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Abstract

The theories of signal sampling, filter banks, wavelets avefcomplete wavelets” are well-established
for the Euclidean spaces and are widely used in the progessid analysis of images. While recent
advances have extended some filtering methods to spheriagkis, many key challenges remain. In this
paper, we develop theoretical conditions for the invditibof filter banks under continuous spherical
convolution. Furthermore, we present an analogue of P&®generalized sampling theorem on the
2-Sphere. We use the theoretical results to establish agdreemework for the design of invertible filter
banks on the sphere and demonstrate with examples of selftiinle spherical wavelets and steerable

pyramids.

Index Terms

spheres, frequency response, wavelet transforms, fitechrannel bank filters, image sampling, image

orientation analysis, feature extraction

. INTRODUCTION

Multiscale filtering methods, such as wavelets [6] and “owvemplete wavelets” [8], [21], [20] have
many applications in feature detection, compression amidmg of planar images. Extending the
theories and the methods of filtering to spherical imagesnmes similar benefits in the fields that
give rise to such images, including shape analysis in coempusion [4], illumination computation in
computer graphics [18], cosmic background radiation aislin astrophysics [25] and brain cortical

surface analysis in medical imaging [28].
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ON THE CONSTRUCTION OF INVERTIBLE FILTERBANKS ON THE 2-SPHEE 2

We propose a two-stage filtering framework (Figure 1(a)noeptually equivalent to the usual Eu-
clidean filtering framework except the planar images andrfilare replaced by spherical ones. We can
think of the first set of filters as analysis filters which pagjéhe input image onto the space spanned by
the analysis filters. A reconstructed image is then obtaliygolssing the intermediate outputs through the
second layer of filters. Figure 1(b) shows a modification &f ftamework in Figure 1(a) that introduces
sampling between the first and the second layers of filtere. SEimpling is useful if one is interested in

processing the outputs of the analysis filters before pgdbkiem through the synthesis filters.
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(a) Continuous filter bank
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Fig. 1. Continuous and discrete filter bank diagram.

In this work, we analyze the relationship between the retocted image and the original image, and
establish conditions under which the reconstructed imadbd same as the original one, i.e., conditions
for invertibility. We demonstrate the use of our results ontinuous invertibility and generalized sampling
for designing filter banks that enables explicit control offbanalysis and synthesis filters. We illustrate
the framework by creating examples of self-invertible spdat wavelets and steerable pyramids.

Self-invertibility is desirable for image manipulationtine wavelet domain, because the corresponding
analysis and synthesis filters are the same. This leads tat@tivie notion that a convolution coefficient
corresponds to the contribution of the corresponding fitltetthe reconstructed signal. Without self-
invertibility, the effects of nonlinear processing of watecoefficients could propagate to spatial locations

and frequencies other than those which were used to competecefficients [20]. To the best of our
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knowledge, this is the first approach demonstrated on a sghat enables design of self-invertible filter

banks.

Il. RELATED WORK

In the Euclidean domain, the convolution is computed effityeusing the Fast Fourier Transform
(FFT) [5]. Once we move to the sphere, FFT must be replaced avitalternative efficient method for
computing convolutions. An original algorithm for axisrsgnetric convolution kernels on the sphere
was derived in [9], and was recently extended to arbitranctions [24], [26]. These results allow us to
efficiently compute the outputs of the first set of filters. dhtdinately, they do not apply to the convolution
with the second layer of filters because the outputs of theléiyer of filters are in general not spherical
images as we will see in section Ill.

In the past decade, there has been much work on extendingtiezad paradigm of linear filtering to
the spherical domain [1], [3], [7], [10], [11], [14], [18]1P], [22], [25]. For example, the lifting scheme
in [18], [19] adopts a non-parametric approach to computiagelet decomposition of arbitrary meshes
by generalizing the standafiscale relation of Euclidean wavelets. This method enablewulti-scale
representation of the original mesh (image) with exceltemipression and speed performance. However,
the lifting wavelets are not overcomplete, i.e., exactlg aravelet coefficient is created per sample point,
causing difficulties in designing filters for oriented fe@uletection.

A similar problem in the Euclidean domain leads to the ini@mbf “overcomplete wavelets”, such
as steerable pyramids [12], [20]. A group theoretic forrtiala of overcomplete continuous spherical
wavelets is proposed in [1]. In particular, it can be showat tthe stereographic projection of an
admissible planar wavelet to the sphere is also admissitdenthe group theoretic framework, providing
a straightforward framework for the design of analysis rfdtéor specific features of interest, such as
oriented edges [25].

In the group theoretic approach, defining the mother wavalatpletely determines the analysis and
synthesis filters. However, while the analysis filters alateel by stereographic dilation, the synthesis
filters are in general not related by dilation. In fact, th@mort of corresponding analysis and synthesis
filters is guaranteed to be the same in frequency domain huthrtbe spatial domain.

Bogdanoveet al. [3] discretize the group theoretic wavelets, providing engbing guarantee for the

framework of Figure 1(b) for the restricted class of axissyetric filters. This work is therefore the

1An axis-symmetric spherical function is one which is synmiceat about the north pole.
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most similar to ours. In contrast, we study general filterkdsamwithout any restriction on the relationships
among the cascade of filters. We derive the analogue of theultap generalized sampling theorem [15]
on the sphere, applicable to both axis-symmetric and ayismetric (or oriented) filters.

Driscoll and Healy [9] provide the equivalent of the Nyge8tannon sampling theorem on the sphere.
While the Nyquist-Shannon sampling theorem provides rsitontion guarantees for bandlimited signals
in Euclidean space under perfect sampling (convolutior witdelta function), Papoulis’s generalized
sampling theorem provides guarantees for bandlimitedasigpampled via convolutions with kernels of
sufficient bandwidth.

An earlier version of this work was first presented at therlmé&onal Conference on Image Process-
ing [27]. In this current paper, we include proofs of the irilality conditions as well as demonstrate the
generation of self-invertible spherical steerable pydsmin the next section, we introduce the notation
used throughout the paper. In section IV, we present the rhearetical contributions of this paper:
continuous invertibility and the generalized samplingotieen. We propose a procedure for generating
self-invertible multiscale filter banks on the sphere intieecV. We then illustrate the procedure for the
case of wavelets and steerable pyramids in section VI andieda with the discussion of future research

and outstanding challenges in the proposed framework.

[11. DEFINITIONS

Letz(0, ¢) € L%(S?) be a square-integrable function on the two-dimensionalsptiere, wheréd, ¢)
are the spherical coordinates. Suppdse- (0, ¢) is a point on the sphere. Thef,c [0, ] is the co-
latitude, which is the angle between the positivaxis (north pole) and the vector corresponding”o
¢ € [0,2n] is the longitude and is taken to be the angle between theiymsitaxis and the projection
of P onto thez-y plane.¢ is undefined on the north and south poles.

