015.

[12] S.-Y. Bai, S. Agethen, T.-H. Chao, and W. Hsu. Semi-supervised learning for convolutional neural
networks via online graph construction. arXiv preprint arXiv:1511.06104, 2015.

[13] H. Bannour and C. Hudelot. Towards ontologies for image interpretation and annotation. In Content-
Based Multimedia Indexing, CBMI, 2011.

[14] H. Bannour and C. Hudelot. Building and using fuzzy multimedia ontologies for semantic image anno-
tation. Transactions on Multimedia Tools and Applications, 2014.

[15] M. Bar and S. Ullman. Spatial context in recognition. Perception, 1996.

157

[16] E. Baralis, S. Chiusano, and P. Garza. A lazy approach to associative classification. IEEE Transactions
on Knowledge and Data Engineering, 2008.

[17] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch: A randomized correspon-
dence algorithm for structural image editing. ACM Transactions on Graphics, 2009.

[18] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying interpretability
of deep visual representations. In Computer Vision and Pattern Recognition, CVPR, 2017.

[19] S. Bell, P. Upchurch, N. Snavely, and K. Bala. Material recognition in the wild with the materials in
context database (supplemental material). In Computer Vision and Pattern Recognition, CVPR, 2015.

[20] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
Pattern Analysis and Machine Intelligence, PAMI, 2013.

[21] A. Bergamo and L. Torresani. Meta-class features for large-scale object categorization on a budget. In
Computer Vision and Pattern Recognition, CVPR, 2012.

[22] A. Bergamo, L. Torresani, and A. W. Fitzgibbon. Picodes: Learning a compact code for novel-category
recognition. In Advances in Neural Information Processing Systems, NIPS, 2011.

[23] H. Bilen and A. Vedaldi. Universal representations: The missing link between faces, text, planktons, and
cat breeds. arXiv:1701.07275, 2017.

[24] S. Bird, E. Klein, and E. Loper. Natural language processing with Python. ” O’Reilly Media, Inc.”,
2009.

[25] D. M. Blei and M. I. Jordan. Modeling annotated data. In International Conference on Research and
Development in Information Retrieval, SIGIR, 2003.

[26] M. Blot, T. Robert, N. Thome, and M. Cord. Shade: Information-based regularization for deep learning.
In International Conference on Image Processing, ICIP, 2018.

[27] F. Bousefsaf, M. Tamaazousti, S. H. Said, and R. Michel. Image completion using multispectral imaging.
IET Image Processing, 2018.

[28] M. Brady. Artificial intelligence and robotics. Artificial intelligence, 1985.

[29] S. Brodeur, E. Perez, A. Anand, F. Golemo, L. Celotti, F. Strub, J. Rouat, H. Larochelle, and A. Courville.
Home: A household multimodal environment. In International Conference on Learning Representations,
ICLR-W, 2018.

[30] M. Bucher, S. Herbin, and F. Jurie. Improving semantic embedding consistency by metric learning for
zero-shot classiffication. In European Conference on Computer Vision, ECCV, 2016.

[31] F. Carrara, A. Esuli, T. Fagni, F. Falchi, and A. M. Fernández. Picture it in your mind: Generating high
level visual representations from textual descriptions. Information Retrieval Journal, 2017.

[32] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière, and T. Chateau. Deep manta: A coarse-to-fine many-
task network for joint 2d and 3d vehicle analysis from monocular image. In Computer Vision and Pattern
Recognition, CVPR, 2017.

[33] I. Chami, Y. Tamaazousti, and H. Le Borgne. Amecon: Abstract meta concept features for text-
illustration. In International Conference on Multimedia Retrieval, ICMR, 2017.

[34] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving
deep into convolutional nets. In British Machine Vision Conference, BMVC, 2014.

158

[35] X. Chen and A. Gupta. Webly supervised learning of convolutional networks. In Computer Vision and
Pattern Recognition, CVPR, 2015.

[36] G. Chican and M. Tamaazousti. Constrained patchmatch for image completion. In Advances in Visual
Computing, 2014.

[37] F. Chollet. Xception: Deep learning with depthwise separable convolutions. In Computer Vision and
Pattern Recognition, CVPR, 2016.

[38] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng. Nus-wide: A real-world web image
database from national university of singapore. In ACM Conference on Image and Video Retrieval,
CIVR, 2009.

[39] M. Cimpoi, S. Maji, I. Kokkinos, and A. Vedaldi. Deep filter banks for texture recognition, description,
and segmentation. International Journal of Computer Vision, IJCV, 2016.

[40] G. Collell, T. Zhang, and M.-F. Moens. Imagined visual representations as multimodal embeddings. In
Association for the Advancement of Artificial Intelligence, AAAI, 2017.

[41] A. Conneau and D. Kiela. Senteval: An evaluation toolkit for universal sentence representations. arXiv
preprint arXiv:1803.05449, 2018.

[42] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes. Supervised learning of universal sen-
tence representations from natural language inference data. arXiv preprint arXiv:1705.02364, 2017.

[43] A. Conneau, G. Kruszewski, G. Lample, L. Barrault, and M. Baroni. What you can cram into a single
vector: Probing sentence embeddings for linguistic properties. arXiv preprint arXiv:1805.01070, 2018.

[44] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun. Very deep convolutional networks for text classifi-
cation. In Association for Computational Linguistics, ACL, 2017.

[45] J. Costa Pereira, E. Coviello, G. Doyle, N. Rasiwasia, G. Lanckriet, R. Levy, and N. Vasconcelos. On the
role of correlation and abstraction in cross-modal multimedia retrieval. Pattern Analysis and Machine
Intelligence, PAMI, 2014.

[46] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization with bags of keypoints.
In European Conference on Computer Vision, ECCV-Workshop.

[47] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals,
and Systems, 1989.

[48] H. Daher, R. Besançon, O. Ferret, H. Le Borgne, A.-L. Daquo, and Y. Tamaazousti. Désambiguı̈sation
d’entités nommées par apprentissage de modèles d’entités à large échelle. In COnférence en Recherche
d’Information et Applications, 2017.

[49] H. Daher, R. Besançon, O. Ferret, H. Le Borgne, A.-L. Daquo, and Y. Tamaazousti. Supervised learning
of entity disambiguation models by negative sample selection. In International Conference on Compu-
tational Linguistics and Intelligent Text Processing, CICLing, 2017.

[50] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In Computer Vision
and Pattern Recognition, CVPR, 2005.

[51] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. M. Moura, D. Parikh, and D. Batra. Visual dialog.
In Computer Vision and Pattern Recognition, CVPR, 2017.

[52] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio, Y. Li, H. Neven, and H. Adam. Large-scale
object classification using label relation graphs. In European Conference on Computer Vision, ECCV,
2014.

