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ABSTRACT

Multiscale filtering methods, such as wavelets and steerable pyramids,
are widely used in processing and analysis of planar images and promise
similar benefits in application to spherical images. While recent ad-
vances have extended some filtering methods to the sphere, many key
challenges remain. In this paper, we develop conditions for the invert-
ibility of spherical filter banks for both continuous and discrete convo-
lution and illustrate how such conditions can be incorporated into the
design of self-invertible axis-symmetric wavelets. Self-invertibility is
particularly desirable when modifying images in the wavelet domain.

Index Terms— spheres, frequency response, wavelet transforms,
filtering, channel bank filters, image sampling, image orientation anal-
ysis, feature extraction

1. INTRODUCTION

The theories of filter banks, wavelets and overcomplete wavelets, such
as steerable pyramids, are well-established for the Euclidean spaces
and have many applications in feature detection, compression and de-
noising. Extending the theory and the methods of filtering to spherical
images promises similar benefits in the fields that give rise to such
images, including computer vision [3], computer graphics [8], astro-
physics [13, 14, 15], and geophysics [11]. Our motivation comes from
the study of brain cortical surfaces, often represented and manipulated
on the sphere as spherical images [5]. These cortical surfaces are char-
acterized by patterns of oriented edges. Detecting features of interest
(e.g. consistent edge patterns or patterns of folding differences be-
tween populations) requires extending the filtering theory and algo-
rithms to the sphere.

Similarly to the Euclidean case, filtering in the spherical domain
involves decomposing the spherical image into correlation coefficients
via convolution with a bank of analysis filters, resulting in the con-
volved outputs, as illustrated in Fig. 1. Once we move to the sphere,
Fast Fourier Transform must be replaced with an alternative efficient
method for computing convolutions. An original algorithm for axis-
symmetric convolution kernels on the sphere was derived in [4], and
was recently extended to arbitrary functions [13, 15]. The recon-
structed image is obtained by adding the inverse convolutions of the
filtering outputs with the synthesis filters. The filter shape and the
relationship among the filters determine various properties of the fil-
ter bank. For example, in the Euclidean wavelets, the analysis fil-
ters are parameterized by dilation, while the steerable pyramids add
parametrization through rotation. Invertible filter banks enable perfect
reconstruction of the original signal and therefore provide an equiv-
alent image representation in the wavelet domain. In self-invertible
filter banks, the analysis and the corresponding synthesis filters are
identical. Self-invertibility is desirable for image manipulation in the
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Fig. 1. Continuous analysis and synthesis filter bank diagram

wavelet domain, leading to an intuitive notion that the magnitude of a
convolution coefficient signify the contribution of the corresponding
filter to the reconstructed signal. Without self-invertibility, the effects
of nonlinear processing of wavelet coefficients will propagate to lo-
cations and frequencies other than those which were used to compute
the coefficients [9]. Our work extends the notion of self-invertibility
to the sphere.

Recently, the general paradigm of linear filtering has been ex-
tended to the spherical domain. For example, the lifting scheme in [8,
10] adopts a non-parametric approach to computing wavelet decom-
position of arbitrary meshes by generalizing the standard 2-scale re-
lation of Euclidean wavelets, enabling a multi-scale representation of
the original mesh (image) with excellent compression performance.
However, the lifting wavelets are not overcomplete, i.e., exactly one
wavelet coefficient is created per sample point, causing difficulties in
designing filters for oriented feature detection. A similar problem in
the Euclidean domain led to the invention of overcomplete wavelets,
such as steerable pyramids [6, 9]. The group-theoretic formulation
of overcomplete spherical wavelets [1, 2] extends the overcomplete
wavelet theory to the sphere through the operation of stereographic
projection onto the tangent plane. This approach provides a straight-
forward framework for the design of analysis filters for specific fea-
tures of interest, such as oriented edges [14]. Unfortunately, the syn-
thesis filters are fully determined by the shape of the analysis filters,
which in general does not lead to self-invertibility. In contrast, we
explicitly derive the conditions for self-invertibility and incorporate
them into the filter design.

In the next section, we introduce the notation used throughout the
paper. We present the conditions for the invertibility of filter banks for
spherical convolution in section 3. In section 4, we further special-
ize the invertibility conditions and present a procedure for generating
self-invertible, multiscale filter banks on the sphere. We then illustrate
the procedure for the case of axis-symmetric wavelets in section 5
and conclude with discussion of future research and outstanding chal-
lenges in the proposed framework.