The spherical harmonicg™ (6, ¢) [17] form an orthonormal set of basis functions ft(S?): i.e.,

20.6) =3 Y a6, @
1=0 |m|<l
where z/™ is the spherical harmonic coefficient of degrieand orderm obtained by projecting the
function z(0, ¢) onto Y, (0, ¢):

abm = (0, 9)Y;™ (0, ¢)dQ )
S2

whered) = sin 6dfd¢ and* denotes complex conjugation. We c&jl” (6, ¢) a spherical harmonic of
degreel and orderm. We note that for axis-symmetric functions (independengpfonly the order0

harmonics are non-zero. A more detailed background of gidrarmonics is found in Appendix A.
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We choose to parameterize rotations on the sphere by the &udges«, 5,7 (« € [0,27], 8 € [0, 7],
~ € [0, 2x]). The rotation operatob(«, 3, ~) first rotates a function by about thez-axis (Figure 2(b)),
then by about they-axis (Figure 2(c)) and finally by about thez-axis (Figure 2(d)). The direction of
positive rotation follows the right-hand screw rule. Theeth angles specify an element of the rotation
group SO(3) and provide a natural parametrization of convolution ongpkere. The effects of rotation
on the spherical harmonic coefficients of a function is esgitde in terms of the so called Wigner-D
functions. The Wigner-D functions form an irreducible reggntation of the rotation group [17]. Appendix

A provides the explicit expressions for the Wigner-D fuons.

a™ o

(a) Original spherical image(b) Rotate byy aboutz-axis (c) Rotate bys abouty-axis (d) Rotate bya aboutz-axis

Fig. 2. Rotation via euler angle&v, 5, v)

A. Continuous Convolution

On the plane, convolution is defined in terms of the inner pobdetween two functions translated
relative to each other, and is parameterized by the amoumtanElation. On the sphere, it is more
natural to talk about rotation rather than translation, #regefore spherical convolution is parameterized

by rotation. Given a spherical imag€6, ¢) and a spherical filteﬁ(0,¢), their spherical convolution

w(@.8.7) = [ [D(@. B, (6. 6)2(6, 6)ag @)

is a function of L2(SO(3)) rather thanL?(S?). By convention, we shall consider the center (origin)
of a spherical filter to be at the north polé & 0). Then intuitively, y(«, 3,7) is the inner product
between the re-oriented filtdd (o, 5, v)h (e.g., Figure 2(d)) and the spherical image. In other wongs,
obtainy(a, 3,7) by first re-orienting the spherical filter by a rotation pfabout thez-axis (center still
at north pole) and then bringing the center of the filter to plent (3, «) of the spherical image, and
then performing an inner product between the image and. filleereforey(«, 3,v) is the correlation

of the rotated version ok with z, or the projection coefficient of onto [D(w, 3,~)h]. In the case of
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the filter shown in Figure 2, a high value 9t«, 3,~) would imply the presence of an oriented edge at
spherical coordinatés, o) with orientation %”.

We note that the notion of orientation is inherently locatenbecause a continuous unit-norm vector
field does not exist on the sphere. Therefore, it is not megdmirio claim an existence of an edge of
orientation~ at location(3, o) without specifying a local coordinate system. In our case,can define
such a local coordinate system by first specifying one at thrthrpole. Our choice of parameterizing
rotation via the Euler angles then induces a local coordisgistem everywhere, except the south pole.

For axis-symmetric filters) (6, ¢) = h(6), the rotation byy aboutz-axis has no effect, i.ey(a, 3,7) =
y(a, ) is a spherical image parametrized by= 3, ¢ = . Our definition of convolution is identical to
that in [24], [26], although [26] calls it directional cofagion. In [9], v is integrated out, resulting in a
spherical image.

The convolution of a spherical filtér(0, ¢) with y(a, 3,7) € L?>(SO(3)) produces a spherical image:

2(0.0) = [ (Dl kIO, S)y(a B.7)dp @
SO(3)

where the integration is over the Euler angléd®: = sin 8dadfdy. We can think of the inverse
convolution in the following way. The reconstructed valueaagiven (6, ¢) is obtained by summing
(integrating) the contributions of the rotated recongtaucfilters i, centered at/3, «) and oriented byy
(e.g., Figure 2(d)), where the weights of the contributiares given by the convolution outputs (projection
coefficients on the corresponding input filters).

When using a filter bank oiV analysis-synthesis filter pairs (Figure 1(a)), the recocstd signal is

obtained by summing the response of all filter pairs:

N
#(0,6) =g[s

which is analogous to the definition in [1], with integratioker scale replaced by summation over the

[D(a, B,7)hn](0, ®)yn(cx, B,7)dp (5)
0(3)

filter index.

B. Discrete Convolution

In the Euclidean case, we typically discretize both the inpages and the convolution outputs. When
working on the sphere, we choose to keep the image domainnaons by working with spherical
harmonic coefficients rather than sample values, becauseallbws us to exploit efficient algorithms
for spherical convolution [24], [26]. Since no uniform sdimg grid exists on the sphere, performing
convolution completely by quadrature would be slow. Thibéxause under each rotation of the filter

relative to the spherical image, we will need to re-sampteréeinterpolate) the filter or the image.
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For L?(SO(3)) (or equivalently, in the spherical wavelet domain), comtins representation is possible
through series of complex exponentials [24] or Wigner-Dctions [26]. However, both the complex
exponentials and the Wigner-D functions have global supddrerefore in applications where we want
to modify the image in the wavelet domain, manipulating tages coefficients would be tantamount to
simultaneously altering all the wavelet coefficients, défeg the purpose of the wavelet decomposition,
which is to provide localized control in both spatial andgirency domain. To avoid this, we sam-
ple the output of the continuous convolutigic, 3,v) to create its discrete counterpatto;, Bs, k),
where{a;, s, v} define a particular sampling grid (Figure 1(b)). The contiolu between the sampled

projection coefficientg; ., and the continuous reconstruction filtérds then defined as:
J-15-1K-1

i'\h(eygb) = Z Z Z wj,s,k[D(O‘jvﬁs,’Vk)h](ev¢)y(aj>ﬁs>’7k) (6)

§=0 s=0 k=0
which includes sampling-dependent quadrature weights;,, introduced so that the discrete case con-

verges to the continuous case as the number of samples sestedhis definition allows for an easy
transfer of continuous filtering theory to its discrete agale. In the next section, we show that “good”
choices ofw; ., exist depending on the sampling schemes. In contrast witEticlidean casey , .
are necessary because of the non-uniform measure on thedaglesdp = sin fdadd~y, as we discuss
in section IV.

Similar to the continuous case (cf. Eqg. (4)), the signal nstaicted througtiV analysis-synthesis filter

pairs is defined as a sum of contributions of all filter pairs:
N J,—18,-1K,—1

:/L'\(H, ¢) = Z Z Z Z wj,s,k,n[D(aj,m ﬁs,na 'Vk,n)hn](ey ¢)yn(aj,m ﬁs,na 'Vk,n) (7)

n=1 j=0 s=0 k=0
The sampling grid and the quadrature weights now depend simce different filters in the filter bank

might use different sampling schemes.