159

[53] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In Computer Vision and Pattern Recognition, CVPR, 2009.

[54] J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei. Hedging your bets: Optimizing accuracy-specificity
trade-offs in large scale visual recognition. In Computer Vision and Pattern Recognition, CVPR, 2012.

[55] P. Dollar and C. L. Zitnick. Fast edge detection using structured forests. Pattern Analysis and Machine
Intelligence, PAMI, 2015.

[56] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Dar-
rell. Long-term recurrent convolutional networks for visual recognition and description. In Computer
Vision and Pattern Recognition, CVPR, 2015.

[57] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep con-
volutional activation feature for generic visual recognition. In International Conference on Machine
Learning, ICML, 2014.

[58] J. Dong, X. Li, and C. G. M. Snoek. Predicting visual features from text for image and video caption
retrieval. IEEE Transactions on Multimedia, 2018.

[59] O. F. Dorian Kodelja, Romaric Besançon. Intégration de contexte global par amorçage pour la détection
d’événements. In conférence sur le Traitement Automatique des Langues Naturelles, TALN, 2018.

[60] T. Durand. Weakly supervised learning for visual recognition. PhD thesis, Université Pierre et Marie
Curie, 2017.

[61] T. Durand, T. Mordan, N. Thome, and M. Cord. Wildcat: Weakly supervised learning of deep con-
vnets for image classification, pointwise localization and segmentation. In Computer Vision and Pattern
Recognition, CVPR, 2017.

[62] T. Durand, D. Picard, N. Thome, and M. Cord. Semantic pooling for image categorization using multiple
kernel learning. In International Conference on Image Processing, ICIP, 2014.

[63] T. Durand, N. Thome, and M. Cord. Weldon: Weakly supervised learning of deep convolutional neural
networks. In Computer Vision and Pattern Recognition, CVPR, 2016.

[64] T. Durand, N. Thome, and M. Cord. Exploiting negative evidence for deep latent structured models.
Pattern Analysis and Machine Intelligence, PAMI, 2018.

[65] T. Durand, N. Thome, M. Cord, and S. Avila. Image classification using object detectors. In International
Conference on Image Processing, ICIP, 2013.

[66] A. Dutt, D. Pellerin, and G. Quenot. Improving image classification using coarse and fine labels. In
International Conference on Multimedia Retrieval, ICMR, 2017.

[67] A. Eisenschtat and L. Wolf. Linking image and text with 2-way nets. In Computer Vision and Pattern
Recognition, CVPR, 2017.

[68] M. Engilberge, L. Chevallier, P. Pérez, and M. Cord. Finding beans in burgers: Deep semantic-visual
embedding with localization. In Computer Vision and Pattern Recognition, CVPR, 2018.

[69] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer features of a deep network.
University of Montreal, 2009.

[70] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object
classes challenge 2012.

160

[71] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object
classes challenge. International Journal of Computer Vision, IJCV, 2010.

[72] F. Faghri, D. J. Fleet, J. R. Kiros, and S. Fidler. Vse++: Improving visual-semantic embeddings with
hard negatives. arXiv preprint arXiv:1707.05612, 2017.

[73] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. Pattern Analysis and
Machine Intelligence, PAMI, 2006.

[74] Y. Feng and M. Lapata. Topic models for image annotation and text illustration. In ACL Human Lan-
guage Technologies, HLT, 2010.

[75] France IA. Rapport de synthèse. link, 2017.

[76] R. M. French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3(4):128–
135, 1999.

[77] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, and T. Mikolov. Devise: A deep visual-semantic
embedding model. In Advances in Neural Information Processing Systems, NIPS, 2013.

[78] G. Gay-Bellile, S. Bourgeois, M. Tamaazousti, S. Naudet-Collette, and S. Knodel. A mobile markerless
augmented reality system for the automotive field. In International Symposium on Mixed and Augmented
Reality Workshop, ISMAR-W, 2012.

[79] V. Gay-Bellile, M. Tamaazousti, R. Dupont, and S. Naudet-Collette. A vision-based hybrid system for
real-time accurate localization in an indoor environment. In International Conference on Computer
Vision Theory and Applications, VISAP, 2010.

[80] P. Gehler and S. Nowozin. On feature combination for multiclass object classification. In Computer
Vision and Pattern Recognition, CVPR, 2009.

[81] A. L. Ginsca, A. Popescu, H. Le Borgne, N. Ballas, P. Vo, and I. Kanellos. Large-scale image mining
with flickr groups. In International Conference on Multimedia Modelling, MM, 2015.

[82] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Computer Vision and Pattern Recognition, CVPR, 2014.

[83] H. Goh, N. Thome, M. Cord, and J.-H. Lim. Top-down regularization of deep belief networks. NIPS,
2013.

[84] C. Gomez, H. Le Borgne, P. Allemand, C. Delacourt, and P. Ledru. N-findr method versus independent
component analysis for lithological identification in hyperspectral imagery. International Journal of
Remote Sensing, 2007.

[85] Y. Gong, Q. Ke, M. Isard, and S. Lazebnik. A multi-view embedding space for modeling internet images,
tags, and their semantics. International Journal of Computer Vision, IJCV, 2014.

[86] Y. Gong, L. Wang, M. Hodosh, J. Hockenmaier, and S. Lazebnik. Improving image-sentence embed-
dings using large weakly annotated photo collections. In European Conference on Computer Vision,
ECCV, 2014.

[87] A. Gonzalez-Garcia, D. Modolo, and V. Ferrari. Do semantic parts emerge in convolutional neural
networks? arXiv preprint arXiv:1607.03738, 2016.

[88] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

161

https://www.economie.gouv.fr/files/files/PDF/2017/Conclusions_Groupes_Travail_France_IA.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[89] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial nets. In Advances in Neural Information Processing Systems, NIPS, 2014.

[90] I. J. Goodfellow, D. Warde-farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. In Inter-
national Conference on Machine Learning, ICML, 2013.

[91] A. Gordoa, J. A. Rodrı́guez-Serrano, F. Perronnin, and E. Valveny. Leveraging category-level labels for
instance-level image retrieval. In Computer Vision and Pattern Recognition, CVPR, 2012.

[92] K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification with sets of image
features. In International Conference on Computer Vision, ICCV, 2005.

[93] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. 2007.

[94] S. Hadj Said, M. Tamaazousti, and A. Bartoli. Image-based models for specularity propagation in di-
minished reality. IEEE Transactions on Visualization and Computer Graphics, 2017.

[95] D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-Taylor. Canonical correlation analysis: An overview
with application to learning methods. Neural Computing, 2004.

[96] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual
recognition. In European Conference on Computer Vision, ECCV, 2014.