2. NOTATION AND DEFINITIONS

Let x(θ, φ) ∈ L2(S2) be a square-integrable function on the two-
dimensional unit sphere, where θ ∈ [0, π] is the co-latitude and φ ∈
[0, 2π] is the longitude. The spherical harmonics Y m

l (θ, φ) form an
orthonormal basis for L2(S2): x(θ, φ) =

P∞
l=0

P
|m|≤l xl,mY m

l
(θ, φ)

for any x ∈ L2(S2), where xl,m are the spherical harmonic coeffi-
cients of degree l and order m obtained by projecting x onto Y m

l , i.e.



xl,m =
R

S2 x(θ, φ)Y m∗
l (θ, φ) sin(θ)dθdφ.

We parameterize rotations on the sphere by the 3-Euler angles,
α, β, γ (α ∈ [0, 2π], β ∈ [0, π], γ ∈ [0, 2π]). The rotation operator
D(α, β, γ) first rotates the function by γ about the z-axis, then by β
about the y-axis and finally by α about the z-axis. The three angles
specify an element of the rotation group SO(3) and provide a natural
parametrization of convolution on the sphere. The effects of rotation
on the spherical harmonic coefficients of a function is expressible in
terms of the so called Wigner-D functions (see for example [15]).

On the plane, convolution is defined in terms of the inner prod-
uct between two functions translated relative to each other, and is pa-
rameterized by the amount of translation. On the sphere, it is more
natural to use relative rotations. Given spherical image x and fil-
ter h̃, their spherical convolution y(α, β, γ) =

R
S2 [D(α, β, γ)h̃]∗(θ, φ)

x(θ, φ)sin(θ)dθdφ is a function in L2(SO(3)). y(α, β, γ) is the inner
product of the rotated version of h̃ with x, or the projection coefficient
of x onto [D(α, β, γ)h̃]. For axis-symmetric filters h̃(θ, φ) = h̃(θ),
the rotation by γ about z-axis has no effect, i.e., y(α, β, γ) = y(α, β)
is a spherical image parametrized by θ = β, φ = α. This symme-
try is sometimes achieved for axis-asymmetric filters by integrating
the resulting convolution over γ [4]. Our definition of convolution is
identical to that in [13, 15], although [15] calls it directional correla-
tion.

The inverse convolution of a spherical filter h with y ∈ L2(SO(3))
produces a spherical image bxh(θ, φ) =

R
SO(3)

[D(α, β, γ)h](θ, φ)

y(α, β, γ) sin(β)dα dβ dγ. bxh(θ, φ) is obtained by summing (i.e. in-
tegrating) the contributions of inverse convolution filters, h, centered
at (β, α) and oriented by γ, where the weights of the contributions are
given by the convolution outputs (projection coefficients).

When using a filter bank of N analysis-synthesis filter pairs (Fig. 1)
the reconstructed signal is obtained from the convolved outputs of the
N analysis filters through the inverse convolution with the correspond-
ing synthesis filters:

bx(θ, φ) =
NX

n=1

Z

SO(3)

[D(α, β, γ)hn](θ, φ)yn(α, β, γ)dρ (1)

where dρ = sin(β)dαdβ dγ. Our definition is similar to the contin-
uous wavelet transform in the group theoretic formulation [1]. The
difference comes from their treatment of scale as a continuous param-
eter, rather than a discrete one, resulting in an integration over scale
rather than a summation over filter index.

In the Euclidean case, we typically discretize both the input im-
ages and the convolution outputs. When working on the sphere, we
discretize the convolution outputs, but choose to keep the image do-
main continuous by working with spherical harmonic coefficients rather
than sample values, allowing us to exploit efficient algorithms for
spherical convolution [13, 15]. We note that continuous represen-
tation in the wavelet domain is possible through series of complex
exponentials [13] or Wigner-D functions [15], but manipulating the
series coefficients would be tantamount to simultaneously altering all
the wavelet coefficients, defeating the purpose of the wavelet decom-
position. We leave the formal treatment of discrete convolution to the
technical report [16].

3. INVERTIBILITY CONDITIONS

In this section, we present general conditions for invertibility of filter
banks. The proofs are provided in the technical report [16].