IV. INVERTIBILITY CONDITIONS

In this section, we present the main theoretical contrimsgiof our work.
Theorem 4.1:(Continuous Frequency Response). Let {En,hn}gy:l be an analysis-synthesis filter

bank. Then for any spherical imagec L?(S?) and its corresponding reconstructed image

~lm l,m 87 al : '] [7lm]*
Fhm = gh 2”1{;,%:_1[% | [ ] } (8)

where 2™ and z!™ are the spherical harmonic coefficients of the input and nsitacted signals

respectively,,i™ and hi™ are the spherical harmonic coefficients of theh analysis and synthesis

filters respectively.
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Appendix B presents the proof of Theorem 4.1. To draw an gyaldth the Euclidean case, we call

817 o~ § L] [pLm |
) = g > [ [ ©

the frequency response of the analysis-synthesis filtek.ddate that the degrekspherical harmonics

coefficients of the reconstructed signal are affected oglyhle degred spherical harmonic coefficients
of the filters. However, the degrdeorderm spherical harmonic coefficient of the reconstructed signal
is affected by all the orders of degréspherical harmonic coefficients of the filters. In contrast,the
plane, the frequency response is simply the sum of prodddiseoFourier coefficients of the analysis
and the synthesis filters:

N
F{z}(s1,82) = ]:{w}(sl,sQ)Zf{hn}(sl,SQ)}"{ﬁn}(sl,sQ) (10)

n=1
where F{Z}(s1, s2), F{x}(s1,52), F{hn}(s1,s2) and F{h,}(s1, s2) denote the fourier transforms of
the reconstructed signal, original signal, analysis Bltend synthesis filters respectively. We see that the
effects ofs; and s, are separable, unlikeandm. Furthermore, on the sphere, the frequency response
contains an extra modulating factor that decreases withegégThe following corollary of Theorem 4.1
provides the necessary and sufficient condition for the riibibty of filter banks under continuous
convolution.
Corollary 4.2: (Continuous I nvertibility). Let {En, h,}N_, be an analysis-synthesis filter bank. Then

for any spherical image € L?(S?) and its corresponding reconstructed image

N
, A Tro1* 2041
~lm _ lm I,m L,m _ I,m
gbm = gbm for all (I,m) iff Z 3 [hn } [hn } =5 forall Lsta 0 (12)
n=1m/'=-—1
We note that the corollary is easily satisfied if there are aostraints on the relationships among the
cascade of filters: given a set of analysis filtérs there are in general multiple sets of synthesis filters

that can achieve invertibility. For example, we can defiree shinthesis filters to bk, = Lﬂn, where,

Whgm for F;5(1) >0

[Lyha)"™ = (12)

0 otherwise
and Hﬁ,ﬁ(l) is the frequency response defined in Eq.(B). is a frequency modulating operator that
normalizes the synthesis filters at each degree, such thataimbined frequency response of the filter
bank is1 for all [ with Hﬁﬁ(l) > 0. This filter bank is therefore invertible over the frequenagge of the
support of the filters. This operation is similar to the fraoperator in the continuous spherical wavelet
transform of [1], where the counterpart Hﬁﬁ(l) IS given by%zlmlg Jo° a—13|ﬁf;m|2da, replacing

the summation oven by the integration over the scate with measurec%da. For the special case of
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the analysis filters being dilated versions of each othes, ¢hoice of the synthesis filters is a direct
discretization of [1], albeit ignoring the measure @f The complete discretization of the continuous
wavelet transform in [1] is actually accomplished in [3]. wiaver, regardless of using,, or the frame
operators of [1], [3], the synthesis filters are in generdlnatated by dilation even if the analysis filters
are.

We now defineI/En(O;l«n) and L, (Oy,) to be the highest non-zero harmonic degree (order),of
and h,, respectively. The following result specifies the sufficjdmit not necessary, conditions for the
invertibility of filter banks under the sampling framework igure 1(b).

Theorem 4.3:(Generalized Sampling Theorem). Let {En, h,}N_, be a filter bank whose frequency
response defined by Eg. (9) is equal taup to degreel < oo and Oﬁn < o0 and 0y, < oo. Let

L,= min(L, Lv ) and the sampling grid and the quadrature weights satisfy

. aj,n

Ln+L+1 for j =0,1,...,(L, + L)

[ Vk’n—ﬁ%forkzojl,,(O}‘;n‘FOhn)

e ws, andg;, , are the quadrature weights and knots such that

/ dmm’ mm’ (6 Sln dﬂ Z Ws,n mm’ /88 n)dlr/nm’ (ﬁsm) (13)

for | < L,I' < L,, whered.,,.(3) andd’,,. (3) are the Wigner-d functions.

472 Ws,n

(Zn+L+1)(o;n+ohn+1)
Then the filter bank is invertible for any spherical imagec L?(S?) with maximum degred. (i.e.,

s wj787k7n =

zbm = zbm for all 0 <1 < L) under the discrete convolution of Figure 1(b).

Appendix A provides the definitions and the explicit expiass for the Wigner-d functions. We
emphasize the need for the input signalto be bandlimited. Furthermore, the spherical harmonic
coefficients ofz might not be zero for degrees beyoid The constraints in this theorem ensure that
the number of samples remain finite. The samples and the tge@yie picked such that the discrete
reconstruction obtained in Eq.(7) is the same as the camiimuesult in Eq. (5) up to degree The
proof is found in Appendix C. In Appendix D, we demonstrat® tsets of quadrature weights and knots
that satisfy the conditions of the theorem.

The theorem is sufficient rather than necessary because quldrature schemes that enable perfect
reconstruction can exist. Subtle variations of the theotamalso be obtained, for example by increasing
the maximum degree of the input signako be greater thai or increasing the number of samples on
« and g or both.
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The measures correspondingdoand~y are constants ittO(3), just like in the Euclidean space. We
therefore assume uniform sampling for these parametersiirwork. For discrete planar convolution,
it is customary to have no weights (or rather, unit weigh@i. the sphere, however, the non-uniform
measure ong, sin Gd3, presents challenges for sampling. If we are simply inteckén convergence,

227 sin(f3,) 22 for uniform samples ofy, 3,~ corresponds to the Riemann sum of

then settingw; s . =
the integral. Theorem 4.3 states that better quadraturenseh exist that guarantee exact reconstruction
up to a certain bandwidth.

The generalized sampling theorem is useful for the pergsinmstruction of an original signal sampled
with equipment that introduced blurring during the acdiosi process. For example, the first layer of
filters h,, could be the blurring kernels of a set of radio dishes measuring the cosmic background
radiation of the sky. We can then hope to recover the true mosatkground radiation signal by passing
the recorded signal through the second bank of filters.

The two theorems imply that if a filter bank with a finite maxirepherical harmonic order is invertible
up to degred. under the continuous spherical convolution, it is also iitieke up to degred. under the
discrete spherical convolution. Because function€#052) have finite energy, their spherical harmonic
coefficients must necessarily decay to zero. Therefore wereasonably assume that the filters of the
filter bank are of finite bandwidth as required by Theorem 4@ that we can represent the filters with
a finite number of coefficients up to an arbitrary pre-spetifieecision. We will therefore focus on

constructing invertible filter banks for continuous comain.

V. CONSTRUCTING SELF-INVERTIBLE MULTISCALE FILTER BANKS

In this section, we outline the use of the continuous inkéity corollary to generate self-invertible
multiscale filter banks. The optimization framework praserhere can be easily adapted to design other
types of filter banks by altering the structure of the optatian problem according to an application’s
needs.