[97] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Computer Vision
and Pattern Recognition, CVPR, 2016.

[98] L. Herranz, S. Jiang, and X. Li. Scene recognition with cnns: objects, scales and dataset bias. In
Computer Vision and Pattern Recognition, CVPR, 2016.

[99] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and S. Hochreiter. Gans trained by
a two time-scale update rule converge to a nash equilibrium. arXiv preprint arXiv:1706.08500, 2017.

[100] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural computa-
tion, 2006.

[101] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv:1503.02531,
2015.

[102] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 1997.

[103] M. Hodosh, P. Young, and J. Hockenmaier. Framing image description as a ranking task: Data, models
and evaluation metrics. Journal of Artificial Intelligence Research, 2013.

[104] Z. Hu, X. Ma, Z. Liu, E. H. Hovy, and E. P. Xing. Harnessing deep neural networks with logic rules. In
Association for Computational Linguistics, ACL, 2016.

[105] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten. Densely connected convolutional networks.
In Computer Vision and Pattern Recognition, CVPR, 2017.

[106] Y. Huang, Q. Wu, and L. Wang. Learning semantic concepts and order for image and sentence matching.
In Computer Vision and Pattern Recognition, CVPR, 2017.

[107] C. Hudelot, J. Atif, and I. Bloch. Fuzzy spatial relation ontology for image interpretation. Fuzzy Sets
and Systems, 2008.

[108] C. Hudelot, J. Atif, and I. Bloch. Alc(f): A new description logic for spatial reasoning in images. In
European Conference on Computer Vision, ECCV Workshop, 2014.

162

[109] M. Huh, P. Agrawal, and A. A. Efros. What makes imagenet good for transfer learning? In Advances in
Neural Information Processing Systems, NIPS-Workshop, 2016.

[110] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[111] A. Jaimes and S.-F. Chang. Conceptual framework for indexing visual information at multiple levels. In
Internet Imaging, volume 3964, pages 2–16. International Society for Optics and Photonics, 1999.

[112] M. Jain, J. C. van Gemert, T. Mensink, and C. G. M. Snoek. Objects2action: Classifying and localizing
actions without any video example. In International Conference on Computer Vision, ICCV, 2015.

[113] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact image
representation. In Computer Vision and Pattern Recognition, CVPR, 2010.

[114] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature embedding. In International Conference on Multime-
dia, ACM, 2014.

[115] L. jia Li, H. Su, L. Fei-fei, and E. P. Xing. Object bank: A high-level image representation for scene
classification & semantic feature sparsification. In Advances in Neural Information Processing Systems,
NIPS, 2010.

[116] J. Johnson, R. Krishna, M. Stark, L. Li, D. A. Shamma, M. S. Bernstein, and F. Li. Image retrieval using
scene graphs. In Computer Vision and Pattern Recognition, CVPR, 2015.

[117] R. Johnson and T. Zhang. Semi-supervised convolutional neural networks for text categorization via
region embedding. In Advances in Neural Information Processing Systems, NIPS, 2015.

[118] P. Jolicoeur, M. A. Gluck, and S. M. Kosslyn. Pictures and names: Making the connection. Cognitive
Psychology, 1984.

[119] C. Jörgensen. Attributes of images in describing tasks. Information Processing & Management, 34(2-
3):161–174, 1998.

[120] A. Joulin, L. van der Maaten, A. Jabri, and N. Vasilache. Learning visual features from large weakly
supervised data. In European Conference on Computer Vision, ECCV, 2016.

[121] L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones, and J. Uszkoreit. One model to
learn them all. arXiv preprint arXiv:1706.05137, 2017.

[122] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In
Computer Vision and Pattern Recognition, CVPR, 2015.

[123] A. Karpathy, A. Joulin, and F. F. Li. Deep fragment embeddings for bidirectional image sentence map-
ping. In Advances in Neural Information Processing Systems, NIPS, 2014.

[124] D. Kiela, A. Conneau, A. Jabri, and M. Nickel. Learning visually grounded sentence representations.
arXiv preprint arXiv:1707.06320, 2017.

[125] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882,
2014.

[126] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[127] R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying visual-semantic embeddings with multimodal
neural language models. arXiv preprint arXiv:1411.2539, 2014.

163

[128] B. Klein, G. Lev, G. Sadeh, and L. Wolf. Fisher vectors derived from hybrid gaussian-laplacian mixture
models for image annotation. arXiv preprint arXiv:1411.7399, 2014.

[129] D. Kodelja, R. Besancon, and O. Ferret. Représentations et modèles en extraction d’événements super-
visée. In Rencontres des Jeunes Chercheurs en Intelligence Artificielle, RJCIA, 2017.

[130] I. Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level
vision using diverse datasets and limited memory. In Computer Vision and Pattern Recognition, CVPR,
2017.

[131] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained categorization.
In International Conference on Computer Vision, ICCV Workshop, 2013.

[132] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems, NIPS, 2012.

[133] L. I. Kuncheva and J. J. Rodriguez. Classifier ensembles with a random linear oracle. IEEE Transactions
on Knowledge and Data Engineering, 2007.

[134] S. S. Layne. Some issues in the indexing of images. Journal of the American Society for Information
Science, 1994.

[135] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recogniz-
ing natural scene categories. In Computer Vision and Pattern Recognition, CVPR, 2006.

[136] H. Le Borgne, E. Gadeski, I. Chami, T. Q. N. Tran, Y. Tamaazousti, A. L. Ginsca, and A. Popescu.
Image annotation and two paths to text illustration. In CLEF 2016 Evaluation Labs and Workshop,
Online Working Notes, 2016.

[137] H. Le Borgne and A. Guérin-Dugué. Sparse-dispersed coding and images discrimination with indepen-
dent component analysis. In International Conference on ICA and BSS, 2001.

[138] H. Le Borgne, A. Guérin-Dugué, and A. Antoniadis. Representation of images for classification with
independent features. Pattern Recognition Letters, 2004.

[139] H. Le Borgne, A. Guérin-Dugué, and N. E. O’Connor. Learning midlevel image features for natural
scene and texture classification. IEEE Transaction on Circuits and Systems for Video Technologies,
2007.

[140] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86:2278–2324, 1998.

[141] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,
Z. Wang, et al. Photo-realistic single image super-resolution using a generative adversarial network.
arXiv preprint, 2017.

[142] Y. Li, W. Ouyang, B. Zhou, K. Wang, and X. Wang. Scene graph generation from objects, phrases and
region captions. In International Conference on Computer Vision, ICCV, 2017.

[143] Y. Li, J. Yosinski, J. Clune, H. Lipson, and J. Hopcroft. Convergent learning: Do different neural
networks learn the same representations? In International Conference on Learning Representations,
ICLR, 2016.