Theorem 3.1 (Continuous Invertibility). Let {ehn, hn}
N
n=1 be an

analysis-synthesis filter bank. Then for any spherical image x ∈

L2(S2) and its corresponding reconstructed image bx

bxl,m = xl,m for all (l, m) iff
NX

n=1

lX

m′=−l

h
hl,m′

n

i h
ehl,m′

n

i∗

=
2l + 1

8π2
for all l s.t. xl,m 6= 0 (2)

where xl,m and bxl,m are the spherical harmonic coefficients of the in-
put and the reconstructed signal respectively; ehl,m′

n and hl,m′

n are the
spherical harmonic coefficients of the n-th analysis and the synthesis
filter respectively.

This theorem provides the necessary and sufficient condition for
the invertibility of filter banks under continuous convolution. To draw
analogies with the Euclidean case, we call

Heh,h
(l) =

8π2

2l + 1

NX

n=1

lX

m′=−l

h
hl,m′

n

i h
ehl,m′

n

i∗

(3)

the frequency response of the analysis-synthesis filter bank. Theo-
rem 3.1 implies that to guarantee perfect reconstructions of signals of
bandwidth (maximal degree) L, the frequency response of the filter
bank must be equal to 1 for all degrees up to L. On the plane, the
frequency response is simply the sum of products of the Fourier co-
efficients of the analysis and the synthesis filters. On the sphere, the
frequency response contains an extra modulating factor that decreases
linearly with degree l.

A second theorem concerning discrete invertibility is presented in
technical report [16], using quadratures and imposing limits on the
bandwidth of the image and filters. Together, the two theorems on
continuous and discrete invertibility imply that under very reasonable
and mild conditions, if a filter bank is invertible up to degree L under
the continuous spherical convolution, it is also invertible up to degree
L under the discrete spherical convolution. We will therefore focus
on developing techniques for constructing invertible filter banks for
continuous convolution.

Finally, we note that given a set of analysis filters ehn, there are
in general multiple sets of synthesis filters that can achieve invertibil-
ity. A simple solution is to define the synthesis filters to be equal
to the analysis filters divided by Heh,eh

(l) as defined in Eq. (3). This is
similar to the frame operator in the continuous spherical wavelet trans-
form under the group theoretic formulation [1], where the counterpart
of Heh,eh

(l) is given by 8π2

2l+1

P
|m|≤l

R ∞
0

1
a3

|ehl,m
a |2da, replacing the

summation over n by the integration over the scale a, with measure
1

a3 da. For the special case of the analysis filters being dilated ver-
sions of each other, our choice of the synthesis filters is a direct dis-
cretization of [1], albeit ignoring the measure of a. For completeness,
we note that the discretization of the group theoretic formulation is
achieved in [2]. However, even if the analysis filters are related by di-
lations, the synthesis filters discussed in all the above approaches will
in general not have this relationship. In the next section, we specialize
the invertibility conditions to self-invertible multiscale filter banks.

4. SELF-INVERTIBLE MULTI-SCALE FILTER BANKS

The results from the previous section are general and apply to any
analysis-synthesis filter bank. We shall now constrain the relationships
among the analysis and synthesis filters. In multi-scale analysis, we
construct the analysis filters through dilation and amplitude scaling
of a particular template eh(θ, φ), i.e., ehk = (

Qk
n=1 bn) Dak

eh(θ, φ),

bn ≥ 1. Dak
is the nonlinear dilation operator. In this work, we adopt

the stereographic dilation operator defined in [1, 2], where larger k
corresponds to smaller a (narrower filters).
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The bn’s are the amplitude scaling parameters that control the
tradeoff between self-invertibility and norm-preserving dilation. The-
orem 3.1 and Eq. (3) imply that the sum of squares of the spherical
harmonic coefficients of a bank of self-invertible filters must increase
linearly with degree. But stretching a function while preserving its
norm shifts its spherical harmonic coefficients to the left (spherical
harmonic degrees decrease) and magnifies them.

These extra weights are analogous to the measure of scale 1
a3 da

in the group theoretic formulation of wavelets [1], which results in
wider filters being assigned smaller weights. On the continuous real
line, the measure 1

a2 da nicely cancels out the dilation of the filter
(c.f. [12], chapter 5). On the discrete real line, the convolution outputs
of narrower filters are sampled more densely by enforcing orthonor-
mality. This suggests two possible approaches: variable sampling or
weights. Because the effects of stereographic dilation on the spherical
harmonic coefficients of a function is not analytical, neither approach
leads to a closed-form solution 1. In this paper, we will take the vari-
able weights approach, i.e. find the appropriate bn’s as part of the filter
design.