For self-invertible filter banksh, (6, $) is constrained to be the same As(6, ¢). Furthermore, in
multi-scale analysis, the analysis filters are relatedupnodilation and scaling of a particular template
h(b, ), ie.,

f[ )Dy, h(6, ¢) (14)
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whereb, > 1 and D, is the nonlinear dilation operaforwith larger n corresponding to smalles
(narrower filters).

In this paper, we adopt the stereographic dilation opemtarduced in [1], which involves stereograph-
ically projecting the function from the sphere onto the plaperforming the usual dilation operation on
the plane and then projecting the resulting function badk ¢ime spheré Stereographic dilation allows
for an explicit control of the spatial localization of the wedets in contrast with previous approaches that

define dilation in the frequency domain [3].
The definition of the stereographic dilation includes a ralipation factor such that the inner product
between functions is conserved:

1+ tan? g 1.8
W f(2 tan (E tan 5), (b) (15)

Duf)(0,6) = - (
Because of the nonlinear nature of stereographic dilagatreme dilation of a spherical function will
eventually lead to high frequencies. In practice, we wilbidvworking in that region, since the dilated
filter no longer looks like the original filter.

The b;’s in Eq.(14) are the amplitude scaling parameters thatrobrnihe tradeoff between self-
invertibility and norm-preserving dilation. Corollary2implies that the sum of squares of the spherical
harmonic coefficients of a bank of self-invertible filtersshincrease linearly with degree. But stretching a
function while preserving its norm shifts its sphericalthanic coefficients to the left (spherical harmonic

degrees decrease) and magnifies them (Figure 3).

energy dilation

degree

Fig. 3. Effect on energy due to norm preserving stereogcagiiation.

2\We note that the symbadD is overloaded to imply rotation as well as dilation, but theaming should be clear depending
on the context.

3We note that the approach commonly used with planar imagesmifing a constant filter to a subsampled image fails here
because the sphere is periodic and bounded, causing thiveffeize of the features (relative to the filter) to staystant with
subsampling. We also note that nonlinear dilation is neagssince the sphere is compact, hence dilating a spherioatibn

by naively scaling the radial component of the sphericatfiom, f(0, ¢) — f(%, @), leads to undesired “wrap-around” effects.
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These extra weights are analogous to the measure of §ggzaiein the group theoretic formulation of
wavelets [1], which results in wider filters being assignethBer weights. On the continuous real line,
the measurea%da nicely cancels out the dilation of the filter (cf. [23], chap®). On the discrete real
line, the convolution outputs of narrower filters are sardpieore densely. This suggests two possible
approaches: variable sampling of the convolution outputgasiable scaling of the filters. Because the
effects of stereographic dilation on the spherical harmamiefficients of a function is not analytical,
neither approach leads to a closed-form solution. In thjgepave take the variable scaling approach by
finding the appropriaté,’s as part of the filter design.

Fortunately, stereographic dilation is distributive oeeidition. Suppose the templalteis expressible
as a linear combination of the basis functids 6, ¢), i.e., h(0, ¢) = M, ¢;B(9, ). Here, we assume
that B'(6, ¢) are spherical harmonics and note that the technique isagtlicable if a more suitable

basis is found. Applying stereographic dilation/tp

M bm o g

[Dyh)b™ = [Da > ciBi] = ¢[D.B™ (16)

i=1 i=1
yields the spherical harmonic coefficients of the analydisrfiat another scale. This is useful since
the invertibility condition in Corollary 4.2 is expressed terms of the spherical harmonic coefficients
of the filters. We can therefore decide on a set of scdlgs}_; and create a table of spherical
harmonic coefficients of the dilated basis functions. E) @llows us to determine the spherical harmonic
coefficients of the dilated filters at each relative scaleegiv;'s and b;’s. This technique can also be
applied to other definitions of scale that are distributiveroaddition.

After fixing the set of basis function§B?} and the set of scaleg:,}, we now pose an optimization
problem to determine;’s and b;'s. Similarly to the filter design in the Euclidean space, tigective
function should be application dependent, and could fonmgta be a function of the frequency response.
The constraints come from enforcing self-invertibilityevassume that the analysis and synthesis filters
are identical and optimize the cost function under the iiivéity constraints of Corollary 4.2. Since
we cannot have more constraints than variables, selftibiléy cannot be achieved for more degrees
than the number of basis functions and scales. We will ds@&xamples of the objective function in
section VI.

The quadratic penalty method [2] is effective in solvingstliptimization problem with non-convex

constraints by incorporating the constraints into the cije function and solving the resulting uncon-
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strained optimization problem using non-linear least sgsi@ptimization*. The procedure is repeated
while increasing the weights of the constraints and usirgg gblution corresponding to the previous

weights as the starting point, until convergence to a lodaimum of the original cost function.

VI. EXPERIMENTS

In this section, we demonstrate the optimization procedammulated in the previous section. We
demonstrate the construction of both self-invertible sighéwavelets and spherical steerable pyramids.
Similar to the Euclidean domain, we define a spherical wavedasform to be the decomposition of a
spherical signal into component signals at different sale., employing axis-symmetric filter kernels.
On the other hand, we reserve the term spherical steerabdenfy transform for the decomposition of
a spherical signal into component signals at differentescahd orientations, i.e., using axis-asymmetric
filter kernels. We note that in some literature [1], [3], [281e term “spherical wavelets” includes spherical

steerable pyramids.

A. Spherical Wavelets

In designing axis-symmetric wavelets, we limit our set ofibdunctions{ B?} to be the first hundred
spherical harmonics of ord€r since the spherical harmonic coefficients of axis-syminéinctions are
zero for orders other thai

We define the set of scales to be= {275},n = —6,—5,---,2,3, with a = 1 corresponding to
the undilated template. We use S2kit [13] to create a tabléhefspherical harmonic coefficients of
D,Y? for I = 0,---,99. We find the first600 order 0 spherical harmonic coefficients of each dilated
spherical harmonic (a dilated axis-symmetric function a@m axis-symmetric). As mentioned before,
extreme stereographic dilation and shrinking of spheiti@amonics can result in high frequencies. We
verify that fora = 4 anda = 0.5, [D,Y]?**0 < 1077,

For axis-symmetric filters, we can use the fast spherical@oation [9] to compute forward convolution.
We quote the results here for completeness:

Lm AT 1 mT10x

An extra multiplier of27 is introduced in [9] by integrating out. We will show in Appendix E that we
can use almost the same formula to calculate the convolatiay( 3, o) with an axis-symmetric filter

h(6, ¢) in the reconstruction process.

40Our implementation uses Matlab’s Isgnonlin.
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Because we seek to decompose a spherical signal into comipsigrals at different scales, we would
like the filter at each scale to act as a bandpass filter. Sirtvldhe Euclidean domain, we require a
residual lowpass filter to ensure that the combined wavelidtthe lowpass filter bank is invertible up
to a particular degree. Since we only use the fif¥i spherical harmonics as our basis, the frequency
response oﬁazl(e, ¢) will be zero for all degrees higher th®9. If we also penalize the magnitude of
the leading spherical harmonic coefficientsiNQLl(e,@, the frequency response 5321(9,@ will be
zeros at both ends, i.e., it will serve as a bandpass filtesafisfy the self-invertibility conditions, the
solution cannot be identically zero, but must rise to a peakewhere in the middle of the frequency
range.