[144] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft
coco: Common objects in context. In European Conference on Computer Vision, ECCV, 2014.

[145] X. Ling, S. Singh, and D. Weld. Design challenges for entity linking. Transactions of the Association
for Computational Linguistics, 2015.

164

[146] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van
Ginneken, and C. I. Sánchez. A survey on deep learning in medical image analysis. Medical image
analysis, 2017.

[147] L. Liu, L. Wang, and X. Liu. In defense of soft-assignment coding. In International Conference on
Computer Vision, ICCV, 2011.

[148] W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking wider to see better. In International Confer-
ence on Learning Representations, ICLR Workshop, 2016.

[149] Y. Liu, Y. Guo, E. M. Bakker, and M. S. Lew. Learning a recurrent residual fusion network for multi-
modal matching. In Computer Vision and Pattern Recognition, CVRP, 2017.

[150] K. Longi, T. Pulkkinen, and A. Klami. Semi-supervised convolutional neural networks for identifying
wi-fi interference sources. In Asian Conference on Machine Learning, ACML, 2017.

[151] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Com-
puter Vision, IJCV, 2004.

[152] C. Lu, R. Krishna, M. S. Bernstein, and F. Li. Visual relationship detection with language priors. In
European Conference on Computer Vision, ECCV, 2016.

[153] D. P. L. S. N. T. M. C. M. Carvalho, R. Cadene. Cross-modal retrieval in the cooking context: Learning
semantic text-image embeddings. In ACM SIGIR, 2018.

[154] Z. Ma, Y. Lu, and D. Foster. Finding linear structure in large datasets with scalable canonical correlation
analysis. In International Conference on Machine Learning, ICML, 2015.

[155] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic
models. In International Conference on Machine Learning, ICML, 2013.

[156] A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In Com-
puter Vision and Pattern Recognition, CVPR, 2015.

[157] T. Malisiewicz and A. A. Efros. Beyond categories: The visual memex model for reasoning about object
relationships. In Advances in Neural Information Processing Systems, NIPS, 2009.

[158] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999.

[159] A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning.
arXiv preprint arXiv:1711.05769, 2017.

[160] F. Manessi, A. Rozza, S. Bianco, P. Napoletano, and R. Schettini. Automated pruning for deep neural
network compression. arXiv preprint arXiv:1712.01721, 2017.

[161] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille. Deep captioning with multimodal recurrent
neural networks (m-rnn). arXiv preprint arXiv:1412.6632, 2014.

[162] K. Marino, R. Salakhutdinov, and A. Gupta. The more you know: Using knowledge graphs for image
classification. In Computer Vision and Pattern Recognition, CVPR, 2017.

[163] A. Mathews, L. Xie, and X. He. Choosing basic-level concept names using visual and language context.
In Winter Conference on Applications of Computer Vision, WACV, 2015.

[164] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin
of mathematical biophysics, 5(4):115–133, 1943.

[165] S. Meftah, N. Semmar, and F. Sadat. A neural network model for part-of-speech tagging of social media
texts. In Conference on Language Resources and Evaluation, LREC, 2018.

165

[166] P. Mettes, D. Koelma, and C. G. M. Snoek. The imagenet shuffle: Reorganized pre-training for video
event detection. In International Conference on Multimedia Retrieval, ICMR, 2016.

[167] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in Neural Information Processing Systems, NIPS, 2013.

[168] G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41, 1995.

[169] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT press, Cam-
bridge, MA, USA, 1969.

[170] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks for
resource efficient inference. In International Conference on Learning Representations, ICLR, 2016.

[171] F. Monay and D. Gatica-Perez. Modeling semantic aspects for cross-media image indexing. Pattern
Analysis and Machine Intelligence, PAMI, 2007.

[172] A. Morgand and M. Tamaazousti. Generic and real-time detection of specular reflections in images. In
International Conference on Computer Vision Theory and Applications, VISAP, 2014.

[173] A. Morgand, M. Tamaazousti, and A. Bartoli. An empirical model for specularity prediction with appli-
cation to dynamic retexturing. In International Symposium on Mixed and Augmented Reality, ISMAR,
2016.

[174] A. Morgand, M. Tamaazousti, and A. Bartoli. A multiple-view geometric model of specularities on
non-planar shapes with application to dynamic retexturing. Transactions on Visualization and Computer
Graphics, 2017.

[175] H. Murase and S. K. Nayar. Visual learning and recognition of 3-d objects from appearance. Interna-
tional Journal of Computer Vision, IJCV, 1995.

[176] V. N. Murthy, V. Singh, T. Chen, R. Manmatha, and D. Comaniciu. Deep decision network for multi-
class image classification. In Computer Vision and Pattern Recognition, CVPR, 2016.

[177] H. Nam, J.-W. Ha, and J. Kim. Dual attention networks for multimodal reasoning and matching. In
Computer Vision and Pattern Recognition, CVPR, 2016.

[178] A. P. Natsev, M. R. Naphade, and J. R. Smith. Semantic representation: search and mining of multimedia
content. In International Conference on Knowledge Discovery and Data Mining, KDD, 2004.

[179] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal deep learning. In International
Conference on Machine Learning, ICML, 2011.

[180] A. Nie, E. D. Bennett, and N. D. Goodman. Dissent: Sentence representation learning from explicit
discourse relations. arXiv preprint arXiv:1710.04334, 2017.

[181] M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In
IEEE Computer Vision, Graphics & Image Processing, 2008.

[182] Y. Nishino, K.and Sato and I. K. Eigen-texture method: Appearance compression based on 3-d model.
In Computer Vision and Pattern Recognition, CVPR, 1999.

[183] M. Noroozi, H. Pirsiavash, and P. Favaro. Representation learning by learning to count. In International
Conference on Computer Vision, ICCV, 2017.

[184] D. Novotny, D. Larlus, and A. Vedaldi. Learning 3d object categories by looking around them. In
International Conference on Computer Vision, ICCV, 2017.

166

[185] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial
envelope. International Journal of Computer Vision, 2001.

[186] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations
using convolutional neural networks. In Computer Vision and Pattern Recognition, CVPR, 2014.

[187] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free?-weakly-supervised learning
with convolutional neural networks. In Computer Vision and Pattern Recognition, CVPR, 2015.

[188] V. Ordonez, J. Deng, Y. Choi, A. C. Berg, and T. Berg. From large scale image categorization to entry-
level categories. In International Conference on Computer Vision, ICCV, 2013.

[189] V. Ordonez, W. Liu, J. Deng, Y. Choi, A. C. Berg, and T. L. Berg. Predicting entry-level categories.
International Journal of Computer Vision, IJCV, 2015.