Fortunately, stereographic dilation is distributive over addition.
Suppose the template eh is expressible as a linear combination of the
basis functions Bi, i.e., eh(θ, φ) =

PM

i=1 ciB
i(θ, φ) (We will assume

that Bi are spherical harmonics and note that the technique is still
applicable if a more suitable basis is found). Then,

[Da
eh]l,m =

"
Da

MX

i=1

ciB
i

#l,m

=
MX

i=1

ci[DaBi]l,m (4)

yielding the spherical harmonic coefficients of the analysis filter at
another scale. This is useful since the invertibility condition in Eq. (2)
was expressed in terms of the spherical harmonic coefficients of the
filters. We can therefore decide on a set of scales {an}

N
n=1 and create a

table of spherical harmonic coefficients of the dilated basis functions.
Eq. (4) allows us to determine the spherical harmonic coefficients of
the dilated filters at each relative scale given ci’s and bn’s.

After fixing the set of basis functions Bi and the set of scales
{an}, we now pose a constrained optimization problem to determine
ci’s and bn’s. Similarly to the filter design in Euclidean space, the
optimization objective should be application dependent, and could de-
pend on the frequency response. The constraints come from enforcing
self-invertibility: we assume that the analysis and synthesis filters are
identical and optimize the cost function under the invertibility con-
straints of Eq. (2). Since we cannot have more constraints than vari-
ables, self-invertibility cannot be achieved for more degrees than the
number of basis functions and scales.

1We note that the approach commonly used with planar images of applying
a constant filter to a subsampled image fails here because the sphere is periodic
and compact, causing the effective size of the features to stay constant (relative
to the filter) with subsampling. We also note that nonlinear dilation is necessary
since the sphere is compact, hence dilating a spherical function by naively
scaling the radial component of the spherical function, f(θ, φ) → f( θ

a
, φ),

leads to undesired “wrap-around” effects.

(a) a = 4 (b) a = 2 (c) a = 1 (d) a = 1/2

Fig. 3. Lowpass filters from Fig. 2(b-e), shown in the spherical do-
main. The bright spot corresponds to the north pole.

The quadratic penalty method is effective in solving this opti-
mization problem with non-convex constraints by incorporating the
constraints into the objective function and solving the resulting un-
constrained optimization problem using Newton’s method. The pro-
cedure is repeated while increasing the weights of the constraints and
using the solution corresponding to the previous weights as the start-
ing point, until convergence to a local minimum of the original cost
function.

5. EXPERIMENTS

In this section, we demonstrate the use of the methods discussed in the
previous section to construct axis-symmetric lowpass filter pyramids.
Our implementation is based on the fast spherical convolution [4].
Due to space constraints, we leave the discussion of axis-symmetric
bandpass pyramids to the technical report [16].

We limit our set of basis functions Bi to be the first hundred
spherical harmonics of order 0, since the spherical harmonic coeffi-
cients of axis-symmetric functions are zero for orders not equal to
0. We use the S2kit [7] software package to find the first 600 order
0 spherical harmonic coefficients of each dilated spherical harmonic
DaY 0

l , l = 0, · · · , 99 (a dilated axis-symmetric function remains
axis-symmetric). Due to non-linearity of the stereographic dilation,
extreme dilation and shrinking can result in high frequencies [2]. We
find that for a = 4 and a = 1/4, [DaY 0

99]
599,0 < 10−7 , implying that

600 spherical harmonics are sufficient at these scales. We sample the
intermediate scales, resulting in a table for an = {4, 2, 1, 1/2, 1/4},
with a = 1 corresponding to the undilated spherical harmonics.

We would like to derive an objective function that determines a
lowpass filter pyramid. Ideally, we would like the frequency responses
of the lowpass filters to be flat up to a certain degree and then smoothly
drop down to zero. Since we only use the first 100 spherical harmonics
as our basis, the frequency response of eha=1(θ, φ) will be zero for
all degrees higher than 99. Setting our objective function to simply
penalize the first order derivatives of the frequency responses of all
the filters will thus result in an almost flat response followed by a
gentle slope down to 0 at degree 100 for a = 1. The solution will
not be degenerate (i.e. completely zero) because we will also enforce
self-invertibility for degrees lower than 70 (Eq. (2), l = 0, . . . , 69).
In addition, we can make the cutoff sharper by adding extra terms in
the objective function to penalize non-zero frequency responses for
degrees above some threshold.