We also penalize the second derivatives of the filters’ feeqy responses and spherical harmonic
coefficients to force the filters to be relatively smooth anddduce ringing. We can induce a sharper
cutoff frequency by penalizing the magnitude of the combifrequency response above a cutoff degree
L.. In addition, we fix the amplitude scaling factdrss to be the same. While allowing thig's to take
on different values provides the optimization procedurearftexibility in finding a set of desired filters,
we find that in practice, having the sarbdor all the scales results in the frequency responses of the
filters at all scales having comparable amplitude. Oncenagat note that the energies of the filters at
different scales will be different because of Corollary.4.2

Figure 4(a) illustrates the frequency response of0escale wavelet filter banka(= {273}, n =
—6,—5,---,2,3) obtained through our optimization procedure. Inveritipils enforced from degree5
to 79. Furthermore, we impose a quadratic penalty on the magnibfithe combined frequency response
for degrees abové. = 150. The combined frequency response of the filters is showngnrgi4(c).

Because the filters are axis-symmetric, we can plot thediirethe image domain as a function &f
(Figure 4(b)). The existence of a second peak after the pefak=e0 (north pole) indicates ringing. When
we vary the cutoff frequency penalty, we can trade off the amaf ringing for the slope of the cutoff.
For example, Figure 5(a) shows the combined frequency nsspof a wavelet filter bank obtained by
penalizing the magnitude of the combined frequency respdmsdegrees above, = 100. Notice the
combined frequency response drops rapidly after deggeelowever, this results in increased ringing. If
we measure ringing by the ratio of the second maxima to themaaat the north pole, we can measure
the tradeoff between ringing and the cutoff frequency, asvshin Figure 5(b). As a verification step, we
convolve the wavelet filter bank of Figure 4(a) with the wagldvation map (Figure 6(a)). The results for
4 scales are shown in Figure 6(b-e). Upon reconstructiorgusim (92), we find thafgh™ —25™| < 1077

for degrees between 15 to 79 inclusive. As mentioned be#oresidual lowpass filter is required to ensure
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(a) Frequency response of individual filters.
a:22 a:25/3 a:24/3 a=2 a:22/3
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(b) Individual filters in the spatial domaird (< ¢ < 1 radian). The second peak indicates ringing.

0.81

0.6

0.47

0.27

15

0 50 100 150 200

(c) Combined frequency responde, = 150.

Fig. 4. 10-scale wavelet filter bank obtained by imposing invelitibfrom degreel5 to 79 and a combined

frequency response cutoff at. = 150.

June 1, 2007 DRAFT



ON THE CONSTRUCTION OF INVERTIBLE FILTERBANKS ON THE 2-SPHEE 16

invertibility up to degre€r9.

0.2

0.18¢

0.16¢

0.14}

0.12¢

0.1}

0 56 100 150 200 0'OZIE.;OO 150 260 250 300

(a) Combined frequency responde, = 100 (b) Ringing vsL.

Fig. 5. (a) Combined frequency response of the filters obtained whercombined frequency response cutoff is
set to L. = 100. Note the sharper cutoff obtained. However, this is at thgeage of ringing. (b) Plot of ringing
versus cutoff frequency... Ringing is defined to be the ratio of the second peak to theiman peak at the

lowest scaleg = 4.

(a) Original Image (bya=4 (c)a=2 (da=1 (e) a=0.5

Fig. 6. Outputs of the analysis filter bank of Figure 4 applied to thoglevelevation map. Only 4 scales are shown.

To demonstrate that the optimization procedure is stabitesadifferent settings of parameters, we show
a second example where we optimize fod-acale wavelet filter banka(= {4,2,1,0.5}). We enforce
invertibility from degreel0 to 89 and apply a quadratic penalty on the magnitude of the cordbine
frequency response for degrees abéye= 150. The combined frequency response of the resultant filter
bank is shown in Figure 7(a). Once again, by varying the €dtefjuency threshold, we can obtain a
tradeoff between ringing and sharpness of the cutoff (sgar&i7(b)). We apply the filter bank to the
world elevation map (see Figure 8) and find that invertipii¢ obtained for degrees betweéf and
89 inclusive. Notice that there is significantly less ringingifacts than in Figure 6 as predicted by our

measure of ringing at. = 150 (compare Figure 5(b) and Figure 7(b)).
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0.8
0.61
0.47
0.2r
Oolj 50 100 150 200 200 250 300
(a) Combined frequency responde, = 150 (b) Ringing vsL.

Fig. 7. (a) Combined frequency response of-acale wavelet filter bank obtained by our optimization pcare.
a = {4,2,1,0.5}. Invertibility is imposed from degre&0 to 89. Combined frequency response cutoff is set to

L. = 150. (b) Plot of ringing versus cutoff frequendy..

@a=4 (bya=2 (c)a=1 (da=0.5

Fig. 8. Convolution outputs obtained by applying the analysisrfittenk of Figure 7(a) to the world elevation map
of Figure 6(a). Notice that there is less ringing artifadtart in Figure 6 because ringing is lower in thescale
filter bank than in thel0-scale filter bank whel... is set t0150.

B. Spherical Steerable Pyramid

Just like the Euclidean domain [12], it can be shown thatetigra direct tradeoff between angular
resolution and steerability of oriented (axis-asymméftiilters on the sphere [25], i.e., filters that have
higher angular resolving power requires a bigger set ofetatg” basis filters.

In our experiments, we limit our set of basis functiofB’} to be the first two hundred spherical
harmonics of ordes-1 and—1. We note that we can increase our angular power by using hgiers,
but this decreases the steerability of our filters. By caavéid) only real filters, we can avoid working
directly with the order—1 spherical harmonics, since their coefficients are effeticonstrained by

those of the order-1 spherical harmonics (see Appendix A). For convenience, wihdr assume that
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the coefficients of the ordefr1 spherical harmonics are real.

-6
-15 -1 -05 0 0.5 1 15

0 100 200 300 400 0 100 200 300 400

(a) Individual frequency respong®) Combined frequency response (C) hq=4(0, ¢) (d) Plot of he=4(0,9) (—1.5 <
0 < 1.5 radian)

0.6 0.6

05 0.5f

0.4 0.4]

0.3 0.3

0.2 0.2

0.1 0.1

-15 -1 -05 0 05 1 15

(e) Individual frequency respong® Combined frequency response (g) ha=4(0, ¢) (h) Plot of ha=4(0,9) (-1.5 <
0 < 1.5 radian)

Fig. 9. (a-d) lllustrates th&-scale steerable pyramid & {272}, n = —4, - - -, 4) obtained by imposing invertibility
from degree20 to 170. Note that the frequency response is equa).®in the invertibility range because we only
plot the frequency response contributed by the orderharmonics. (e-h) Illustrates thiescale steerable pyramid
(e ={4,2,1,0.5,0.25}) obtained by imposing invertibility from degrd® to 180. Note that the frequency response
is equal t00.5 in the invertibility range because we only plot the frequeresponse contributed by the ordet

harmonics.