[190] W. Ouyang, X. Wang, C. Zhang, and X. Yang. Factors in finetuning deep model for object detection
with long-tail distribution. In Computer Vision and Pattern Recognition, CVPR, 2016.

[191] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell. Zero-shot learning with semantic output
codes. In Advances in Neural Information Processing Systems, NIPS, 2009.

[192] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowledge and data
engineering, 2010.

[193] D. Pathak, R. Girshick, P. Dollár, T. Darrell, and B. Hariharan. Learning features by watching objects
move. In Computer Vision and Pattern Recognition, CVPR, 2017.

[194] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature learning
by inpainting. In Computer Vision and Pattern Recognition, CVPR, 2016.

[195] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy. Pattern Analysis and Machine Intelligence, PAMI,
2005.

[196] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In Computer
Vision and Pattern Recognition, CVPR, 2007.

[197] F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification.
In European Conference on Computer Vision, ECCV, 2010.

[198] D. Picard and P.-H. Gosselin. Improving image similarity with vectors of locally aggregated tensors. In
International Conference on Image Processing, ICIP, 2011.

[199] D. Picard and P.-H. Gosselin. Efficient image signatures and similarities using tensor products of local
descriptors. Computer Vision and Image Understanding, 2013.

[200] F. Plesse, A. Ginsca, B. Delezoide, and F. Prêteux. Visual relationship detection based on guided pro-
posals and semantic knowledge distillation. arXiv preprint arXiv:1805.10802, 2018.

[201] D. L. Poole and A. K. Mackworth. Artificial Intelligence: foundations of computational agents. Cam-
bridge University Press, 2010.

[202] A. Popescu, G. Etienne, and H. Le Borgne. Scalable domain adaptation of convolutional neural networks.
preprint arXiv:1512.02013, 2015.

[203] D. Putthividhy, H. T. Attias, and S. S. Nagarajan. Topic regression multi-modal latent dirichlet allocation
for image annotation. In Computer Vision and Pattern Recognition, CVPR, 2010.

167

[204] F. Quanfu and C. Richard. Sparse deep feature representation for object detection from wearable cam-
eras. In British Machine Vision Conference, BMVC, 2017.

[205] A. Quattoni and A. Torralba. Recognizing indoor scenes. In Computer Vision and Pattern Recognition,
CVPR, 2009.

[206] A. Rannen, R. Aljundi, M. B. Blaschko, and T. Tuytelaars. Encoder based lifelong learning. In Computer
Vision and Pattern Recognition, CVPR, 2017.

[207] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. R. Lanckriet, R. Levy, and N. Vasconcelos. A
new approach to cross-modal multimedia retrieval. In International Conference on Multimedia, 2010.

[208] N. Rasiwasia, P. J. Moreno, and N. Vasconcelos. Bridging the gap: Query by semantic example. IEEE
Transactions on Multimedia, 2007.

[209] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: An astounding
baseline for recognition. In Computer Vision and Pattern Recognition, CVPR, 2014.

[210] S.-A. Rebuffi, H. Bilen, and A. Vedaldi. Learning multiple visual domains with residual adapters. In
Advances in Neural Information Processing Systems, NIPS, 2017.

[211] S.-A. Rebuffi, H. Bilen, and A. Vedaldi. Efficient parametrization of multi-domain deep neural networks.
In Computer Vision and Pattern Recognition, CVPR, 2018.

[212] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In Computer Vision and Pattern Recogni-
tion, CVPR, 2017.

[213] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for thin deep
nets. arXiv preprint arXiv:1412.6550, 2014.

[214] E. Rosch. Principles of categorization. Cognition and Categorization, 1978.

[215] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological review, 65(6):386, 1958.

[216] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge. Interna-
tional Journal of Computer Vision, IJCV, 2015.

[217] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Inter-
national Journal of Computer Vision, IJCV, 2015.

[218] S. J. Russell and P. Norvig. Artificial intelligence: a modern approach. Malaysia; Pearson Education
Limited,, 2016.

[219] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu,
and R. Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.

[220] S. H. Said, M. Tamaazousti, and A. Bartoli. Image-based models for specularity propagation in dimin-
ished reality. Transactions on Visualization and Computer Graphics, 2017.

[221] G. Salton and M. J. McGill. Introduction to modern information retrieval. 1986.

[222] A. Salvador, N. Hynes, Y. Aytar, J. Marin, F. Ofli, I. Weber, and A. Torralba. Learning cross-modal
embeddings for cooking recipes and food images. In Computer Vision and Pattern Recognition, CVPR,
2017.

168

[223] N. Semmar. A hybrid approach for automatic extraction of bilingual multiword expressions from parallel
corpora. In Conference on Language Resources and Evaluation, LREC, 2018.

[224] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recogni-
tion, localization and detection using convolutional networks. In International Conference on Learning
Representations, ICLR, 2014.

[225] A. Shabou and H. Le Borgne. Locality-constrained and spatially regularized coding for scene catego-
rization. In Computer Vision and Pattern Recognition, CVPR, 2012.

[226] S. Shatford. Analyzing the subject of a picture: a theoretical approach. Cataloging & classification
quarterly, 6(3):39–62, 1986.

[227] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[228] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In
International Conference on Learning Representations, ICLR, 2015.

[229] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In
International Conference on Computer Vision, ICCV, 2003.

[230] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image retrieval at the
end of the early years. Pattern Analysis and Machine Intelligence, PAMI, 2000.

[231] R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y. Ng. Grounded compositional semantics
for finding and describing images with sentences. Transactions of the Association of Computational
Linguistics, 2014.

[232] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. Journal of Machine Learning Research, 2014.

[233] N. Srivastava and R. R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In Advances
in Neural Information Processing Systems, NIPS, 2012.

[234] P. Stone, R. Brooks, E. Brynjolfsson, O. E. Ryan Calo, G. Hager, J. Hirschberg, S. Kalyanakrishnan,
E. Kamar, S. Kraus, K. Leyton-Brown, A. S. David Parkes, William Press, J. Shah, M. Tambe, and
A. Teller. ”artificial intelligence and life in 2030.” one hundred year study on artificial intelligence: Re-
port of the 2015-2016 study panel. Stanford University, Stanford, CA, http://ai100.stanford.
edu/2016-report. Accessed: September 6, 2016, September 2016.

[235] S. Subramanian, A. Trischler, Y. Bengio, and C. J. Pal. Learning general purpose distributed sentence
representations via large scale multi-task learning. In International Conference on Learning Represen-
tations, ICLR, 2018.

[236] D. Surı́s, A. Duarte, A. Salvador, J. Torres, and X. Giró-i Nieto. Cross-modal embeddings for video and
audio retrieval. arXiv preprint arXiv:1801.02200, 2018.