We experimented with different sets of scales (a = {4, 2, 1, 1/2}
and a = {4, 2, 1, 1/2, 1/4}) and different penalty functions on the
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Fig. 4. (a) World elevation map, BW = 539. (b) World elevation map, truncated at BW = 69. (c-f) Convolution outputs between the set of
lowpass filters shown in Figs. 2-3 and the world elevation map shown in (a).

frequency responses of the filter bank for degrees between 80 and
100 (from not penalizing at all to imposing quadratic penalty on non-
zero frequency responses). Fig. 2(a) shows the combined frequency
responses of the filter banks from each experiment. We observe that
the extra quadratic penalty term leads to a sharper cutoff (green and
blue versus black and red). The combined frequency responses of the
filters from the 5-scales experiments also cover a much wider range
of spherical harmonics than the self-invertibility range (blue and red
versus green and black). Incorporating smaller scales a leads to fre-
quency responses that are further beyond the region of invertibility.
Including narrower filters thus only makes sense if we increase the
range of invertibility (by increasing the number of basis functions).

We prefer the filters of the experiment whose combined response
is plotted in green due to its sharpest cutoff. Their individual responses
are shown in Fig. 2(b-e). Notice the energies of the narrower filters are
much higher than those of the wider ones. Such discrepancies in en-
ergies are less pronounced (but still present) in bandpass filters [16].
Fig. 3 displays the filters as spherical functions. The bright spot corre-
sponds to the north pole.

To verify that the lowpass filter pyramid is indeed self-invertible,
we apply the filters to the global elevation map of the Earth. The orig-
inal elevation data y(θ, φ) is sampled on a 1080x1080 equi-angular
grid. Using S2kit [7], we project the data onto the spherical harmon-
ics of degrees at most 539. Fig. 4(a) and (b) show the elevation maps
up to bandwidth 539 and 69 respectively, obtained by performing an
inverse spherical harmonic transform.

Fig. 4(c-f) illustrate the application of these filters to the high-
resolution spherical image in Fig. 4(a). The reconstructed image (not
shown) obtained by combining the deconvolution of the filter out-
puts and the filter pyramid (Eq. 1) is an accurate reconstruction of the
lower-resolution world map in Fig. 4(b), with maximum absolute dif-
ference on the order of 10−7 . Similarly to the residual lowpass branch
in the canonical wavelet analysis, in this experiment, we require a
residual highpass filter that complements the frequency response for
degrees at least 70 if we want perfect reconstruction up to degrees 539.

We can also apply the filters directly to the lower-resolution image
(BW= 69). However, judging from the frequency responses of the filters
corresponding to a = 1 and a = 1/2 in Fig. 2(d-e) and their convolved outputs
in Fig. 4(e-f), the convolution outputs of a = 1 and a = 1/2 will be quite
similar since the resolution of the narrower a = 1/2 filter will be limited by
that of the input image.

6. DISCUSSION AND CONCLUSIONS

In this paper, we derive the necessary and sufficient conditions for a bank of
filters to achieve perfect reconstruction in the continuous case and discuss its
applications to discrete filter design. We present a procedure for obtaining
self-invertible wavelets and generated axis-symmetric self-invertible lowpass
wavelets.

Although stereographic dilation has many advantages, nonlinear dilation
of functions on the sphere remains hard to work with. While we circumvent the
problem by using the distributive property of stereographic dilation, the spheri-
cal harmonic coefficients table can take up a substantial amount of space. More
efficient methods are therefore needed. Perhaps it is also possible to formulate
other definitions of dilation that fit better into the analytical framework.

Here we have only demonstrated the use of our procedures for axis-symmetric
wavelets that are useful for image representation. We plan to expand the ba-
sis set to axis-asymmetric spherical harmonics and derive a useful objective
function for axis-asymmetric filter pyramid so as to enable oriented feature
detection at different scales.

This paper introduces theoretical results on invertibility and represents a
step towards the general theory of multiscale filter banks on the sphere. Steer-
able pyramids have been useful for feature detection and characterization in
planar images, and we are optimistic that future work will lead to similar ap-
plications on the sphere.
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