We define the set of scales to be= {272}, n = —4,---, 4, with a = 1 corresponding to the undilated
template. Once again, we use S2kit [13] to create a tableeo§pierical harmonic coefficients 6f,Y;!
for I =1,---,200. We find the first999 order1 spherical harmonic coefficient of each dilated spherical
harmonic (the order of a spherical function does not changkewudilation). We verify that fon = 4
anda = 0.25, [Dy Yo% < 1077,

Similar to the previous subsection, we penalize the madaitf the leading coefficients &f,—; (0, ¢).
We also penalize the second derivatives of the filters’ feeqy responses and spherical harmonic
coefficients. Finally, we fix the amplitude scaling factégs at all scales to be the same.

Figure 9(a-b) illustrates the frequency response df-scale steerable pyramidi (= {272 },n =

—4,---,4) obtained through our optimization procedure. Inveritypilis enforced from degre€0 to
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170. Note that the frequency response is equd).@in the invertibility range because we only plot the
frequency response contributed by the orddrharmonics. Figure 9(c) shows,—4(0, ¢) as a spherical
image. Note that it looks like a derivative of gaussian. Wa edso to quantify ringing by plotting
ha=4(0, ¢) as a function of while fixing ¢ to correspond to the great circle passing through the maxima
and minima of the filter (Figure 9(d)).

Similarly, Figure 9(e-f) shows the frequency response®taale steerable pyramid & {4,2,1,0.5,0.25})
obtained through our optimization procedure. Invertipils enforced from degre&) to 180. Figure 9(g)

showsh,—4(0, ¢) as a spherical image and Figure 9(h) is a plokgf4(0, ¢) as a function of by fixing
o.

VIl. DIscussION ANDCONCLUSION

In this paper, we present the theoretical conditions foritlkertibility of filter banks under continuous
convolution on the 2-Sphere. We discretize the resultsgugimadrature, thus obtaining a generalized
sampling theorem. We propose a general procedure for cmtisty invertible filter banks and demonstrate
the procedure by generating self-invertible sphericalelet¢ and steerable pyramids.

Nonlinear dilation of functions on the sphere remains diffito work with. While we circumvent the
problem by using the distributive property of stereograpfilation, the spherical harmonic coefficients
table can take up a substantial amount of space. More effimethods are therefore needed. It might
also be possible to formulate other definitions of dilatibattfit better into the computational framework.

More work is needed to understand the space of invertiblesaifdnvertible filter banks. As we saw
in our experiments, there is an implicit tradeoff betwees sharpness of the frequency response of the
filters and ringing. It will be useful to formulate an objetifunction that directly trades off between
ringing and the sharpness of the frequency response.

This paper introduces theoretical results on invertipidind sampling, and represents a step towards a
general framework for filter design on the 2-Sphere. Justagelgts and steerable pyramids have been
useful for the processing and analysis of planar images, re@ptimistic that future work will lead to

similar applications on the sphere.

APPENDIX A

SPHERICAL HARMONICS BAsICS

Here we review useful facts on the spherical harmonics.
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A. Spherical Harmonics

The spherical harmonicg™ are defined in terms of the associated Legendre polynomjélsFor a
given degred > 0 and orderm| <1,0<60 <7 and0 < ¢ <27

2041 (1 —m)

Y76, 0) s cos )™ (18)

where, form > 0 and|z| < 1,
e = G-y L ey (19)
@) = () A (20)

Therefore, forl > m > 0, we have,

m 20+ 1 (1 —m)! (=)™ 2 pmye AT ! im
Ym0,6) = 4 yr e T (1 — cos? )™ e 1) e ¢ (21)
—m 20+1(1—m)! 1 2 pmya A ! —im
YE (9, qb) 471‘ le_l'(l — COS 9) / d:[;l""m ([L' — 1) x_cosee ¢ (22)
= (=1)"Y"™(0,9) (23)

B. Rotation of Spherical Harmonics on the Sphere

Under rotation, each spherical harmonic of dednsdransformed into a linear combination of spherical
harmonics of the same degree but possibly different orderparticular if we parametrize our rotation
by the three Euler angles, 3,~, and rotate our original functioifi, it can be shown that:

l
[D(e, B,NF™ = > Dby (e, By) fH (24)

m/'=—1

whereD!,,., (o, 3,7) is the Wigner-D function [17]. We can further decompd3g, .. (o, 3,~) as follows:
Dl Byy) = e7™med (B)e”™ (25)

whered!

mm’

Qo (B) = D (=17

J

(8) is the Wigner-d function and is real [17]:

ST =+ m)id —m)!
U+ m = G = = m)lG — m! + m)!

COS —

( §)2l—2j+m’—m(sin g)Zj—m’-i-m (26)

The sum is over allj such that none of the denominator terms with factorials ggatiee. This reflects

the fact that only rotations about theaxis mixes orders.
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By the Peter-Weyl theorem on compact groups [26]

/ 872
D! DI (p)dp = S(U=1U'm—m',n—n' 27
/50(3) mn(P) D (p)dp = 5=—0( ) (27)
By integrating outv and-~y, we obtain
/ 2
l l : _ o
o (81 (3)sim 513 = 5780~ 1) (28)
We will also use the following identity which algebraicaliglates spherical harmonics and the wigner-
D functions.
. 2l + 1 * A+1[ i, *
Y(8.0) = [ 2 | Dhgla )| = [T e medg(@)]  forany o @9)
T 4
APPENDIX B

PROOF OFCONTINUOUS-INVERTIBILITY

Here, we prove Theorem 4.1 on continuous frequency respdsdirst note that by using Parseval's

Theorem and substituting Eqg. (24), we can re-write the dutpthe n-th analysis filter as

yn(,B.7) = /S D, B3] (6.6)2(0, 6)de (30)
Z Z [ > Do (0 7y, m] 2" (31)
m/:_l/ m//:_l/
and the reconstructed image as
N
50.0) = > [ D@k S)yala ) (32
—1/50(3)
(31) N 0 l/ ’ i 4 1" ) ’ ’
o / [D(a, Z Z S Dl (e B 2™ dp(33)
n=1 30(3) —0m/'==1l" |m/"==I
Projectingz (6, ¢) onto the spherical harmonics basis we obtain
Fm o= | 36,0)Y(6,¢)d2 (34)
(33) N © l, l/ ""l/ m// ) l/ m/
3 Z/ /[ (0, B, 7)) (6, $) Y™ dQ}Z Z S DY e, )R | dp (35)
n—1 SO(3)L/s2 —0m/=—1"| m/’=—1
(24) N 00 *
2 / Z L™ DL (o Z Z Z DY (e, BoRE™ | 2™ dp (36)
n:l So(g) m///__l Om/:_l/ //:_l/
N ! 11 l ~1 ok
n=1m"=—1 V=0 m'=—U m/=—l 50(3)
N l
(2_7) l,m 87T2 l,m’” ~l,m”/ *
Datngf X X e [T (39)
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APPENDIXC