[237] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions. In Computer Vision and Pattern Recognition, CVPR, 2015.

[238] M. Tamaazousti. L’ajustement de faisceaux contraint comme cadre d’unification des méthodes de lo-
calisation: application à la réalité augmentée sur des objets 3D. PhD thesis, Université Blaise Pascal-
Clermont-Ferrand II, 2013.

[239] M. Tamaazousti, S. Naudet-Collette, V. Gay-Bellile, S. Bourgeois, B. Besbes, and M. Dhome. The con-
strained slam framework for non-instrumented augmented reality. Multimedia Tools and Applications,
2016.

169

http://ai100.stanford.edu/2016-report
http://ai100.stanford.edu/2016-report

[240] Y. Tamaazousti, H. Le Borgne, and C. Hudelot. Agrégation de descripteurs sémantiques locaux con-
traints par parcimonie basée sur le contenu. In Reconnaissance des Formes et Intelligence Artificielle,
RFIA, 2016.

[241] Y. Tamaazousti, H. Le Borgne, and C. Hudelot. Descripteurs à divers niveaux de concepts pour la
classification d’images multi-objets. In Reconnaissance des Formes et Intelligence Artificielle, RFIA,
2016.

[242] Y. Tamaazousti, H. Le Borgne, and C. Hudelot. Diverse concept-level features for multi-object classifi-
cation. In International Conference on Multimedia Retrieval, ICMR, 2016.

[243] Y. Tamaazousti, H. Le Borgne, and C. Hudelot. Mucale-net: Multi categorical-level networks to generate
more discriminating features. In Computer Vision and Pattern Recognition, CVPR, 2017.

[244] Y. Tamaazousti, H. Le Borgne, C. Hudelot, M. E. A. Seddik, and M. Tamaazousti. Learning more
universal representations for transfer-learning. arXiv:1712.09708, 2017.

[245] Y. Tamaazousti, H. Le Borgne, and A. Popescu. Constrained local enhancement of semantic features by
content-based sparsity. In International Conference on Multimedia Retrieval, ICMR, 2016.

[246] Y. Tamaazousti, H. Le Borgne, A. Popescu, E. Gadeski, A. Ginsca, and C. Hudelot. Vision-language
integration using constrained local semantic features. International Journal of Computer Vision and
Image Understanding, CVIU, 2017.

[247] Y. Tamaazousti, H. Le Borgne, A. Popescu, E. Gadeski, A. L. Ginsca, and C. Hudelot. Déscripteur
sémantique local contraint basé sur un rnc diversifié. Traitement du Signal (TS), 2017.

[248] J. W. Tanaka and M. Taylor. Object categories and expertise: Is the basic level in the eye of the beholder?
Cognitive Psychology, 1991.

[249] S. J. Thorpe and M. Fabre-Thorpe. Seeking categories in the brain. Science, 291(5502):260–263, 2001.

[250] K. Todorov, C. Hudelot, A. Popescu, and P. Geibel. Fuzzy ontology alignment using background knowl-
edge. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2014.

[251] K. Todorov, N. James, and C. Hudelot. Multimedia ontology matching by using visual and textual
modalities. Transactions on Multimedia Tools and Applications, 2013.

[252] L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recognition using classemes. In
European Conference on Computer Vision, ECCV, 2010.

[253] T. Q. N. Tran, H. Le Borgne, and M. Crucianu. Combining generic and specific information for cross-
modal retrieval. In International Conference on Multimedia Retrieval, ICMR, 2015.

[254] T. Q. N. Tran, H. Le Borgne, and M. Crucianu. Aggregating image and text quantized correlated com-
ponents. In Computer Vision and Pattern Recognition, CVPR, 2016.

[255] T. Q. N. Tran, H. Le Borgne, and M. Crucianu. Cross-modal classification by completing unimodal
representations. In International Conference on Multimedia - Workshop, ACM, 2016.

[256] M. Turk and A. Pentland. Eigenfaces for recognition. J. Cognitive Neuroscience, 1991.

[257] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders. Selective search for object recogni-
tion. International Journal of Computer Vision, IJCV, 2013.

[258] D. C. Van Essen, J. L. Gallant, et al. Neural mechanisms of form and motion processing in the primate
visual system. Neuron, 13(1):1–10, 1994.

170

[259] J. C. Van Gemert, C. J. Veenman, A. W. Smeulders, and J.-M. Geusebroek. Visual word ambiguity.
Pattern Analysis and Machine Intelligence, PAMI, 2010.

[260] A. Veit, M. J. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively shallow
networks. In Advances in Neural Information Processing Systems, NIPS, 2016.

[261] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and K. Saenko. Translating videos to
natural language using deep recurrent neural networks. arXiv preprint arXiv:1412.4729, 2014.

[262] P. Vo, A. L. Ginsca, H. Le Borgne, and A. Popescu. Effective training of convolutional networks using
noisy web images. In International Workshop on Content-Based Multimedia Indexing, CBMI, 2015.

[263] P. D. Vo, A. Ginsca, H. Le Borgne, and A. Popescu. On deep representation learning from noisy web
images. arXiv:1512.04785, 2015.

[264] P. D. Vo, A. Ginsca, H. Le Borgne, and A. Popescu. Harnessing noisy web images for deep representa-
tion. International Journal of Computer Vision and Image Understanding, CVIU, 2017.

[265] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset,
2011.

[266] G. Wang, D. Hoiem, and D. Forsyth. Learning image similarity from flickr groups using stochastic
intersection kernel machines. In International Conference on Computer Vision, ICCV, 2009.

[267] H. Wang, H. Wang, and K. Xu. Categorizing concepts with basic level for vision-to-language. In
Computer Vision and Pattern Recognition, CVPR, 2018.

[268] J. Wang, Q. Qin, Z. Li, X. Ye, J. Wang, X. Yang, and X. Qin. Deep hierarchical representation and
segmentation of high resolution remote sensing images. In International Geoscience and Remote Sensing
Symposium, 2015.

[269] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image
classification. In Computer Vision and Pattern Recognition, CVPR, 2010.

[270] L. Wang, Y. Li, J. Huang, and S. Lazebnik. Learning two-branch neural networks for image-text match-
ing tasks. Pattern Analysis and Machine Intelligence, PAMI, 2018.

[271] L. Wang, Y. Li, and S. Lazebnik. Learning deep structure-preserving image-text embeddings. In Com-
puter Vision and Pattern Recognition, CVPR, 2016.

[272] Y.-X. Wang, D. Ramanan, and M. Hebert. Growing a brain: Fine-tuning by increasing model capacity.
In Computer Vision and Pattern Recognition, CVPR, 2017.

[273] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao, and S. Yan. Cnn: Single-label to multi-label. In
arXiv:1406.5726, 2014.

[274] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vocabulary image annotation. In
IJCAI, IJCAI, 2011.

[275] Y. Wu, J. Li, Y. Kong, and Y. Fu. Deep convolutional neural network with independent softmax for large
scale face recognition. In International Conference on Multimedia, ACM, 2016.

[276] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural
networks. In Computer Vision and Pattern Recognition, CVPR, 2017.

[277] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified activations in convolutional
network. arXiv preprint arXiv:1505.00853, 2015.

171

[278] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. Scene graph generation by iterative message passing. In
Computer Vision and Pattern Recognition, CVPR, 2017.

[279] F. Yan and K. Mikolajczyk. Deep correlation for matching images and text. In Computer Vision and
Pattern Recognition, CVPR, 2015.

[280] Z. Yan, H. Zhang, R. Piramuthu, V. Jagadeesh, D. DeCoste, W. Di, and Y. Yu. Hd-cnn: hierarchical
deep convolutional neural networks for large scale visual recognition. In International Conference on
Computer Vision, ICCV, 2015.

[281] H. Yang, J. Tianyi Zhou, Y. Zhang, B.-B. Gao, J. Wu, and J. Cai. Exploit bounding box annotations for
multi-label object recognition. In Computer Vision and Pattern Recognition, CVPR, 2016.

[282] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image
classification. In Computer Vision and Pattern Recognition, CVPR, 2009.

[283] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-Fei. Human action recognition by learning
bases of action attributes and parts. In International Conference on Computer Vision, ICCV, 2011.

[284] X. Yin, J. Han, J. Yang, and P. S. Yu. Efficient classification across multiple database relations: A
crossmine approach. IEEE Transactions on Knowledge and Data Engineering, 2006.

[285] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks?
In Advances in Neural Information Processing Systems, NIPS, 2014.

[286] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks through deep
visualization. In International Conference on Machine Learning, ICML, 2015.

[287] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denotations: New
similarity metrics for semantic inference over event descriptions. Transactions of the Association for
Computational Linguistics, 2014.

[288] R. Yu, A. Li, V. I. Morariu, and L. S. Davis. Visual relationship detection with internal and external
linguistic knowledge distillation. In International Conference on Computer Vision, ICCV, 2017.

[289] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

[290] A. R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, and S. Savarese. Taskonomy: Disentangling task
transfer learning. In Computer Vision and Pattern Recognition, CVPR, 2018.

[291] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European Con-
ference on Computer Vision, ECCV, 2014.

[292] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethink-
ing generalization. In International Conference on Learning Representations, ICLR, 2017.

[293] J. Zhang, S. Sclaroff, Z. Lin, X. Shen, B. Price, and R. Mĕch. Unconstrained salient object detection via
proposal subset optimization. In Computer Vision and Pattern Recognition, CVPR, 2016.

[294] X. Zhang, Z. Li, C. C. Loy, and D. Lin. Polynet: A pursuit of structural diversity in very deep networks.
In Computer Vision and Pattern Recognition, CVPR, 2017.

[295] B. Zhou, D. Bau, A. Oliva, and A. Torralba. Interpreting deep visual representations via network dissec-
tion. arXiv preprint arXiv:1711.05611, 2017.

[296] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Object detectors emerge in deep scene
cnns. In International Conference on Learning Representations, ICLR, 2015.

172

[297] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition
using places database. In Advances in Neural Information Processing Systems, NIPS, 2014.

[298] A. Znaidia, A. Shabou, H. Le Borgne, C. Hudelot, and N. Paragios. Bag-of-multimedia-words for image
classification. ICPR, 2012.

173

Titre: Vers l’universalité des représentations visuelle et multimodales

Mots clés: Intelligence artificielle, Apprentissage profond, Transfert d’apprentissage, Apprentissage de représentations, Univer-
salité.

Résumé: En raison de ses enjeux sociétaux, économiques
et culturels, l’intelligence artificielle (dénotée IA) est au-
jourd’hui un sujet d’actualité très populaire. L’un de ses prin-
cipaux objectifs est de développer des systèmes qui facili-
tent la vie quotidienne de l’homme, par le biais d’applications
telles que les robots domestiques, les robots industriels, les
véhicules autonomes et bien plus encore. La montée en
popularité de l’IA est fortement due à l’émergence d’outils
basés sur des réseaux de neurones profonds qui permettent
d’apprendre simultanément, la représentation des données
(qui était traditionnellement conçue à la main), et la tâche
à résoudre (qui était traditionnellement apprise à l’aide de
modèles d’apprentissage automatique). Ceci résulte de la
conjonction des avancées théoriques, de la capacité de cal-
cul croissante ainsi que de la disponibilité de nombreuses
données annotées. Un objectif de longue date de l’IA est
de concevoir des machines inspirées des humains, capables
de percevoir le monde, d’interagir avec les humains, et tout
ceci de manière évolutive (c’est à dire en améliorant constam-
ment la capacité de perception du monde et d’intéraction avec
les humains). Bien que l’IA soit un domaine beaucoup plus
vaste, nous nous intéressons dans cette thèse, uniquement à
l’IA basée apprentissage (qui est l’une des plus performante,
à ce jour). Celle-ci consiste à l’apprentissage d’un modèle qui
une fois appris résoud une certaine tâche, et est généralement
composée de deux sous-modules, l’un représentant la donnée
(nommé ”représentation”) et l’autre prenant des décisions
(nommé ”resolution de tâche”). Nous catégorisons, dans
cette thèse, les travaux autour de l’IA, dans les deux ap-
proches d’apprentissage suivantes : (i) Spécialisation : ap-
prendre des représentations à partir de quelques tâches
spécifiques dans le but de pouvoir effectuer des tâches très
spécifiques (spécialisées dans un certain domaine) avec un
très bon niveau de performance; ii) Universalité : apprendre
des représentations à partir de plusieurs tâches générales