PROOF OFDISCRETEINVERTIBILITY

Here, we prove the generalized sampling theorem. Recaii 8ection Ill thaty,,(a; », Bs.n, Vkn) are
samples ofy, (a,3,7). Recall also that we definé, = min(L, L ). Therefore, from Eq.(31) and

noting that the maximum degree ofis L (L < o0), we get

yn(aj,na Bs,ny ’Yk n Z Z Z Dm ,m'’ aj,n7 58,77/7 ’Yk,n)ﬁi;mﬁ xl’,m/ (39)

l/_Om/__ / m!=— l/
Forw; s xn = 4’}2}”{5*" (as required by the theorem), the output of théh synthesis filter becomes
Jn—=18,-1K,—1
‘%n(ea (b) = Z Z wj,s,k n aj,na Bs,rw ’Yk,n)hn] (97 (b)yn (aj,na Bs,ny ’Yk,n) (40)
] S=
(39) Jn_]-Sn_l Kn 1 47T2wsn

= - : [D(aj,m ﬁs,m ’Vk,n)hn] (97 ¢) (41)

*

z 5 [ S ol %n,ﬁsn,%n)hlm]

=0m/==l'" |m/’'==U

Projectingz,, (6, ¢) onto the spherical harmonics, fox L (and thusim| < L), we have

ghm /@n(e,@ylm*(e,@dg
S2

(24) To 1O VEuTl g2 wsn
DY >

j=0 s=0 k=0 In K

m!"=—1

Z D m'’ Oé] THﬂs nafyk n)hlm ] (42)

’Vl ll *
Z Z [ Z Dg@’,m” (aj,m ﬁs,na 'Vk,n)hlr;7m,,] l’ll’ml
=0m/'==l" |m'’'==l"

p
= % Z_j plm” lz Z ztm Z_j l/ [hi}m”} (43)
J,—1S,-1K,—1

Z Z Z Ws D mmm ajmﬁsm’ykn)Dgw:t,m”(aj,mﬁs,m'Vk,n)

7=0 s=0 k=0

where we have arranged the terms so that they look like thg det Peter-Weyl Theorem, except we

have summations instead of integrals. ebe the last part of Eq. (43), and thus we have
1 47'('2 ! l L r ~U.m! *

z)" =
mi=—] I'=0m'==1’ m!' =’
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To simplify ®, we write

-15,-1K,—1
o = Z Z Z wsn mm/” a] naﬂs m’}/k n) m/’ m“(a] mﬁs na’}’k n) (45)
j=0 s=0 k=0
(25) Jn—18,—1K,—1 '
— Z Z Z ws ne Zma] ndm mlll (/Bs n) _Zm PYk Zm aJ ndm, m// (/Bs7n)elm PYk’n (46)
—0 s=0 k=0
Sn—1 Ju=1 K.—1
= > wendh i Bsn) i o (Bs) | Y €l M [Z el m =m"")Ye.n (47)
s=0 =0 k=0

We note thatjm/| < I’ < L, and|m| < L, and therefore~L,, — L < m/ —m < L, + L. Since

oy = ﬁ j=0,1,---, L, + L, we can conclude via the geometric series that
J.—1 Lo+L 2mj L i f— =
Z z(m m)O‘J "= Z el(m m) Ln+L+1 — Ln + L * ! If (m m) ! (48)
= =0 0 otherwise

Similarly, from Eq. (42), we observe that"| < O; and|m"| < Oy,,. Using the same reasoning, we

get
O~ 40y,
K,—1 o » hn n i(m”—m”')% O~ +Oh +1 if m! — m!") =0
ORI DS SRR ()
k=0 k=0 0 otherwise

Substituting into Eq. (47), we get

n_l

Jn—1 ' K,—1 4
d = Z W nd mm”' (ﬁs n)di;q/,m//(ﬁs,n) |:Z ez(m’—m)aj,n:| [ Z el(m”—m”l)'Yk,n‘| (50)

7=0 k=0
Sp—1
- JnKn Z wsyndiﬂﬁm/” (58,n)dlr;1/7m//(ﬁg7n)5(m — m/)é(m” _ ml//) (51)
s=0
Sp—1
= Jnkn Z Ws,n mm” (ﬁs n)dm m' (5s,n)5(m — m/)5(m// _ m///) (52)
s=0
(08) 20K e
= 5100 1)8(m = m )" — ") )

where in the third equalityn” = m”, m’ = m because of the delta functions, and the last equality was

obtained using the assumption thas,, and g, , are the quadrature weights and knots of the integral
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I dLr (B)dL (B) sin(8)d3. We can now substitute Eq. (53) back into Eq. (44):

zhm
ar? o L AL
= T r Zh“”ZZw’ > (] e (54)
n n m!=—1 =0m/ =1 mll=—1'
ar? L Ut 200Ky
= = > Z Z ST [ o 0 = 1)6(m = m")o(m” —m") (85)
n n m!=—1 =0m/ =1 m! ==
87(-2 l l N""l "
= zhm Z RL™ plm* (56)
20+ 1 el
Noting thatz (0, ¢) = -V, Z,.(8, ), we have
N 87T2 1" "
= E" =g “”Z Z W™ R =abm forall0 <1< L (57)
n=1 n=1m"=-1
APPENDIXD

QUADRATURE RULES

In this appendix, we derive two different quadrature rulest satisfy the conditions of Theorem 4.3,

namely, we show quadrature weights,, and knotsg; ,,, such that forl < L,!’ < Zn,
T Sn—1
/0 Ly (B) i (B) sin(B)dB = > w5 nly (Bs.n) i (Bs.m) (58)
s=0

A. Quadrature Rule (1)

We denotef (8) = d,..(8)d.,, () and observe thaf(j3) consists of a linear combination of even
powers ofcos(3/2) andsin((3/2) (see Eq.(26)). Therefore, if we make the substitutios sin(3/2),
and noting thatf(u) (where we are overloading) is now a polynomial with maximum degreé), =

21 +1') < 2(L + Ly,), we get

/7r f(B)sinpds = 2/ )sin(/3/2) cos(8/2)dS = 4/ f(w)udu (59)
0
Now, making the substitution; = 2u — 1, we have
+1 v—l—l Nl v+ 1 v+ 1
£(B)sin BdB = 2 Y dv=23"r ¥ (60)
/ / < > 2 ,;] ‘T2 < 2 )

wherer;'s are defined to be the weights of the Gauss-Legendre quaean the interval—1, 1], anduv’s
correspond to the sampling knots [16]. The weights and abasican be found by standard algorithms

(see for example [16]). In general, quadrature integragaxact up to polynomial powegsV — 1 where
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N is the number of samples. Because the integrand’s highéstqmaial power isQ + 1, if N > %Jr 1
(or N > [%1 + 1), then2N — 1 > @Q + 1 and thus the quadrature formula is exact.
From the substitution above, we hasfm% = u, = & or g, = 2sin~(24). In conclusion,
for N = [€] + 1, we have [] .. (3)d",. (B)sin BdB = SN wsf(Bs), ws = 75(vs + 1) and
Bs = 2sin‘1(”b‘T“), wherer, and v, are the quadrature weights and knots of the Gauss-Legendre
guadrature.