dans le but d’accomplir autant de tâches que possible dans
différents contextes. Alors que la spécialisation a été large-
ment explorée par la communauté de l’apprentissage pro-
fond, seules quelques tentatives implicites ont été réalisée
vers la seconde catégorie, à savoir, l’universalité. Ainsi, le
but de cette thèse est d’aborder explicitement le problème de
l’amélioration de l’universalité des représentations avec des
méthodes d’apprentissage profond, pour les données d’image
et de texte. Nous avons abordé ce thème de l’universalité sous
deux formes différentes : par la mise en oeuvre de méthodes
pour améliorer l’universalité (”méthodes d’universalisation”); et
par l’établissement d’un protocole ainsi que la définition de
métriques pour quantifier et évaluer son niveau d’universalité.
En ce qui concerne les méthodes d’universalisation, nous
avons proposé trois contributions techniques : (i) dans un con-
texte de représentations sémantiques de grande dimensions,
nous avons proposé une méthode pour réduire la redondance
entre les détecteurs à travers un seuil adaptatif et les relations
entre les concepts; (ii) dans le contexte des représentations
internes de réseaux neuronaux, nous avons proposé une ap-
proche qui augmente le nombre de détecteurs sans aug-
menter la quantité de données annotées; (iii) dans un contexte
de représentations multimodales, nous avons proposé une
méthode pour préserver la sémantique des représentations
unimodales (par le biais de leur structure de groupes) dans
les représentations multimodales. En ce qui concerne la quan-
tification et donc l’évaluation de l’universalité, motivé par une
étude cognitive, nous avons proposé d’évaluer les méthodes
d’universalisation dans le cadre d’un schéma de transfert
d’apprentissage. En effet, ce schéma technique est perti-
nent pour évaluer la capacité universelle des représentations.
Cela nous a également conduit à proposer plusieurs nou-
veaux critères d’évaluation quantitative pour l’universalisation
des méthodes ainsi que plusieurs métriques respectant ces
critères.

Title: On The Universality of Visual and Multimodal Representations

Keywords: Artificial Intelligence, Deep-learning, Transfer-learning, Representation-learning, Universality.

Abstract: Because of its key societal, economic and cul-
tural stakes, Artificial Intelligence (AI) is a hot topic. One of
its main goal, is to develop systems that facilitates the daily
life of humans, with applications such as household robots,
industrial robots, autonomous vehicle and much more. The
rise of AI is highly due to the emergence of tools based on
deep neural-networks which make it possible to simultane-
ously learn, the representation of the data (which were tra-
ditionally hand-crafted), and the task to solve (traditionally
learned with statistical models). This resulted from the con-
junction of theoretical advances, the growing computational
capacity as well as the availability of many annotated data. A
long standing goal of AI is to design machines inspired hu-
mans, capable of perceiving the world, interacting with hu-
mans, in an evolutionary way. We categorize, in this Thesis,
the works around AI, in the two following learning-approaches:
(i) Specialization: learn representations from few specific tasks
with the goal to be able to carry out very specific tasks (special-
ized in a certain field) with a very good level of performance; (ii)
Universality : learn representations from several general tasks
with the goal to perform as many tasks as possible in differ-
ent contexts. While specialization was extensively explored
by the deep-learning community, only a few implicit attempts

were made towards universality. Thus, the goal of this The-
sis is to explicitly address the problem of improving universal-
ity with deep-learning methods, for image and text data. We
have addressed this topic of universality in two different forms:
through the implementation of methods to improve universal-
ity (“universalizing methods”); and through the establishment
of a protocol to quantify its universality. Concerning universal-
izing methods, we proposed three technical contributions: (i)
in a context of large semantic representations, we proposed a
method to reduce redundancy between the detectors through,
an adaptive thresholding and the relations between concepts;
(ii) in the context of neural-network representations, we pro-
posed an approach that increases the number of detectors
without increasing the amount of annotated data; (iii) in a con-
text of multimodal representations, we proposed a method to
preserve the semantics of unimodal representations in multi-
modal ones. Regarding the quantification of universality, we
proposed to evaluate universalizing methods in a Transfer-
learning scheme. Indeed, this technical scheme is relevant
to assess the universal ability of representations. This also led
us to propose a new framework as well as new quantitative
evaluation criteria for universalizing methods.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Introduction
	Context
	Problematic & Goals
	Contributions

	State-of-The-Art
	Image and Multimodal Representations
	Hand-Crafted Features
	Semantic-Features Learned with Explicit Supervision
	CNN-Features with Learned with Implicit Supervision
	Multimodal Features
	Transfer-Learning

	Universality of Representations
	Universality Definitions
	Universality of Semantic-Features
	Universality of CNN-Features
	Universality of Multimodal-Features
	Category-Names and Universality

	Interpretability
	Interpretability and Neural-Networks
	Extension-Based Detector-Concept Association
	Intention-Based Detector-Concept Association

	Improving Universality of Semantic Representations using Structured Sparsity
	Constrained Local Semantic Features
	Introduction
	Proposed Method

	Diverse Concept-Level Semantic Features
	Introduction
	Proposed Method
	Experimental Results
	Settings
	In-Depth Analysis

	Conclusions
	Complementaries of the Two Contributions
	Discussion About Semantic-Features

	Improving Universality using Discriminative-Problem Variation
	Multi Discriminative-Problem Networks
	Introduction
	Proposed Method

	Evaluation of Universalizing Methods
	Experimental Results
	Learned Features Analysis
	Comparison to State-Of-The-Art Methods
	In-Depth Analysis

	Conclusions

	Preserving Unimodal Semantics in Multimodal Representations
	Non-Semantic Meta-Concepts Classification
	Introduction
	Proposed Method

	Experimental Results
	Settings
	Comparison to State-Of-The-Art Methods
	In-Depth Analysis

	Conclusions

	Conclusions and Perspectives
	Summary of Conclusions & Discussions
	Evaluation Protocol and Metrics for Universality
	Semantically Reducing Noise on Large Semantic-Representations
	More Features on CNN-Representations Without More Annotated Data
	Preserving Unimodal Semantics on Multimodal Representations

	Directions for Further Research
	SPV by Splitting: From Specific to Finer Categories
	Exploring FSFT in Theory and Practice
	Efficient Parametrization of the Model
	Longer Term Perspectives

	Publications
	Articles in Peer-Reviewed Journals
	In Preparation or Revision

	International Peer-Reviewed Conferences
	In Preparation

	National Peer-Reviewed Conferences
	Patents
	Other Publications and Talks

	Tasks and Datasets
	Classification Task
	Cross-Modal Retrieval Task
	Training and Evaluation Datasets

	Deep-Learning Background
	Modeling One Neuron
	Commonly used Activation Functions

	Artificial Neural Networks
	Architecture of ANNs
	Feed-Forward Computation in ANNs

	Training Neural Networks
	Weights and Biases Initialization
	Loss Functions
	Learning the Weights and Biases
	Regularization Techniques

	Convolutional Neural Networks (CNNs)
	Spatial Convolution
	Spatial Pooling
	Overview of a CNN

	CNN Architectures
	Shallow CNN (LeNet)
	Deep CNN (AlexNet)
	Very Deep CNN (VGG)
	Residual CNN (ResNet)
	Other Architectures and Learning Schemes

	Implementation details
	Data-Enlargement: A Way to Universality
	Fine-Tuning for Diversified Genericness

	More Implementation Details of MulDiP-Net

	Résumé en Français
	Bibliography