B. Quadrature Rule 2

We will derive another rule in this section, using the tectue shown in [9]. But first we need to
obtain the fourier series formula for the square wa¥€,«), which is defined to be periodic fromr
to m,

1 —7m<u<-—m/2
-1 —7m/2<u<0

5Q(u) = (61)
1 O<u<m/2

-1 7/2<u<m

ProjectingSQ(u) onto the fourier series basis, we get

1 7 ik 1 -T2 0 . T2 Tk
—/ SQ(uw)e "du = —[/ e’“du—/ e’“du+/ e’“du—/ e’“du} (62)
2m J 2m | J_x —/2 0 /2

4 tku /2 —iku 0 —iku /2 —iku|™ :|

_ N _ 63
27k [6 -7 —7/2 te 0 w/2 ( )

1 kT ikmy _ (1 _ kT —ikE _ —ikm _ —ikZ

— | e (e g - e (e
[ ik —ikz Loikr 1 —ikw]

= _— 2 2 — 1 _ = _ = 65
— {e +e 26 26 (65)

= ocos(kT) — 1 — cos(k (66)

= —|2cos(kg cos (k)

If k= 4n, we get2cos(2nm) — 1 — cos(4dnm) =0

If £ =4n +1, we get2cos(2nm + §) — 1 — cos(4nm + 1) =0
If &= 4n+ 2, we get2cos(2nm + m) — 1 — cos(dnm + 27w) = —4
If k= 4n+ 3, we get2cos(2nm + 3T) — 1 — cos(4nm + 37) = 0

Therefore, the fourier series f6fQ(u) is non-zero fork = 4n + 2, and is equal to-4-%, and we have

> 44 , o0 2 ‘
= __F Gidpt2u _ i(4p+2)u
=2 e T e ©7)

Now, we can continue with the derivation of the quadrature nate thatf (8) = ", ;. ax cos(3/2)" sin(8/2)",

wherek andk’ are always even, non-negative and bounded (once again,en@varloadingf). We can
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express them as complex exponentials so fiigh = -, bq(eiﬁﬂ)q whereq can take on negative values,
but it is still bounded]q| < 2(1 +1') < 2(L + L,). Note that if we make the substitutigh = 3/2, we
now havef(8') = Y . ax cos(3')F sin(3")F" = 3, b (e'?)9. Therefore,

T 7r 2
jﬁ FB)sin(@)ds = 2 f(8)sin28)ds" (68)
—7r/2
= 2/ )sin(28')dp" — 2/ B3 sin(28")ds’ (69)

2/7r/2 )sin(28")dB" — %/7;2 f(3")sin(26")ap’

= 3 [ sinea)se@as (70)

where the middle equality was obtained using symmetry aegumsincef is a linear combination of
even positive powers ofin and cos.

Since|q| < @ implies that the terny (3') sin(2(3’) has exponential powers @ + 2, we can eliminate
terms in the fourier series fQ (') that falls out of the range (by orthonormality of the expaias),

thus we only require such that

l4p +2| < Q +2 (71)
& —Q-2<4p+2<Q+2 (72)
o 2 1<p<? (73)
s —L%J—lépél% (74)

Defining SQ(3') = ZL_J 1911 —%ei(@”)ﬁ', we have
[ r@sin@as = 5 [7 13)sines)5Q@) 75)
T2 q_z_: " % ' 2p + ©(2p+1) / e _2;—2%’ ity (76)

Let us define the highest exponential power tathand notice thaB = Q+2+4L%j +2=Q+4(Q/4|+
4, while lowest exponential power correspond&k@—2—4[%j—2 = —Q—4L |—4 = —B. LetN bethe
smallest integer such th@ < 4N, whereN is an integer. Thereforey = | £ |+ | 9| +1+1 =2[¢]+2
It is easy to verify the following identity:

| 2Nl 1

2mikl ™ 1 ifl=0
N Yo oein = 2—/ e dp = . V|i| < AN (77)
k=—2N TS 0 otherwise
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Substituting the identity into Eq. (76), we get' (— 25%),

Q L%J . I2N—1 2mwik?2 —27ik2
1 21 e 2rikg € 4N — € 4N 2mik(4p+2)
z Z by Z - eiN — o7 aNn
2q:—Q =191 m(2p+1) 2N iy 21
2N-1 2] .
2mika 47Tk7 4 21 2mik(4p+2)
= b IN Sl - e a~N 78
AN k_z_;Nq_z_: e sin(7r) __XQ: T (78)
p=—|3]-1
2N-1
7T/<; . Arnk  — 27k
= DY A= sin (TS0 (79)
k=—2N
2N-—1
2k . . wk . — 7k
= Y =D smES00) (80)
k=—2N
2N-1
27T/<; . k. — 7k
= o Z fBe = &) sin(57)5Q(55) (81)
27Tk‘ . k. — 7wk
= - Zfﬁk N sin()9QU5) (82)

where the second last equality uses the fact that—27) = 0 and the functionf is even, and the

last equality uses the fact theith 7 = 0 and f(3') is even abouty’ = 7. Because3, = /2 = %,

hencegy, = ”W’f for k = 0,1,--- N — 1 corresponds to our quadrature knots, with quadrature wsigh

wy, = % sin(#)SQ(h).

C. Summary

We have formulated two p033|ble ways of obtaining an exaedature of (] d.,,.., (3)d%,... (8)d3
and the integral is equal 8" wd,, (8s)dbm (Bs) = 2z+1 d(l =) if we select the correct samples
and corresponding weights. In particular, this is true for

1) B, =2sin~'(2t) andws = rs(vs + 1), s =0,1,--- N — 1, where

a) N=T[%9]+1
b) Q is the highest power of.,,,, (8)d.,,. (3) when viewed as a polynomial hring
c) rs andv, are the weights and nodes of the Gaussian-Lengendre quedi@i the interval
[-1.1]
2) Bs == andws = T sin(%2)SQ(£2), s =0,1,--- N — 1, where
a) N=2\9]+2
b) @ is the highest power of!, ,(3)d’,,(3) when viewed as a polynomial ief =
Note thatQ = 2(1 + ') < 2(L + Ly,)
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APPENDIX E

INVERSE CONVOLUTION WITH AXIS-SYMMETRIC FILTER

Here, we illustrate the computation of the inverse conwoiudf y (3, «) with an axis-symmetric filter

h(0, ¢). Starting with the definition of inverse convolution, we get

70.9) = [ (Dl 56, 0)y(5,0)dp 83)
SO(3)
24 1,0 m
Lo 52 (Dol 5 01)¥5700.0) | (5, )i (84
29 | 204+1 . ,_
Lo > (Drolen B )\ T Di(s.0.9) | w(Bcddp (89
(e o) 2+ _
= oo %(D&ow,e,v)h”)\/ - Dhal0,8:9)| w(Bop @)
We note thaty and~’ can take on any value without affecting the equation. Caitigp, we get
#0.0) 2 [ oo | ZD (6,0,7)hY™ (8, 0) | (8. a)dp (87)
24 1,0xy m
2 /SO() ZD (6,0,7)hY;™ (B, | v (88)
[ D0 T GG (89
50(3)
27 ™ 27
= [ [ [ (D@0, (5. )y(5. ) sin pdadsay (90)
0 0 0
T 27
= 2 [ [ [D(.0.9)0T" (8,0)y(5. ) sin fdad3 (91)
0 0

Eq. (91) without the2r is simply a forward convolution between the spherical img@@ «) (where we
remind the readers that is taking the role ofp andj is taking the role of9) and the filterh*(3, o).
Hence using Eq. (17), we get

4
~ lym l ;m1pl,0
, = 27 92
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